Abstract: A method of forming a surface feature extending into a sample includes providing a laser operable to emit an output beam and modulating the output beam to form a pulse train having a plurality of pulses. The method also includes a) directing the pulse train along an optical path intersecting an exposed portion of the sample at a position i and b) focusing a first portion of the plurality of pulses to impinge on the sample at the position i. Each of the plurality of pulses is characterized by a spot size at the sample. The method further includes c) ablating at least a portion of the sample at the position i to form a portion of the surface feature and d) incrementing counter i. The method includes e) repeating steps a) through d) to form the surface feature. The sample is free of a rim surrounding the surface feature.
Type:
Grant
Filed:
June 17, 2010
Date of Patent:
March 5, 2013
Assignee:
Lawrence Livermore National Security, LLC
Abstract: A method for making light emitting diode is provided. The method includes following steps. A substrate is provided. A patterned mask layer is located on a surface of the substrate, and the patterned mask layer includes a number of bar-shaped protruding structures aligned side by side, a slot is defined between each two adjacent protruding structures to expose a portion of the substrate. The exposed substrate is etched, and each two adjacent protruding structures begin to slant face to face until closed to form a protruding pair. A number of three-dimensional nano-structures are formed by removing the patterned mask layer. A first semiconductor layer, an active layer and a second semiconductor layers are grown on the number of three-dimensional nano-structures in that order. A first electrode is electrically connected with the first semiconductor layer. A second electrode is electrically connected with the second semiconductor layer.
Type:
Grant
Filed:
December 29, 2011
Date of Patent:
February 19, 2013
Assignees:
Tsinghua University, Hon Hai Precision Industry Co., Ltd.
Inventors:
Zhen-Dong Zhu, Qun-Qing Li, Shou-Shan Fan
Abstract: Methods of manufacturing semiconductor devices and transistors are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes providing a workpiece comprising a plurality of fins, and forming a semiconductive material over a top surface of the plurality of fins. An etch stop layer is formed over the semiconductive material, and an insulating material is disposed over the etch stop layer. The insulating material and a portion of the etch stop layer are removed from over the plurality of fins. Forming the semiconductive material or forming the etch stop layer are controlled so that removing the portion of the etch stop layer does not remove the etch stop layer between a widest portion of the semiconductive material over the plurality of fins.
Abstract: The present invention is an aftertreatment method further applied to an amorphous carbon film to which a treatment including heating is performed after the film has been formed on a substrate. The treatment of preventing oxidation of the amorphous carbon film is performed immediately after the treatment including heating.
Abstract: In a manufacturing method of a light-emitting device, a separation layer is formed over a substrate; a semiconductor circuit element layer and first electrodes are formed over the separation layer; a partition wall overlapping with end portions of the first electrodes is formed; and organic material layers are formed over the first electrodes. Organic material layers emitting light of the same color are arranged adjacent to each other in a line and extend in a first direction. A second electrode is formed using a material having high adhesiveness to the partition wall over the organic material layers to be in contact with the partition wall. A stack structure including the semiconductor circuit element layer, the first electrodes, the partition wall, the organic material layers, and the second electrode is separated from the substrate using the separation layer in a second direction perpendicular to the first direction.
Type:
Grant
Filed:
March 23, 2010
Date of Patent:
February 12, 2013
Assignee:
Semiconductor Energy Laboratory Co., Ltd.
Abstract: A method of manufacturing a semiconductor device, includes the steps of: (a) providing a support including a plane having a first region for mounting a chip thereon and a second region provided around the first region; (b) forming an insulating resin layer in a semi-curing state on the plane; (c) forming, on the insulating resin layer, a first opening portion for exposing the first region; (d) fitting a chip in the first opening portion to mount the chip on the first region; and (e) completely curing the insulating resin layer after the step (d).
Abstract: A fin for a finFET is described. The fin is a portion of a layer of material, where, another portion of the layer of material resides on a sidewall.
Abstract: The method comprises affixing a thin sheet of crystal (8) onto metal (6) of same type as the sheet but amorphous or of small grain size, deposited in trenches of a substrate (1) to form interconnect lines for example. Annealing progressively imposes the crystalline structure of the sheet onto the lines. When the crystal (8) is removed, highly conductive crystalline lines are obtained since the grains thereof have been greatly enlarged.
Type:
Grant
Filed:
July 1, 2010
Date of Patent:
February 5, 2013
Assignee:
Commissariat a l'energie atomique et aux energies alternatives
Abstract: First example embodiments comprise forming a stress layer over a MOS transistor (such as a LDMOS Tx) comprised of a channel and first, second and third junction regions. The stress layer creates a stress in the channel and the second junction region of the Tx. Second example embodiments comprise forming a MOS FET and at least a dummy gate over a substrate. The MOS is comprised of a gate, channel, source, drain and offset drain. At least one dummy gate is over the offset drain. A stress layer is formed over the MOS and the dummy gate. The stress layer and the dummy gate improve the stress in the channel and offset drain region.
