Abstract: Scan architectures are commonly used to test digital circuitry in integrated circuits. The present disclosure describes a method of adapting conventional scan architectures into a low power scan architecture. The low power scan architecture maintains the test time of conventional scan architectures, while requiring significantly less operational power than conventional scan architectures. The low power scan architecture is advantageous to IC/die manufacturers since it allows a larger number of circuits (such as DSP or CPU core circuits) embedded in an IC/die to be tested in parallel without consuming too much power within the IC/die. Since the low power scan architecture reduces test power consumption, it is possible to simultaneously test more die on a wafer than previously possible using conventional scan architectures. This allows wafer test times to be reduced which reduces the manufacturing cost of each die on the wafer.
Abstract: Semiconductor device includes MOSFET having planar cells on an epitaxial semiconductor surface of a first type providing a drain drift region. A first and second epitaxial column formed in the semiconductor surface are doped a second type. A split gate includes planar gates between the epitaxial columns including a MOS gate electrode (MOS gate) and a diode gate electrode (diode gate). A body region of the second type in the drift region abuts the epitaxial columns. A source of the first type in the body region includes a first source portion proximate to the MOS gate and a second source portion proximate to the diode gate. A vertical drift region uses the drift region below the body region to provide a drain. A connector shorts the diode gate to the second source portion to provide an integrated channel diode. The MOS gate is electrically isolated from the first source portion.
Type:
Grant
Filed:
November 18, 2014
Date of Patent:
September 15, 2015
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Christopher Boguslaw Kocon, John Manning Savidge Neilson, Simon John Molloy, Hideaki Kawahara
Abstract: A wireless network receiver includes a detection module that uses preamble data in a data frame for signal processing functions and the detection module is configured to adjust the number of preamble data bits that are used based on the power of a received signal.
Type:
Grant
Filed:
June 3, 2014
Date of Patent:
September 15, 2015
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Wenxun Qiu, Timothy Mark Schmidl, Minghua Fu, Anuj Batra
Abstract: Methods and circuits for transmitting data are disclosed. An embodiment of a method includes transmitting a predetermined number of pulses during predetermined period of time. A first predetermined number of pulses transmitted during the predetermined period of time represents a first value and a second predetermined number of pulses transmitted during the predetermined period of time represents a second value.
Abstract: A semiconductor device has a vertical drain extended MOS transistor with deep trench structures to define a vertical drift region and at least one vertical drain contact region, separated from the vertical drift region by at least one instance of the deep trench structures. Dopants are implanted into the vertical drain contact regions and the semiconductor device is annealed so that the implanted dopants diffuse proximate to a bottom of the deep trench structures. The vertical drain contact regions make electrical contact to the proximate vertical drift region at the bottom of the intervening deep trench structure. At least one gate, body region and source region are formed above the drift region at, or proximate to, a top surface of a substrate of the semiconductor device. The deep trench structures are spaced so as to form RESURF regions for the drift region.
Type:
Grant
Filed:
October 3, 2013
Date of Patent:
September 15, 2015
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Marie Denison, Sameer Pendharkar, Guru Mathur
Abstract: A method for minimizing an inrush current in a power supply selector and a power supply selector system is provided. The power supply selector includes a plurality of power input nodes, a power output node, a first transistor and a second transistor. Each of the power input nodes may be coupled to a first switch having a first on-resistance and to a second switch having a second on-resistance. The second on-resistance is greater than the first on-resistance. The first switch and the second switch are preferably coupled in parallel. The power supply selector may be configured to couple a selected one of the power input nodes to the source of the first transistor and to the gate of the second transistor so as to sense a sense voltage at the selected power input node.
Abstract: Embodiments of methods and systems for supporting coexistence of multiple technologies in a Power Line Communication (PLC) network are disclosed. A long coexistence preamble sequence may be transmitted by a device that has been forced to back off the PLC channel multiple times. The long coexistence sequence provides a way for the device to request channel access from devices on the channel using other technology. The device may transmit a data packet after transmitting the long coexistence preamble sequence. A network duty cycle time may also be defined as a maximum allowed duration for nodes of the same network to access the channel. When the network duty cycle time occurs, all nodes will back off the channel for a duty cycle extended inter frame space before transmitting again. The long coexistence preamble sequence and the network duty cycle time may be used together.
Abstract: A system and method for controlling a power converter includes a digital-to-analog converter (DAC) and ramp generator for generating a reference current command. The DAC is configured to decrement (or increment) to a next state after a fixed number of clock pulses have occurred. The reference current command controls an output of the power converter. Means are provided for delaying an output of the DAC for a number of clock pulses less than the fixed number to increase a resolution of the DAC.
Abstract: An architecture for testing a plurality of circuits on an integrated circuit is described. The architecture includes a TAP Linking Module located between test pins on the integrated circuit and 1149.1 Test Access Ports (TAP) of the plurality of circuits to be tested. The TAP Linking Module operates in response to 1149.1 scan operations from a tester connected to the test pins to selectively switch between 1149.1 TAPs to enable test access between the tester and plurality of circuits. The TAP Linking Module's 1149.1 TAP switching operation is based upon augmenting 1149.1 instruction patterns to affix an additional bit or bits of information which is used by the TAP Linking Module for performing the TAP switching operation.
Abstract: Integrated circuit transceiver circuitry (2) includes a first resonant circuit (3A) coupled to a narrowband interface (6,7A,7B,21) between a first amplifier (3,20) and an interfacing circuit (4,8,9,44), including a programmable first reactive element (C) and a second reactive element (L). Amplitude sensing circuitry (42) senses a maximum amplitude of an in-phase signal (I) or a quadrature-phase signal (Q). An on-chip first tone generation circuit (38,38A,38B,38C) generates tones for injection into the in-phase signal and the quadrature-phase signal and operates in response to frequency scanning circuitry (30) and the amplitude sensing circuitry to adjust the first reactive element (C) to calibrate the first resonant circuit to a desired resonant frequency by selectively coupling reactive sub-elements (1,2,4,8 . . . ×Cv) into the first reactive element (C).
