Patents Examined by Victor A. Mandala, Jr.
  • Patent number: 7279756
    Abstract: A process and apparatus for a semiconductor device is provided. A device comprises a first transistor having a first charge carrier type. The first transistor comprises a high-k gate dielectric and a first doped electrode. The first charge carrier type comprises one of p-type and n-type and the first doped electrode comprises the other of p-type and n-type. The device further comprises a second transistor having a charge carrier type opposite the first charge carrier type. The second transistor comprises the high-k gate dielectric, and a second doped electrode, wherein the second doped electrode comprises the other of p-type and n-type.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: October 9, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Ching-Wei Tsai, Chenming Hu
  • Patent number: 7279797
    Abstract: Ball grid array packages that can be stacked to form highly dense components and the method for stacking ball grid arrays. The ball grid array packages comprise flexible or rigid substrates. The ball grid array packages additionally comprise an arrangement for the substantial matching of impedance for the circuits connected to the semiconductor devices.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Walter L. Moden, Leonard E. Mess, Larry D. Kinsman
  • Patent number: 7276772
    Abstract: A semiconductor device, including: a semiconductor substrate of a first conduction type; an active region used as a function-element-forming region on the semiconductor substrate; a low-resistance region of a second conduction type formed on an outermost periphery of the active region to surround the active region and having contact with the semiconductor substrate, the second conduction type being different from the first conduction type; and an electrode connected to the function element and the low-resistance region. A diode is formed by the semiconductor substrate and the low-resistance region. The function element and the diode are electrically connected in parallel between the semiconductor substrate and the electrode, and, between the semiconductor substrate and the electrode, resistance of the low-resistance region is lower than resistance of an electrical conduction path via the function element.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: October 2, 2007
    Assignee: Rohm Co., Ltd.
    Inventor: Kenichi Yoshimochi
  • Patent number: 7273824
    Abstract: A semiconductor structure and a method of fabrication there-for are provided. The semiconductor structure comprises a substrate, a dielectric layer disposed over the substrate, a hydrophilic material layer disposed over the dielectric layer, and a hardmask layer disposed over the hydrophilic material layer. It is noted that, the edge of the semiconductor structure may be polished after the hydrophilic material layer is formed over the dielectric layer and before the hardmask layer is formed over the hydrophilic material layer.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: September 25, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Ching Wu, Jiann-Fu Chen, Chih-Hsiang Shiau
  • Patent number: 7271456
    Abstract: A semiconductor device may include a substrate and a fin shaped semiconductor region on the substrate. The fin shaped semiconductor region may include a channel region and first and second junction regions on opposite sides of the channel region. A gate electrode may be provided on the channel region of the fin shaped semiconductor region, and a stress inducing layer on the fin shaped semiconductor region.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: September 18, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-woo Oh, Dong-gun Park, Dong-won Kim, Sung-dae Suk
  • Patent number: 7268408
    Abstract: A wiring board which can realize a small and thin passive component such as solid condenser, resistor, coil, transistor or so on is provided. A wiring board which forms an electronic component by mounting a passive element, comprising an insulating board provided with an opening having predetermined pattern, a wiring formed with predetermined pattern on said insulating board, and an external terminal filled to said opening, connected with said wiring by said filling, and exposed to a bottom of said insulating board where said wiring is formed.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: September 11, 2007
    Assignee: Hitachi Cable Ltd.
