Patents Examined by Jamie L. Brophy
  • Patent number: 6441435
    Abstract: A transistor device on an SOI wafer includes a metal connect that is in contact with an underside (a bottom surface) of a body of the device. A part of the metal connect is between an active semiconductor region of the device and an underlying buried insulator layer. The metal connect is also in contact with a source of the device, thereby providing some electrical coupling between the source and the body, and as a result reducing or eliminating floating body effects in the device. A method of forming the metal interconnect includes etching away part of the buried insulator layer, for example by lateral etching or isotropic etching, and filling with metal, for example by chemical vapor deposition.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: August 27, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Darin A. Chan
  • Patent number: 6429099
    Abstract: A method and semiconductor structure are provided for implementing body contacts for semiconductor-on-insulator transistors. A bulk semiconductor substrate is provided. A mask is applied to the bulk semiconductor substrate to block an insulating implant layer in selected regions. The selected regions provide for body contact for transistors. Holes are formed extending into the bulk semiconductor substrate. The holes are filled with an electrically conductive material to create stud contacts to the bulk semiconductor substrate. In the preferred embodiment, the semiconductor-on-insulator is silicon on an oxide insulating layer and the invention provides a body contact for SOI transistors.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: August 6, 2002
    Assignee: International Business Machines Corporation
    Inventors: Todd Alan Christensen, John Edward Sheets, II
  • Patent number: 6426289
    Abstract: The present invention is directed to a simplified, CVD-less method of forming a barrier layer for a metal layer which prevents metal contamination in an integrated circuit. The invention utilizes a sacrificial multilayer dielectric structure and selective etching to form the top barrier layer. An opening is etched in the structure and a plating layer is deposited in the opening. A first unneeded portion of the structure along with an unneeded portion of the plating layer is removed utilizing an etchant that is selective for the first unneeded structural portion. A Cu layer is deposited and implanted with barrier material to form the top barrier layer. A second unneeded portion of the structure along with an unneeded portion of the top barrier layer is removed utilizing an etchant that is selective for the second unneeded structural portion. The resulting structure is a metal interconnect structure having an overlying top barrier layer which is produced without using CVD techniques.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: July 30, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Patent number: 6423627
    Abstract: Contacts for an electronic device are formed by providing a substrate (12) that has at least two access line structures (16) for a memory array (14) and a periphery structure (20) for a peripheral circuit (18) to the memory array (14). A first insulative layer (40) is formed outwardly of the substrate (12), the access line structures (16), and the periphery structure (20). A contact area of the periphery structure (20) is exposed through the first insulative layer (40) while maintaining the first insulative layer (40) over at least a contact overlap portion (48) of the access line structures (16). A second insulative layer (60) is formed outwardly of the substrate (12), the access line structures (16), the periphery structure (20), and the first insulative layer (40).
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: July 23, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Duane E. Carter, Ming J. Hwang
  • Patent number: 6423652
    Abstract: A post-processing treatment of a low dielectric constant material. In the post-processing treatment, a shallow implantation is conducted to form a shallow compact layer over a dielectric film. This shallow compact surface layer acts as a barrier that prevents the absorption of moisture by the dielectric film. The shallow implantation is carried out using boron ions at an energy level of between about 10 and 50 keV and a dosage of between about 1×1015 atm/cm2 and 1×1016 atm/cm2.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: July 23, 2002
    Assignee: United Microelectronics Corp.