Abstract: A gate driver circuit providing a slew-rate controlled gate control signal while minimizing the stretching of the gate control signal relative to the input control pulse. Control logic effects two threshold voltage levels. When the gate control signal is between the two threshold voltage levels, the slew rate of the gate control signal is controlled such that the gate of the transistor being driven is driven softly. When the gate control signal is less than the first threshold voltage level or greater than the second threshold voltage level, the gate of the transistor being driven is driven hard. In one embodiment, the first and second threshold voltage levels are set such that the on/off threshold of the transistor being driven is between the two threshold voltage levels.
Abstract: A circuit includes a track and hold (T/H) block to track an analog input signal during a track phase and to hold the analog input signal during a hold phase. A pipelined converter stage includes an analog to digital converter (ADC) receives the analog input signal from the T/H block and generates a digital output signal corresponding to the analog input signal. A digital to analog converter (DAC) element in the pipelined converter stage receives the digital output signal from the ADC and generates a current output signal representing an analog value for a portion of the analog input signal. A detector monitors the current output signal of the DAC element with respect to a predetermined reference current during the track phase and generates a trim signal if the current output signal is different from the predetermined reference current.
Abstract: Example embodiment of the systems and methods of linear impairment modeling to improve digital pre-distortion adaptation performance includes a DPD module that is modified during each sample by a DPD adaptation engine. A linear impairment modeling module separates the linear and non-linear errors introduced in the power amplifier. The linear impairment model is adjusted during each sample using inputs from the input signal and from a FB post processing module. The linear impairment modeling module removes the linear errors such that the DPD adaptation engine only adapts the DPD module based on the non-linear errors. This increases system stability and allows for the correction of IQ imbalance inside the linear impairment modeling, simplifying the feedback post-processing.
Type:
Grant
Filed:
February 20, 2014
Date of Patent:
September 15, 2015
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Hongzhi Zhao, Xiaohan Chen, Zigang Yang
Abstract: A method includes receiving an input signal and predistorting a baseband representation of the input signal at a carrier frequency and at one or more harmonic frequencies. The method also includes generating an output signal based on the predistorted baseband representation of the input signal, and transmitting the output signal to a power amplifier. Predistorting the baseband representation of the input signal at the carrier frequency could occur in parallel with predistorting the baseband representation of the input signal at the one or more harmonic frequencies.
Abstract: The Rds*Cgd figure of merit (FOM) of a laterally diffused metal oxide semiconductor (LDMOS) transistor is improved by forming the drain drift region with a number of dopant implants at a number of depths, and forming a step-shaped back gate region with a number of dopant implants at a number of depths to adjoin the drain drift region.
Abstract: A reduced-pin bus system includes a bus having one or more signal lines that are coupled to a bus power supply through a current limiting device. A master unit is coupled to the bus and is arranged to transmit communications across the bus during an active period of the bus and to initiate communications during (and/or at the end of) a quiescent period of the bus. A slave unit is coupled to the bus and is arranged to couple power from the one or more signal lines to a capacitor during the quiescent period of the bus and to consume power from the capacitor during the active period of the bus.
Abstract: A semiconductor device comprises a semiconductor wafer; a piezoelectric resonator formed on the wafer, and an active circuit also formed on the wafer. The active circuit (e.g., a frequency divider) is electrically connected to the piezoelectric resonator.
Type:
Grant
Filed:
November 7, 2012
Date of Patent:
September 8, 2015
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Stuart M. Jacobsen, Sridhar Ramaswamy, William Robert Krenik
Abstract: An apparatus is provided. The apparatus comprises a second layer disposed over a first layer. Each of the first and second layers have a set of detection electrodes that are spaced apart and electrically isolated from one another and an associated set of interleavers. Each interleaver is located between adjacent detection electrodes from its associated the set of detection electrodes, and each set of interleavers also includes a pair of complementary interleaving electrodes coupled to those that are electrically coupled to the adjacent detection electrodes from its associated set of detection electrodes. The detection electrodes and interleaving electrodes are also substantially transparent to visible spectrum light.
Type:
Grant
Filed:
July 23, 2012
Date of Patent:
September 8, 2015
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Nathan Y. Moyal, Tao Peng, Jerry L. Doorenbos, Ronald F. Cormier
Abstract: Embodiments provide systems and methods to optimize the time when to transmit a silencing frame, and hence, improve the overall network throughput and avoid access point transmission rate fall-back mechanism having an avalanche effect during coexistence of dissimilar wireless network technologies. A device comprises at least two dissimilar network technology subsystems, at least one subsystem of which is lower priority than at least another of the dissimilar subsystems. In some embodiments, a device is able to transmit a silencing frame during a transmission window within a lower priority technology network interval. In other embodiments, a device calculates a transmission window, the transmission window to occur within a lower priority technology network interval, and transmits a silencing frame during the transmission window.
Type:
Grant
Filed:
January 23, 2013
Date of Patent:
September 8, 2015
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Ariton E. Xhafa, Yanjun Sun, Ramanuja Vedantham
Abstract: An apparatus, comprising a load; an output FET having a drain coupled to the load; a first and second of a pair strong FETs, wherein: a) a source of the first of the pair of the strong FETs is coupled to the load; b) a drain of the first pair of the strong FETs is coupled to the source of the second of the of the pair of the strong FETs; the drain of the second pair of the strong FETs is coupled to a gate of the output FET; and a fixed current mirror is coupled to the gate of the first of the pair of the strong FETs.