Patents Examined by Stanetta D Isaac
  • Patent number: 10818772
    Abstract: Fabrication methods and device structures for a heterojunction bipolar transistor. A trench isolation region is formed that surrounds an active region of semiconductor material, a collector is formed in the active region, and a base layer is deposited that includes a first section over the trench isolation region, a second section over the active region, and a third section over the active region that connects the first section and the second section. An emitter is arranged over the second section of the base layer, and an extrinsic base layer is arranged over the first section of the base layer and the third section of the base layer. The extrinsic base layer includes a first section containing polycrystalline semiconductor material and a second section containing single-crystal semiconductor material. The first and second sections of the extrinsic base layer intersect along an interface that extends over the trench isolation region.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: October 27, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Vibhor Jain, Pernell Dongmo, Cameron Luce, James W. Adkisson, Qizhi Liu
  • Patent number: 10818840
    Abstract: OVJP print bars are provided that include multiple print head segments, each of which includes a print head and which can be positioned relative to the substrate independently of each other print head segment. Accordingly, a more consistent head-to-substrate distance can be maintained even for substrates that are not uniformly planar.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: October 27, 2020
    Assignee: Universal Display Corporation
    Inventors: William E. Quinn, Gregory McGraw, Gregg Kottas
  • Patent number: 10796961
    Abstract: A method of singulating a wafer includes providing a wafer having a plurality of die formed as part of the wafer and separated from each other by spaces. The wafer has first and second opposing major surfaces, a layer of material atop the second major surface, and portions of the layer of material are adapted to remain atop surfaces of the plurality of die after completion of the method of singulating the wafer. The method includes placing the wafer onto a carrier substrate and singulating the wafer through the spaces to form singulation lines, wherein singulating comprises leaving at least a portion of the layer of material under the singulation lines. The method includes separating the layer of material under the singulation lines by applying pressure to the wafer and applying high frequency vibrations to fatigue the layer of material.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 6, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 10790389
    Abstract: A semiconductor structure that includes at least one lateral diffusion field effect transistor is described. The structure includes a source contact and a gate shield that enables the line width of an ohmic region that electrically connects the source/body region to the gate shield to be smaller than the minimum contact feature size. The gate shield defines a bottom recess for forming a narrower bottom portion of the source contact, and a section that flares outward with distance from the ohmic region to extend above and laterally beyond the ohmic region. By providing a wider area for the source contact, the flared portion of the gate shield allows the portion of the gate shield that contacts the ohmic region to be narrower than the minimum contact feature size. As a result, the cell pitch of the lateral diffusion field effect transistor can be reduced.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: September 29, 2020
    Assignee: Silanna Asia Pte Ltd
    Inventors: Touhidur Rahman, Shanghui Larry Tu
  • Patent number: 10790141
    Abstract: Methods for selectively depositing films by atomic layer deposition are disclosed. Substrate surfaces are passivated by hydrosilylation to prevent deposition and allow selective deposition on unpassivated surfaces.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: September 29, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kelvin Chan, Yihong Chen, Abhijit Basu Mallick
  • Patent number: 10784216
    Abstract: Provided are a semiconductor device and a semiconductor package including the same. The semiconductor device comprises a semiconductor chip body including a first chip pad on a top surface, a passivation film disposed on the semiconductor chip body and a first redistribution layer that is disposed between the passivation film and the semiconductor chip body with an opening to expose a first chip center pad region at least partially overlapping the first chip pad, a first redistribution center pad region connected to the first chip center pad region, and a first edge pad region spaced apart from the first redistribution center pad region, through the passivation film, wherein a top surface of the first chip center pad region and a top surface of the first redistribution center pad region are not disposed on the same plane.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: September 22, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-Young Kim, Sun-Won Kang, Jin-Chan Ahn
  • Patent number: 10763268
    Abstract: A semiconductor device includes a substrate including first and second active patterns thereon, a first gate electrode intersecting the first and second active patterns, first and second source/drain regions on the first and second active patterns, respectively, at one side of the first gate electrode, and an active contact on the first source/drain region so as to be electrically connected to the first source/drain region. The active contact includes a first sub-contact and a second sub-contact. The second sub-contact includes a vertical extension vertically extending toward the substrate. A bottom surface of the vertical extension is lower than a bottom surface of the first sub-contact.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: September 1, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Changseop Yoon
  • Patent number: 10741397
    Abstract: A method includes forming a dielectric layer on a substrate and patterning the dielectric layer to form an opening in the dielectric layer. A first layer of metallic material (e.g., non-nitride metal) is deposited to form a liner layer on an upper surface of the dielectric layer and on exposed surfaces within the opening. A second layer of metallic material (e.g., copper) is deposited to fill the opening with metallic material. An overburden portion of the second layer of metallic material is removed by planarizing the second layer of metallic material down an overburden portion of the liner layer on the upper surface of the dielectric layer. A surface treatment process (e.g., plasma nitridation) is performed to convert the overburden portion of the liner layer into a layer of metal nitride material. The layer of metal nitride material is selectively etched away using a wet etch process.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventor: Chih-Chao Yang
  • Patent number: 10741718
    Abstract: In one embodiment, a semiconductor device wafer (10) contains electrical components and has electrodes (28) on a first side of the device wafer (10). A transparent carrier wafer (30) is bonded to the first side of the device wafer (10) using a bonding material (32) (e.g., a polymer or metal). The second side of the device wafer (10) is then processed, such as thinned, while the carrier wafer (30) provides mechanical support for the device wafer (10). The carrier wafer (30) is then de-bonded from the device wafer (10) by passing a laser beam (46) through the carrier wafer (30), the carrier wafer (30) being substantially transparent to the wavelength of the beam. The beam impinges on the bonding material (32), which absorbs the beam's energy, to break the chemical bonds between the bonding material (32) and the carrier wafer (30). The released carrier wafer (30) is then removed from the device wafer (10), and the residual bonding material is cleaned from the device wafer (10).
