Patents Examined by Victor A. Mandala, Jr.
  • Patent number: 7122877
    Abstract: A semiconductor device of the present invention includes a semiconductor substrate including an active region and an isolating region provided so as to enclose the active region; a capacitance insulating film that is provided on the active region and is in contact with the isolating region; an upper electrode provided on the capacitance insulating film so as to be spaced away from the isolating region; an electrode pad provided on the isolating region; a lead conductive film provided over a part of the capacitance insulating film and a part of the isolating region for connecting the upper electrode and the electrode pad; and an interlayer insulating film provided over the substrate.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: October 17, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Shinichi Imai
  • Patent number: 7119408
    Abstract: A semiconductor device of the present invention includes, as a peripheral MIS transistor 25b, a gate insulating film 13b and a gate electrode 14b provided above an active region 10b, first and second sidewalls 19b and 23b provided on side surfaces of the gate electrode 14b, n-type source and drain regions 24b provided away from each other in the active region, nitrogen diffusion layers 18 provided below the outer sides of the gate electrode 14b, n-type extension regions 16 containing arsenic and provided in regions of the active region 10b located below the outer sides of the gate electrode 14b so that the n-type extension regions 16 cover the inner side surfaces and the bottom surfaces of the nitrogen diffusion layers 18, respectively, and n-type dopant regions 17 containing phosphorus and provided in regions of the active region 10b located below the outer sides of the gate electrode 14b and deeper than the n-type extension regions 16.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: October 10, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Naoki Kotani
  • Patent number: 7119380
    Abstract: A junction field effect transistor is described. The transistor is made from a wide bandgap semiconductor material. The device comprises source, channel, drift and drain semiconductor layers, as well as p-type implanted or Schottky gate regions. The source, channel, drift and drain layers can be epitaxially grown. The ohmic contacts to the source, gate, and drain regions can be formed on the same side of the wafer. The devices can have different threshold voltages depending on the vertical channel width and can be implemented for both depletion and enhanced modes of operation for the same channel doping. The devices can be used for digital, analog, and monolithic microwave integrated circuits. Methods for making the transistors and integrated circuits comprising the devices are also described.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: October 10, 2006
    Assignee: SemiSouth Laboratories, Inc.
    Inventors: Igor Sankin, Jeffrey B. Casady, Joseph N. Merrett
  • Patent number: 7115985
    Abstract: Disclosed herein are novel support structures for pad reinforcement in conjunction with new bond pad designs for semiconductor devices. The new bond pad designs avoid the problems associated with probe testing by providing a probe region that is separate from a wire bond region. Separating the probe region 212 from the wire bond region 210 and forming the bond pad 211 over active circuitry has several advantages. By separating the probe region 212 from the wire bond region 210, the wire bond region 210 is not damaged by probe testing, allowing for more reliable wire bonds. Also, forming the bond pad 211 over active circuitry, including metal interconnect layers, allows the integrated circuit to be smaller.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: October 3, 2006
    Assignee: Agere Systems, Inc.
    Inventors: Joze E. Antol, Philip William Seitzer, Daniel Patrick Chesire, Rafe Carl Mengel, Vance Dolvan Archer, Thomas B. Gans, Taeho Kook, Sailesh M. Merchant
  • Patent number: 7115978
    Abstract: A package structure includes a lead frame having a plurality of leads, each of which includes a first recession, at least a first device, and a plurality of solder joints respectively positioned in the first recessions for connecting the first device to the lead frame.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: October 3, 2006
    Assignee: Orient Semiconductor Electronics, Ltd.