    Inventors: Ting-Chang Chang, Po-Tsun Liu, Yi-Shien Mor
  • Patent number: 6420234
    Abstract: Transistor and method for fabricating the same, which can form a channel length shorter than a lithography limit and adjust a substrate impurity concentration variably, the method including the steps of (1) depositing an insulating film on a semiconductor substrate and forming a trench to expose the semiconductor substrate, (2) forming two side gates at sides of the trench, (3) forming a main gate over the semiconductor substrate between the side gates, and (4) removing the insulating film, and using the main gate and the side gates as masks in forming source/drain impurity regions in the semiconductor substrate on sides of the side gates.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: July 16, 2002
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventors: Byung Gook Park, Dae Hwan Kim
  • Patent number: 6413858
    Abstract: A barrier layer material and method of forming the same is disclosed. The method includes depositing a graded metal nitride layer in a single deposition chamber, with a high nitrogen content at a lower surface and a high metal content at an upper surface. In the illustrated embodiment, a metal nitride with a 1:1 nitrogen-to-metal ratio is initially deposited into a deep void, such as a via or trench, by reactive sputtering of a metal target in nitrogen atmosphere. After an initial thickness is deposited, flow of nitrogen source gas is reduced and sputtering continues, producing a metal nitride with a graded nitrogen content. After the nitrogen is stopped, deposition continues, resulting in a substantially pure metal top layer. This three-stage layer includes a highly conductive top layer, upon which copper can be directly electroplated without a separate seed layer deposition.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: July 2, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Dinesh Chopra
  • Patent number: 6413874
    Abstract: With a method according to the invention, a semiconductor article such as an SOI substrate having on the surface thereof a single crystal silicon film formed on an insulator is etched by heat treatment in a hydrogen-containing reducing atmosphere in order to remove the surface by a desired height and smooth it. The method is characterized in that the single crystal silicon film is arranged opposite to silicon oxide in a furnace during the etching process.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: July 2, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventor: Nobuhiko Sato
  • Patent number: 6410391
    Abstract: The present invention provides a method for fabricating an EEPROM memory cell having a trench capacitor, having the following steps: formation of a trench (108) in a substrate (101); formation of a buried plate (165) in the substrate region in the vicinity of the lower region of the trench (108); concerted fabrication of a floating gate surrounded by dielectric layers in order to define the EEPROM region; optional recessing of the dielectric layer in order to define DRAM regions.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: June 25, 2002
    Assignee: Infineon Technologies AG
    Inventor: Rudolf Zelsacher
  • Patent number: 6403440
    Abstract: A method for fabricating a stacked capacitor in a semiconductor configuration, in which one electrode of the stacked capacitor is connected via a terminal region of a first conductivity type to a source or drain of a transistor. The semiconductor configuration having one electrode of a stacked capacitor produced by utilizing different etching rates of semiconductor layers of a second conductivity type which are doped to different extents. After the etching of the one electrode of the stacked capacitor, doping reversal of the semiconductor layers remaining after the etching operation to the first conductivity type is performed, with the result that the electrode has the same conductivity type as the terminal region and no pn junction occurs between the electrode and terminal region.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: June 11, 2002
    Assignee: Infineon Technologies AG
    Inventors: Emmerich Bertagnolli, Josef Willer
  • Patent number: 6403422
    Abstract: The semiconductor device is provided with an element isolating region disposed in a matrix to define a channel region on a semiconductor substrate, gate interconnection layers extending in a direction and disposed at predetermined intervals from each other above element isolating region, and aluminum interconnection layers extending in a direction intersecting gate interconnection layers and disposed at predetermined intervals from each other, aluminum interconnection layer being disposed above element isolating region. Thus, it becomes possible to provide a semiconductor device and a method of manufacturing thereof which enable the reduction in time required for the final manufacturing steps of the semiconductor device after the ROM specifications are determined.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: June 11, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hidenori Arita, Kazuaki Miyata
  • Patent number: 6404039
    Abstract: A bipolar transistor comprising an external base diffusion layer formed on the outer circumference of an intrinsic base diffusion layer is provided with the high withstand voltage and high reliability. A intrinsic base diffusion layer is formed on the substantially central portion of a semiconductor region surrounded by a separating insulation film on the major surface of a semiconductor substrate. An external base diffusion layer overlapping with the outer circumference of the intrinsic base diffusion layer, surrounding this intrinsic base diffusion layer, and reaching the separating insulation film is formed. Furthermore, common base diffusion layers overlapping with the intrinsic base diffusion layer, and overlapping with at least the inner circumference of the external base diffusion layer are formed. The depth of these common base diffusion layers is made deeper than the depth of the external base diffusion layer, but not exceeding the depth of the intrinsic base diffusion layer.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: June 11, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Hidenori Fujii
  • Patent number: 6403474
    Abstract: A method is provided for manufacturing an integrated circuit on a semiconductor wafer having a semiconductor substrate with a semiconductor device thereon. A dielectric layer is formed on the semiconductor substrate and an opening is formed in the dielectric layer. A barrier layer is deposited to line the opening. A seed layer is deposited on the barrier layer and securely bonds to the barrier layer. A conductor layer is deposited to fill the channel opening over the barrier layer. A planarization technique is used to planarize the barrier, seed layer, and conductor layers to be coplanar with the dielectric layer to form a conductor channel. The semiconductor wafer is then subjected to a two step timed anneal.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: June 11, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven C. Avanzino, Pin-Chin Connie Wang, Minh Van Ngo
  • Patent number: 6395623
    Abstract: In one aspect, the invention provides a method of forming a contact opening to a conductive line. In one preferred implementation, a contact opening is formed to a conductive line which overlies a substrate isolation area with an etch which also outwardly exposes substrate active area to accommodate source/drain doping. In another preferred implementation, desired PMOS regions over a substrate into which p-type impurity is to be provided are exposed while a contact opening is contemporaneously formed to at least one conductive line extending over substrate isolation oxide. In another preferred implementation, a contact opening to a conductive line over a substrate and an opening to a laterally spaced substrate active area are formed in a common masking step. In another preferred implementation, desired PMOS active areas over a substrate are exposed and p-type impurity to a first concentration is provided into desired exposed areas.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: May 28, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 6391800
    Abstract: A method for patterning a substrate having a surface with high aspect ratio topography with a photoresist is described. Specifically the surface of a semiconductor substrate is pre-wetted with a solvent solution to form a liquid solvent film. An additional amount of the solvent solution is added to form a solvent puddle on the liquid solvent film. Photoresist is dispensed onto the solvent puddle for a sufficient time and in a sufficient amount to allow diffusion of the photoresist and the solvent puddle into the openings defined in the topography of the substrate. The solvent solution in and on the surface of the openings defined in the substrate from the pre-wetting step is replaced with the photoresist by facilitating diffusion of the photoresist into the topography openings. A photoresist layer is then cast in a predetermined thickness on the surface of the substrate.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: May 21, 2002
    Assignee: Motorola, Inc.