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: August 11, 2020
    Assignee: LUMILEDS, LLC
    Inventors: Quanbo Zou, Salman Akram, Jerome Chandra Bhat, Minh Ngoc Trieu, Robert Blank
  • Patent number: 10727309
    Abstract: A thin film transistor array panel includes a first conductive layer (102) including a gate electrode; a channel layer (104) disposed over the gate; and a second conductive layer (105) disposed over the channel layer (104). The second conductive layer (105) includes a multi-layered portion defining a source electrode (105a) and a drain electrode (105b), which includes a first sub-layer (105-1), a second sub-layer (105-2), and a third sub-layer (105-3) sequentially disposed one over another. Both the third and the first sub-layers (105-3, 105-1) include indium and zinc oxide materials. An indium to zinc content ratio in the first sub-layer (105-1) is greater than that in the third sub-layer (105-3).
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: July 28, 2020
    Assignees: HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yi-Chun Kao, Hsin-Hua Lin, Po-Li Shih, Wei-Chih Chang, I-Min Lu, I-Wei Wu
  • Patent number: 10727170
    Abstract: In one embodiment, methods for making semiconductor devices are disclosed.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: July 28, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Swee Har Khor, Tian Hing Lim, Hui Min Ler, Chee Hiong Chew, Phillip Celaya
  • Patent number: 10720568
    Abstract: The present disclosure provides a semiconductor structure, including an Nth metal layer, a bottom electrode over the Nth metal layer, a magnetic tunneling junction (MTJ) over the bottom electrode, a top electrode over the MTJ, and an (N+M)th metal layer over the Nth metal layer. N and M are positive integers. The (N+M)th metal layer surrounds a portion of a sidewall of the top electrode. A manufacturing method of forming the semiconductor structure is also provided.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: July 21, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Fu-Ting Sung, Chung-Chiang Min, Yuan-Tai Tseng, Chern-Yow Hsu, Shih-Chang Liu
  • Patent number: 10714001
    Abstract: An exemplary active-matrix display comprises pixels disposed in a pixel array and pixel micro-controllers disposed in a controller array on a display substrate. Each of the pixels comprises micro-light-emitting elements that emit different color light. Each of the pixel micro-controllers is electrically connected to control the micro-light-emitting elements in each of two or more adjacent pixels in the pixel array. A spatial separation between pixels is greater than a spatial separation between the micro-light-emitting elements and is greater than a size of each of the micro-light-emitting elements. The micro-light-emitting elements in each of the pixels are disposed in a common pixel direction orthogonal to a pixel micro-controller center line an element distance substantially equal to or greater than one quarter of the extent of the pixel micro-controller in the common pixel direction from the center line. The pixel direction for each pixel controlled by a common pixel micro-controller is different.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: July 14, 2020
    Assignee: X Display Company Technology Limited
    Inventors: Ronald S. Cok, Matthew Alexander Meitl, Christopher Andrew Bower
  • Patent number: 10699942
    Abstract: Methods and structures that include a vertical-transport field-effect transistor. First and second semiconductor fins are formed that project vertically from a bottom source/drain region. A first gate stack section is arranged to wrap around a portion of the first semiconductor fin, and a second gate stack section is arranged to wrap around a portion of the second semiconductor fin. The first gate stack section is covered with a placeholder structure. After covering the first gate stack section with the placeholder structure, a metal gate capping layer is deposited on the second gate stack section. After depositing the metal gate capping layer on the second gate stack section, the placeholder structure is replaced with a contact that is connected with the first gate stack section.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: June 30, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Chanro Park, Daniel Chanemougame, Steven Soss, Lars Liebmann, Hui Zang, Shesh Mani Pandey
  • Patent number: 10700012
    Abstract: A method of dicing a semiconductor wafer may include forming a porous silicon layer along an outline of dies singulated from the semiconductor wafer. The method may include sealing an active surface of the semiconductor wafer, including the porous silicon layer. The method may further include back grinding a rear surface of the semiconductor wafer to expose the porous silicon layer along the outline of the dies. The method also includes etching the semiconductor wafer to release the dies.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: June 30, 2020
    Assignee: Qualcomm Incorporated
    Inventors: Stephen Alan Fanelli, Richard Hammond
  • Patent number: 10685162