    Inventors: Akira Chinda, Akira Matsuura, Takayuki Yoshiwa, Mamoru Mita, Takashi Kageyama, Katsutoshi Taga
  • Patent number: 7268433
    Abstract: A wiring layer is provided on a semiconductor substrate and extends in a predetermined direction. An external connection electrode terminal is provided on the wiring layer through a plurality of column-shaped conductors. The column-shaped conductors are located under the external connection electrode terminal. A density of arrangement of the column-shaped conductors is varied according to a direction of extension of the wiring layer.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: September 11, 2007
    Assignee: Fujitsu Limited
    Inventors: Yoshihiro Matsuoka, Kazuyuki Imamura, Masao Oshima, Takashi Suzuki, Toyoji Sawada
  • Patent number: 7265407
    Abstract: The present invention relates to a structure of a capacitor, in particular using niobium pentoxide, of a semiconductor capacitor memory device. Since niobium pentoxide has a low crystallization temperature of 600° C. or less, niobium pentoxide can suppress the oxidation of a bottom electrode and a barrier metal by heat treatment. However, according to heat treatment at low temperature, carbon incorporated from CVD sources into the film is not easily oxidized or removed. Therefore, a problem that leakage current increases arises. As an insulator film of a capacitor, a layered film composed of a niobium pentoxide film and a tantalum pentoxide film, or a layered film composed of niobium pentoxide films is used. By the use of the niobium pentoxide film, the dielectric constant of the capacitor can be made high and the crystallization temperature can be made low. By multiple-stage formation of the dielectric film, leakage current can be decreased.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: September 4, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Yuichi Matsui, Masahiko Hiratani
  • Patent number: 7265432
    Abstract: A method for fabricating a solid state imaging device comprising photoelectric conversion sections and charge transfer sections having single-layered charge transfer electrodes for transferring charges generated in the photoelectric conversion sections, the method including formation of the charge transfer electrodes, wherein the formation of the charge transfer electrodes comprises the steps of: forming a conductive film on a surface of a semiconductor substrate having formed thereon a gate oxide film; forming a mask pattern on the conductive film; forming interelectrode spacings in the conductive film using the mask pattern as a mask to make a patterned conductive film; and forming an insulating film to fill in the interelectrode spacings by vacuum chemical vapor deposition.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: September 4, 2007
    Assignee: Fujifilm Corporation
    Inventor: Hiroaki Takao
  • Patent number: 7262506
    Abstract: A stacked multiple offset chip device is formed of two or more dice of similar dimensions and bond pad arrangement, in which bond pads are located in fields along less than three edges of the active surface of each die. A first die is attached to a substrate and subsequent die or dice are attached in a vertical sequence atop the first die, each in an offset configuration from the next lower die to expose the bond pads thereof for conductive bonding to metallization of the substrate. The multiple chip device permits a plurality of dice to be stacked in a maximum density low profile device. A particularly useful application is the formation of stacked mass storage flash memory package.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: August 28, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Leonard E. Mess, Jerry M. Brooks, David J. Corisis
  • Patent number: 7262131
    Abstract: In accordance with the present invention, a dielectric barrier layer is presented. A barrier layer according to the present invention includes a densified amorphous dielectric layer deposited on a substrate by pulsed-DC, substrate biased physical vapor deposition, wherein the densified amorphous dielectric layer is a barrier layer. A method of forming a barrier layer according to the present inventions includes providing a substrate and depositing a highly densified, amorphous, dielectric material over the substrate in a pulsed-dc, biased, wide target physical vapor deposition process. Further, the process can include performing a soft-metal breath treatment on the substrate. Such barrier layers can be utilized as electrical layers, optical layers, immunological layers, or tribological layers.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: August 28, 2007
    Assignee: Symmorphix, Inc.
    Inventors: Mukundan Narasimhan, Peter Brooks, Richard E. Demaray
  • Patent number: 7259035
    Abstract: Methods of forming thin-film transistor display devices including forming a gate line and a gate electrode on a face of a substrate and forming a semiconductor layer that is insulated from the gate line. A data line and a source/drain electrode are formed on the semiconductor layer. The data line and the source/drain electrode are formed as composites of at least two different metal conductive layers. A transparent pixel electrode is formed that is electrically coupled to the drain electrode.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: August 21, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-gyu Kim
  • Patent number: 7259409
    Abstract: A thin film device includes a metal sulfide layer formed on a single crystal silicon substrate by epitaxial growth; and a compound thin film with ionic bonding, which is formed on the metal sulfide layer by epitaxial growth. Alternatively, a thin film device includes a metal sulfide layer formed on a single crystal silicon substrate by epitaxial growth; and at least two compound thin films with ionic bonding, which are formed on the metal sulfide layer by epitaxial growth. For example, (11 20) surface AlN/MnS/Si (100) thin films formed by successively stacking a MnS layer (about 50 nm thick) and an AlN layer (about 1000 nm thick) on a single crystal Si (100) substrate, are used as a substrate, and a (11 20) surface GaN layer (about 100 nm thick) operating as a light emitting layer is formed on the substrate, thereby fabricating a thin film device.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: August 21, 2007
    Assignee: Tokyo Institute of Technology
    Inventors: Hideomi Koinuma, Jeong-Hwan Song, Toyohiro Chikyo, Young Zo Yoo, Parhat Ahmet, Yoshinori Konishi, Yoshiyuki Yonezawa
  • Patent number: 7256432
    Abstract: An electric-field control electrode (5) is formed between a gate electrode (2) and a drain electrode (3). A multilayered film including a SiN film (21) and a SiO2 film (22) is formed below the electric-field control electrode (5). The SiN film (21) is formed so that a surface of an AlGaN electron supply layer (13) is covered with the SiN film (21).