    Inventors: Randy D. Redd, Lawrence S. Klingbeil
  • Patent number: 6387783
    Abstract: Methods for forming a T-gate on a substrate are provided that employ a hybrid resist. The hybrid resist specifically is employed to define a base of the T-gate on the substrate with very high resolution. To define a base of the T-gate, a hybrid resist layer is deposited on the substrate. A mask having a reticle feature with an edge is provided and is positioned above the hybrid resist layer so that the edge of the reticle feature is above a desired location for the base of the T-gate. Thereafter, the hybrid resist layer is exposed to radiation through the mask, and the exposed hybrid resist layer is developed to define an opening therein for the base of the T-gate. Preferably the loop feature formed in the hybrid resist layer by the reticle feature during exposure is trimmed. The T-gate may be completed by employing any known T-gate fabrication techniques.
    Type: Grant
    Filed: April 26, 1999
    Date of Patent: May 14, 2002
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Paul A. Rabidoux
  • Patent number: 6387796
    Abstract: A semiconductor device having a multilayer structure and a method of manufacturing the semiconductor device are disclosed. The semiconductor device according to the present invention has a semiconductor element including pad electrodes formed on the electrode area thereof, a first insulation layer formed on the circuit formation area of the semiconductor element, and a first circuit pattern formed on said first insulation layer. The first circuit pattern electrically connected to the pad electrodes. The semiconductor device of the present invention further has a second insulation layer formed on the first circuit pattern including a first through hole for exposing the first circuit pattern, and a second circuit pattern formed on the second insulation layer. The second circuit pattern is electrically connected to the pad electrodes and has a second through hole for exposing the first circuit pattern.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: May 14, 2002
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Shigeru Yamada
  • Patent number: 6383951
    Abstract: A method is provided for forming a material with a low dielectric constant, suitable for electrical isolation in integrated circuits. The material and method of manufacture has particular use as an interlevel dielectric between metal lines in integrated circuits. In a disclosed embodiment, methylsilane is reacted with hydrogen peroxide to deposit a silicon hydroxide layer incorporating carbon. The layer is then treated by exposure to a plasma containing oxygen, and annealing the layer at a temperature of higher than about 450° C. or higher.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: May 7, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Weimin Li
  • Patent number: 6380027
    Abstract: A structure and method for simultaneously forming array structures and support structures on a substrate comprises forming the array structures to have a V-groove, forming the support structures to have a planar surface, and simultaneously forming a first oxide in the V-groove and a second oxide in the planar surface, wherein the first oxide is thicker than the second oxide.
    Type: Grant
    Filed: January 4, 1999
    Date of Patent: April 30, 2002
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Jeffrey P. Gambino, Edward W. Kiewra, Jack A. Mandelman, Carl J. Radens, William R. Tonti, Mary E. Weybright
  • Patent number: 6376361
    Abstract: A method of removing excess metal, particularly copper, in the fabrication of interconnects has been achieved. In accordance with the objects of this invention, a new method of removing excess metal in the formation of an interconnect has been achieved. A semiconductor substrate is provided. A dielectric layer is provided overlying the semiconductor substrate. Trenches are formed in this dielectric layer for planned damascene or dual damascene interconnects. A barrier layer is provided overlying the dielectric layer and lining the trenches. A metal layer is provided overlying the barrier layer and completely filling the trenches. A masking layer is deposited overlying the metal layer. The masking layer is patterned to form a mask that only overlies the trenches. The metal layer is etched down where not covered by the mask. This etching down is partial so that the barrier layer is not exposed. This etching down leaves the metal layer underlying the mask thicker than the metal layer not underlying the mask.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: April 23, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Simon Chooi, Mei Sheng Zhou, Tak Yan Tse