    Abstract: A layout of an integrated circuit includes: a first layout device; a second layout device abutting the first layout device at a boundary between the first layout device and the second layout device, wherein the second layout device is a redundant circuit in the integrated circuit; a conductive path disposed across the boundary of the first layout device and the second layout device; and a cut layer disposed on the conductive path and nearby the boundary for disconnecting the first layout device from the second layout device by cutting the conductive path into a first conductive portion and a second conductive portion according to a position of the cut layer; wherein the first layout device is a first layout pattern and the second layout device is a second layout pattern different from the first layout pattern.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: June 16, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Cheok-Kei Lei, Yu-Chi Li, Chia-Wei Tseng, Zhe-Wei Jiang, Chi-Lin Liu, Jerry Chang-Jui Kao, Jung-Chan Yang, Chi-Yu Lu, Hui-Zhong Zhuang
  • Patent number: 10680064
    Abstract: Techniques for VFET top source and drain epitaxy are provided. In one aspect, a method of forming a VFET includes: patterning a fin to form a bottom source/drain region and a fin channel of the VFET; forming bottom spacers on the bottom source/drain region; depositing a high-? gate dielectric onto the bottom spacers and along sidewalls of the fin channel; forming gates over the bottom spacers; forming top spacers on the gates; partially recessing the fin channel to create a trench between the top spacers; forming a nitride liner along sidewalls of the trench; fully recessing the fin channel through the trench such that side portions of the fin channel remain intact; and forming a doped epitaxial top source and drain region over the fin channel. Methods not requiring a nitride liner and VFET formed using the present techniques are also provided.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: June 9, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Cheng Chi, Chi-Chun Liu, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10672605
    Abstract: A technique regarding film formation capable of forming a three-dimensional pattern successfully is provided. A film forming method for a processing target object is provided. The processing target object has a supporting base body and a processing target layer. The processing target layer is provided on a main surface of the supporting base body and includes protrusion regions. Each protrusion region is extended upwards from the main surface, and an end surface of each protrusion region is exposed when viewed from above the main surface. The film forming method includes a first process of forming a film on the end surface of each protrusion region; and a second process of selectively exposing one or more end surfaces by anisotropically etching the film formed through the first process.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: June 2, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Sho Kumakura, Masahiro Tabata
  • Patent number: 10672880
    Abstract: A conductive layer for a thin film transistor (TFT) array panel includes a multi-layered portion defining a source electrode and a drain electrode of a TFT device, and includes a first sub-layer, a second sub-layer, a third sub-layer, and at least one additional sub-layer. The third and the first sub-layers include indium and zinc oxide materials. An indium to zinc content ratio in the first sub-layer is greater than that in the third sub-layer. An indium to zinc content ratio in the additional sub-layer is formulated between that in the first and the third sub-layers. The content ratio differentiation between the first and the third sub-layers affects a lateral etch profile associated with a gap generated in the second conductive layer between the source and the drain electrodes, where the associated gap width in the third sub-layer is wider than that in the first sub-layer.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: June 2, 2020
    Assignees: HONG FU JIN PRECISION INDUSTRY (SheZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Po-Li Shih, Yi-Chun Kao, Hsin-Hua Lin, Chih-Lung Lee, Wei-Chih Chang, I-Min Lu
  • Patent number: 10665705
    Abstract: A method of processing a semiconductor device, comprising: providing a semiconductor body having dopants of a first conductivity type; forming at least one trench that extends into the semiconductor body along a vertical direction, the trench being laterally confined by two trench sidewalls and vertically confined by a trench bottom; applying a substance onto at least a section of a trench surface formed by one of the trench sidewalls and/or the trench bottom of the at least one trench, such that applying the substance includes preventing that the substance is applied to the other of the trench sidewalls; and diffusing of the applied substance from the section into the semiconductor body, thereby creating, in the semiconductor body, a semiconductor region having dopants of a second conductivity type and being arranged adjacent to the section.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: May 26, 2020
    Assignee: Infineon Technologies AG
    Inventors: Thomas Wuebben, Peter Irsigler, Hans-Joachim Schulze