Abstract: One embodiment of a semiconductor package described herein includes a substrate having a first through-hole extending therethrough; a conductive pattern overlying the substrate and extending over the first through-hole; a first semiconductor chip facing the conductive pattern such that at least a portion of the first semiconductor chip is disposed within the first through-hole; and a first external contact terminal within the first through-hole and electrically connecting the conductive pattern to the first semiconductor chip.
Abstract: A process for the fabrication of semiconductor devices on a substrate, the semiconductor devices including at least one metal layer. The process includes, removing the substrate and applying a second substrate; and annealing the at least one metal layer by application of a beam of electromagnetic radiation on the at least one metal layer.
Abstract: A method and apparatus are described for fabricating a low-pin-count chip package (701) including a die pad (706) for receiving an integrated circuit device and a plurality of connection leads (702) having recessed lead ends (704) at the outer peripheral region of each contact lead. After forming the package body (202) over the integrated circuit device, unplated portions (104) of the exposed bottom surface of the selectively plated lead frame are partially etched to form recessed lead ends (302) at the outer peripheral region of each contact lead, and the recessed lead ends are subsequently re-plated (402) to provide wettable recessed lead ends at the outer peripheral region of each contact lead.
Abstract: A composite dielectric layer including a tensile stressed nitride layer over an oxide layer serves the dual function of acting as an SMT (stress memorization technique) film while an annealing operation is carried out and then remains partially intact as it is patterned to further serve as an RPO film during a subsequent silicidation process. The composite dielectric layer covers part of a semiconductor substrate that includes a gate structure. The tensile stressed nitride layer protects the oxide layer and alleviates oxide damage during a pre-silicidation PAI (pre-amorphization implant) process. Portions of the gate structure and the semiconductor substrate not covered by the composite dielectric layer include amorphous portions that include the PAI implanted dopant impurities. A silicide material is disposed on the gate structure and portions of the semiconductor substrate not covered by the composite dielectric layer.
Abstract: Embodiments of a method for fabricating a semiconductor device are provided. In one embodiment, the method includes the steps of providing a partially-completed semiconductor device including a first feature formed in a porous material, wet cleaning the partially-completed semiconductor device with an aqueous cleaning solvent, exposing the partially-completed semiconductor device to a liquid chemical that forms an azeotropic mixture with water, and inducing evaporation of the azeotropic mixture to remove residual water from within the porous material absorbed during the wet cleaning step.
Abstract: A dual work function semiconductor device and method for fabricating the same are disclosed. In one aspect, a device includes a first and second transistor on a first and second substrate region. The first and second transistors include a first gate stack having a first work function and a second gate stack having a second work function respectively. The first and second gate stack each include a host dielectric, a gate electrode comprising a metal layer, and a second dielectric capping layer therebetween. The second gate stack further has a first dielectric capping layer between the host dielectric and metal layer. The metal layer is selected to determine the first work function. The first dielectric capping layer is selected to determine the second work function.
Abstract: An intermediate product in the manufacture of a vertical multiple-channel FET device containing alternating —Si—[(SiGe)—Si]u- stacked layers is shown, as well as a process for selectively etching the SiGe layers in such a stacked layer system, and products obtained from such selective etching. Differential Ge content is added to the successive layers to provide uniform removal of the sacrificial SiGe layers.
Abstract: A plurality of gate lines having gate electrodes are formed on a substrate and a semiconductor layer is formed on a gate insulating layer covering the gate lines. A plurality of data lines intersecting the gate lines are formed on the gate insulating layer and a plurality of drain electrodes are formed extending parallel with and adjacent to the data lines. Furthermore, a plurality of storage capacitor conductors are formed to be connected to the drain electrodes and to overlap an adjacent gate line. A passivation layer made of an organic material is formed on the above structure and has a contact hole. Furthermore, a plurality of pixel electrodes are formed to be electrically connected to the drain electrodes through the contact hole.
Type:
Grant
Filed:
January 7, 2010
Date of Patent:
October 23, 2012
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Kyung-Wook Kim, Joo-Ae Youn, Seong-Yeong Lee
Abstract: A compound metal comprising TiC which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the TiC compound metal. Furthermore, the TiC metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 ? in a p-metal oxide semiconductor (pMOS) device.
Type:
Grant
Filed:
August 14, 2009
Date of Patent:
October 16, 2012
Assignee:
International Business Machines Corporation
Inventors:
Alessandro C. Callegari, Michael A. Gribelyuk, Dianne L. Lacey, Fenton R. Feeney, Katherine L. Saenger, Sufi Zafar
Abstract: An integrated circuit method for manufacturing an integrated circuit system including loading a wafer into a processing chamber and pre-purging the processing chamber with a first ammonia gas. Depositing a first nitride layer over the wafer and purging the processing chamber with a second ammonia gas. Depositing a second nitride layer over the first nitride layer that is misaligned with the first nitride layer. Post-purging the processing chamber with a third ammonia gas and purging the processing chamber with a nitrogen gas.
Abstract: A method for fabricating a light-emitting integrated device, comprises overlying three layers, wherein each of the three layers emits light at a different wavelength, and wherein the overlying comprises one of: performing an atomic species implantation, performing a laser lift-off, performing an etch-back, or chemical-mechanical polishing (CMP).