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: August 14, 2007
    Assignee: NEC Corporation
    Inventors: Yasuhiro Okamoto, Hironobu Miyamoto, Yuji Ando, Tatsuo Nakayama, Takashi Inoue, Masaaki Kuzuhara
  • Patent number: 7256454
    Abstract: An electronic device can include discontinuous storage elements that lie within a trench. In one embodiment, the electronic device can include a substrate that includes a trench extending into a semiconductor material. The trench can include a ledge and a bottom, wherein the bottom lies at a depth deeper than the ledge. The electronic device can include discontinuous storage elements, wherein a trench portion of the discontinuous storage elements lies within the trench. Gate electrodes may lie adjacent to walls of the trench. In a particular embodiment, a portion of a channel region within a memory cell may not be covered by a gate electrode. In another embodiment, a doped region may underlie the ledge and allow for memory cells to be formed at different elevations within the trench. In other embodiment, a process can be used to form the electronic device.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: August 14, 2007
    Assignee: Freescale Semiconductor, Inc
    Inventors: Jane A. Yater, Gowrishankar L. Chindalore, Cheong M. Hong
  • Patent number: 7256498
    Abstract: Semiconductor devices and methods for fabricating the same. The semiconductor device includes a resistance-reduced transistor with metallized bilayer overlying source/drain regions and gate electrode thereof. A first dielectric layer with a conductive contact overlies the resistance-reduced transistor. A second dielectric layer having a first conductive feature overlies the first dielectric layer. A third dielectric layer with a second conductive feature overlies the second dielectric layer, forming a conductive pathway down to the top surface of the metallized bilayer over one of the source/drain regions or the gate electrode layer.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: August 14, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Chun Huang, Jyu-Horng Shieh, Ju-Wang Hsu
  • Patent number: 7256466
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: August 14, 2007
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 7253452
    Abstract: A semiconductor nanocrystal includes a core including a first semiconductor material and an overcoating including a second semiconductor material. A monodisperse population of the nanocrystals emits blue light over a narrow range of wavelengths with a high quantum efficiency.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: August 7, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Jonathan S. Steckel, John P. Zimmer, Seth Coe-Sullivan, Nathan E. Stott, Vladimir Bulović, Moungi G. Bawendi
  • Patent number: 7250686
    Abstract: A semiconductor device of the present invention comprises a first semiconductor chip that includes a first internal circuit and at least one first conductive pad which is provided on its upper surface and is not connected to the first internal circuit, a second semiconductor chip provided on the first semiconductor chip that includes a second internal circuit and at least one second conductive pad which is provided on its upper surface and is connected to the second internal circuit, at least one first connecting member for connecting between the second semiconductor chip provided on the first semiconductor chip, at least one first conductive pad and at least one second conductive pad, and at least one second connecting member led from at least one first conductive.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: July 31, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Yasuhiro Ishiyama
  • Patent number: 7250638
    Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal semiconductor processing techniques. Trenches that define the boundaries of the individual devices are then formed through the semiconductor layers and into the insulating substrate, beneficially by using inductive coupled plasma reactive ion etching. The trenches are then filled with an easily removed layer. A metal support structure is then formed on the semiconductor layers (such as by plating or by deposition) and the insulating substrate is removed. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: July 31, 2007
    Assignee: LG Electronics Inc.
    Inventors: Jong-Lam Lee, In-kwon Jeong, Myung Cheol Yoo