Patents Examined by Abdulfattah Mustapha
  • Patent number: 9698157
    Abstract: A microstructure body according to an embodiment includes a stacked body. The stacked body includes a plurality of unit structure bodies stacked periodically along a first direction. A configuration of an end portion of the stacked body in a second direction is a stairstep configuration including terraces formed every unit structure body. The second direction intersects the first direction. A first distance in a third direction between end edges of two of the unit structure bodies facing the third direction is shorter than a second distance in the second direction between end edges of the two of the unit structure bodies facing the second direction. The third direction intersects both the first direction and the second direction.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: July 4, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuko Kono, Takaki Hashimoto, Yuji Setta, Toshiya Kotani, Chikaaki Kodama
  • Patent number: 9691789
    Abstract: An object is to establish a processing technique in manufacture of a semiconductor device in which an oxide semiconductor is used. A gate electrode is formed over a substrate, a gate insulating layer is formed over the gate electrode, an oxide semiconductor layer is formed over the gate insulating layer, the oxide semiconductor layer is processed by wet etching to form an island-shaped oxide semiconductor layer, a conductive layer is formed to cover the island-shaped oxide semiconductor layer, the conductive layer is processed by dry etching to form a source electrode, and a drain electrode and part of the island-shaped oxide semiconductor layer is removed by dry etching to form a recessed portion in the island-shaped oxide semiconductor layer.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: June 27, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideomi Suzawa, Shinya Sasagawa, Taiga Muraoka
  • Patent number: 9685538
    Abstract: The present invention provides a low temperature polysilicon thin film transistor and a fabricating method thereof. According to the method, a laser annealing process is performed to a remained portion of a a-Si layer on a substrate to form a first lightly doped drain (LDD) terminal, a second LDD terminal, a first phosphor material structure and a second phosphor material structure. A gate metal layer is then formed on the remained portion of the a-Si layer. A source metal layer and a drain metal layer are formed on the first doped layer and the second doped layer located at opposite sides of the gate metal layer, respectively. The present invention use the high temperature of the laser annealing process to perform a heat diffusion of phosphor material to form the LDD terminal and the phosphor material structure, the times of photomasks are used is reduced, and the process is simplified.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: June 20, 2017
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventors: Songshan Li, Xiaoxing Zhang
  • Patent number: 9666606
    Abstract: Decrease of the output voltage of the logic circuit is inhibited by raising the gate voltage using a capacitor. In a first transistor, a drain and a gate are electrically connected to a first wiring, and a source is electrically connected to a first node. In a second transistor, a drain is electrically connected to the first node, a source is electrically connected to a second wiring, and a gate is electrically connected to a second node. In a third transistor, a drain is electrically connected to a third wiring, and a source is electrically connected to a third node, and a gate is electrically connected to the first node. In a fourth transistor, a drain is electrically connected to the third node, a source is electrically connected to a fourth wiring, and a gate is electrically connected to the second node. In a capacitor, one electrode is electrically connected to the first node, and the other electrode is electrically connected to the third node. OS transistors are preferably used as the transistors above.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: May 30, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takanori Matsuzaki, Tatsuya Onuki
  • Patent number: 9666677
    Abstract: A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: May 30, 2017
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Melvin McLaurin, Alexander Sztein, Po Shan Hsu
  • Patent number: 9653336
    Abstract: An electronic device and a method of making an electronic device. As non-limiting examples, various aspects of this disclosure provide various methods of making electronic devices, and electronic devices made thereby, that utilize a film assist mold process.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: May 16, 2017
    Inventors: Yi Seul Han, Jae Beum Shim, Byong Jin Kim, In Bae Park
  • Patent number: 9653642
    Abstract: A method for manufacturing a display panel comprising light emitting device including micro LEDs includes providing multiple donor wafers having a surface region and forming an epitaxial material overlying the surface region. The epitaxial material includes an n-type region, an active region comprising at least one light emitting layer overlying the n-type region, and a p-type region overlying the active layer region. The multiple donor wafers are configured to emit different color emissions. The epitaxial material on the multiple donor wafers is patterned to form a plurality of dice, characterized by a first pitch between a pair of dice less than a design width. At least some of the dice are selectively transferred from the multiple donor wafers to a common carrier wafer such that the carrier wafer is configured with different color emitting LEDs. The different color LEDs could comprise red-green-blue LEDs to form a RGB display panel.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: May 16, 2017
    Assignee: SORAA LASER DIODE, INC.
    Inventors: James W. Raring, Melvin McLaurin, Alexander Sztein, Po Shan Hsu
  • Patent number: 9653462
    Abstract: A semiconductor device includes a fin type active pattern extended in a first direction and disposed on a substrate. A first gate electrode and a second gate electrode are disposed on the fin type active pattern. The first gate electrode and the second gate electrode are extended in a second direction crossing the first direction. A trench region is disposed in the fin type active pattern and between the first gate electrode and the second gate electrode. A source/drain region is disposed on a surface of the trench region. A source/drain contact is disposed on the source/drain region. The source/drain contact includes a first insulating layer disposed on the source/drain region and a metal oxide layer disposed on the first insulating layer.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: May 16, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-Dae Suk, Kang-Ill Seo
  • Patent number: 9647088
    Abstract: The invention provides a manufacturing method of a low temperature polysilicon thin film transistor, including: providing a substrate; forming a buffer layer on the substrate; simultaneously forming a polysilicon layer and a photoresist layer on the buffer layer; implanting ions into a source region and a drain region; removing the photoresist layer; forming an insulating layer on the polysilicon layer; forming a gate electrode on the insulating layer; and forming a passivation layer on the insulating layer. The passivation layer covers the gate electrode. The invention can only use one time of mask process and one time of ion implantation process to complete the manufacturing processing of the polysilicon layer, the manufacturing process can be simplified and therefore the cost of process is reduced and the productivity is improved.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: May 9, 2017
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventors: Gui Chen, Jingfeng Xue, Xin Zhang
  • Patent number: 9646829
    Abstract: A method for manufacturing a highly reliable semiconductor device with less change in threshold voltage is provided. An insulating film from which oxygen can be released by heating is formed in contact with an oxide semiconductor layer, and light irradiation treatment is performed on a gate electrode or a metal layer formed in a region which overlaps with the gate electrode, so that oxygen is added into the oxide semiconductor layer in a region which overlaps with the gate electrode. Accordingly, oxygen vacancies or interface states in the oxide semiconductor layer in a region which overlaps with the gate electrode can be reduced.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 9, 2017
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shinji Ohno, Yuichi Sato, Junichi Koezuka
  • Patent number: 9634181
    Abstract: In a method according to embodiments of the invention, a III-nitride layer is grown on a growth substrate. The III-nitride layer is connected to a host substrate. The growth substrate is removed. The growth substrate is a non-III-nitride material. The growth substrate has an in-plane lattice constant a substrate. The III-nitride layer has a bulk lattice constant a layer. In some embodiments, [(|a substrate?a layer|)/asubstrate]*100% is no more than 1%.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: April 25, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Nathan Frederick Gardner, Melvin Barker McLaurin, Michael Jason Grundmann, Werner Goetz, John Edward Epler, Qi Ye
  • Patent number: 9627374
    Abstract: Electronic circuits and methods are provided for various applications including signal amplification. An exemplary electronic circuit comprises a MOSFET and a dual-gate JFET in a cascode configuration. The dual-gate JFET includes top and bottom gates disposed above and below the channel. The top gate of the JFET is controlled by a signal that is dependent upon the signal controlling the gate of the MOSFET. The control of the bottom gate of the JFET can be dependent or independent of the control of the top gate. The MOSFET and JFET can be implemented as separate components on the same substrate with different dimensions such as gate widths.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: April 18, 2017
    Assignee: ACCO
    Inventor: Denis A. Masliah
  • Patent number: 9601688
    Abstract: In a case where reactive ion etching using a gas containing an oxygen atom is used for etching or a magnetoresistive element, a magnetic film becomes damaged due to oxidation. Such damage to the element by the oxidation becomes a factor which causes deterioration in element properties. In the etching of the magnetoresistive element according to one embodiment of the present invention, a magnetoresistive film is subjected to ion beam etching and thereafter to reactive ion etching. A side deposition formed by the ion beam etching coats a sidewall of the magnetoresistive film and reduces damage by the oxygen atom during the later reactive ion etching. Also, a time during which the element is exposed to plasma of the gas containing the oxygen atom can be reduced.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: March 21, 2017
    Assignee: Canon Anelva Corporation
    Inventor: Masayoshi Ikeda
  • Patent number: 9564437
    Abstract: A method of making a semiconductor device includes forming a first fin of a first transistor in a substrate; forming a second fin of a second transistor in the substrate; disposing a first doped oxide layer including a first dopant onto the first fin and the second fin, the first dopant being an n-type dopant or a p-type dopant; disposing a mask over the first fin and removing the first doped oxide layer from the second fin; removing the mask and disposing a second doped oxide layer onto the first doped oxide layer over the first doped oxide layer covering the first fin and directly onto the second fin, the second doped oxide layer including an n-type dopant or a p-type dopant that is different than the first dopant; and annealing to drive in the first dopant into a portion of the first fin and the second dopant into a portion of the second fin.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: February 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Patent number: 9530698
    Abstract: A method of making a semiconductor device includes forming a first fin of a first transistor in a substrate; forming a second fin of a second transistor in the substrate; disposing a first doped oxide layer including a first dopant onto the first fin and the second fin, the first dopant being an n-type dopant or a p-type dopant; disposing a mask over the first fin and removing the first doped oxide layer from the second fin; removing the mask and disposing a second doped oxide layer onto the first doped oxide layer over the first doped oxide layer covering the first fin and directly onto the second fin, the second doped oxide layer including an n-type dopant or a p-type dopant that is different than the first dopant; and annealing to drive in the first dopant into a portion of the first fin and the second dopant into a portion of the second fin.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: December 27, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Patent number: 9511999
    Abstract: A method for sealing cavities in micro-electronic/-mechanical system (MEMS) devices to provide a controlled atmosphere within the sealed cavity includes providing a semiconductor substrate on which a template is provided on a localized area of the substrate. The template defines the interior shape of the cavity. Holes are made so as to enable venting of the cavity to provide a desired atmosphere to enter into the cavity through the hole. Finally, a sealing material is provided in the hole to seal the cavity. The sealing can be made by compression and/or melting of the sealing material.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: December 6, 2016
    Assignee: SILEX MICROSYSTEMS AB
    Inventors: Thorbjorn Ebefors, Niklas Svedin
  • Patent number: 9514960
    Abstract: This disclosure relates to a method for dissolving a silicon dioxide layer in a structure, including, from the back surface thereof to the front surface thereof, a supporting substrate, the silicon dioxide layer and a semiconductor layer, the dissolution method being implemented in a furnace in which structures are supported on a support, the dissolution method resulting in the diffusion of oxygen atoms included in the silicon dioxide layer through the semiconductor layer and generating volatile products, and the furnace including traps suitable for reacting with the volatile products, so as to reduce the concentration gradient of the volatile products parallel to the front surface of at least one structure.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: December 6, 2016
    Assignee: Soited
    Inventors: Didier Landru, Oleg Kononchuk
  • Patent number: 9508608
    Abstract: A Raman probe is used to detect crystal structure of a substrate undergoing thermal processing in a thermal processing system. The Raman probe may be coupled to a targeting system of a laser thermal processing system. The Raman probe includes a laser positioned to direct probe radiation through the targeting system to the substrate, a receiver attuned to Raman radiation emitted by the substrate, and a filter that blocks laser radiation reflected by the substrate. The Raman probe may include more than one laser, more than one receiver, and more than one filter. The Raman probe may provide more than one wavelength of incident radiation to probe the substrate at different depths.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: November 29, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Jiping Li
  • Patent number: 9484337
    Abstract: A circuit protection device is provided and includes a first insulation layer, a second insulation layer, a thermal fuse, a diode, a first exterior electrode pad, a second exterior electrode pad, and a third exterior electrode pad. The second insulation layer is positioned above a top surface of the first insulation layer. The thermal fuse is packaged in the first insulation layer and having a first electrode end and a second electrode end positioned opposite to the first electrode end. The diode is packaged in the second insulation layer and having a first electrode surface and a second electrode surface positioned opposite to the first electrode surface. The first exterior electrode pad is positioned on a bottom surface of the first insulation layer and electrically connected to the first electrode surface and the first electrode end.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: November 1, 2016
    Assignee: TYCO ELECTRONICS (SHANGHAI) CO. LTD.
    Inventors: Yan Fang, Bin Wang, Jianzhe Ye, Tao Guo, Jianyong Liu
  • Patent number: 9484547
    Abstract: An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a lower substrate including a display area and a non-display area surrounding the display area, wherein a plurality of pixels are formed in the display area. The OLED display also includes an embedded circuit formed in the configured to apply a plurality of signals to the pixels, and an initialization wiring formed in the non-display area and configured to apply an initialization voltage to each of the pixels. The initialization circuit is formed in a layer so as to at least partially overlap with the area of the embedded circuit.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: November 1, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventor: Chang-Soo Pyon