    Inventors: Kuo-Yang Sun, Chia-Ming Yang
  • Patent number: 7105880
    Abstract: The electronic device includes a substrate, a lower conductive film provided on the substrate, a functional film provided on the lower conductive film, and a crystallinity barrier film provided between the lower conductive film and the functional film. The present invention prevents the crystallinity of the functional film being affected by the crystallinity or the material selection of the lower conductive film, so it becomes possible to use a low-cost metal such as aluminum (Al) for the lower conductive film, and to use a low-cost method for forming the film, thereby making it possible to improve the crystallinity of the functional film without using a costly film-formation method such as epitaxial growth. For the crystallinity barrier film, there can be used a material having an amorphous structure.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: September 12, 2006
    Assignee: TDK Corporation
    Inventors: Takao Noguchi, Kenji Inoue, Hisatoshi Saito
  • Patent number: 7105895
    Abstract: A method for producing an insulating or barrier layer (FIG. 1B), useful for semiconductor devices, comprises depositing a layer of silicon and at least one additional element on a silicon substrate whereby said deposited layer is substantially free of defects such that epitaxial silicon substantially free of defects can be deposited on said deposited layer. Alternatively, a monolayer of one or more elements, preferably comprising oxygen, is absorbed on a silicon substrate. A plurality of insulating layers sandwiched between epitaxial silicon forms a barrier composite. Semiconductor devices are disclosed which comprise said barrier composite.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: September 12, 2006
    Assignee: Nanodynamics, Inc.
    Inventors: Chia-Gee Wang, Raphael Tsu, John Clay Lofgren
  • Patent number: 7091579
    Abstract: Impurity concentration (Nd(X)) in an n-drift layer in a diode is at a maximum at a position at a distance Xp from an anode electrode in a direction from the anode electrode to a cathode electrode, and gradually decreases from the position toward each of the anode electrode and the cathode electrode. A ratio of the peak impurity concentration Np to an averaged impurity concentration Ndm in the n-drift layer is in the range of 1 to 5. This provides a diode and a manufacturing method thereof by which oscillations in voltage and current at reverse recovery are inhibited to achieve enhancement both in high speed and low-loss characteristics and in soft recovery characteristics.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: August 15, 2006
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Michio Nemoto
  • Patent number: 7088010
    Abstract: A system for chip packaging includes an adamantoid packaging composition. The adamantoid composition ameliorates the CTE mismatch that typically exists between a packaged die and a resin-impregnated fiberglass mounting substrate. In an embodiment, the system includes a packaging composition that alone exhibits a CTE that is characteristic of an inorganic-filled underfill composite previously known. An embodiment is also directed to the assembly of a chip package that uses an adamantoid packaging composition.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: August 8, 2006
    Assignee: Intel Corporation
    Inventors: Sheau Hooi Lim, Choong Kooi Chee
  • Patent number: 7087935
    Abstract: The present invention provides an optical device and a surface emitting type device which have high efficiency and a stable operation and are manufactured at high manufacturing yield. The optical device and the surface emitting type device are characterized in that they have a distributed Bragg reflector (DBR) including a plurality of semiconductor layers made of a nitride semiconductor with substantially same gaps therbetween. Further, the optical device and the surface emitting type device are characterized in that they have a distributed Bragg reflector (DBR) in which a plurality of semiconductor layers made of nitride semiconductor and a plurality of organic layers made of organic material are alternately laminated.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: August 8, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shin-Ya Nunoue, Masayuki Ishikawa
  • Patent number: 7084485
    Abstract: A method of manufacturing a semiconductor component includes: providing a semiconductor substrate (210, 510); forming a trench (130, 430) in the semiconductor substrate to define a plurality of active areas separated from each other by the trench; forming a buried layer (240, 750) in the semiconductor substrate underneath a portion of the trench, where the buried layer is at least partially contiguous with the trench; after forming the buried layer, depositing an electrically insulating material (133, 810) in the trench; forming a collector region (150, 950) in one of the plurality of active areas, where the collector region forms a contact to the buried layer; forming a base structure over the one of the plurality of active areas; and forming an emitter region over the one of the plurality of active areas.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: August 1, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventor: James A. Kirchgessner
  • Patent number: 7084453
    Abstract: A semiconductor memory device and method for making the same, where a memory cell and high voltage MOS transistor are formed on the same substrate. An insulating layer is formed having a first portion that insulates the control and floating gates of the memory cell from each other, and a second portion that insulates the poly gate from the substrate in the MOS transistor. The insulating layer is formed so that its first portion has a smaller thickness than that of its second portion.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: August 1, 2006
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Geeng-Chuan Chern, Amitay Levi, Dana Lee
  • Patent number: 7078778
    Abstract: A micromechanical device comprises a substrate and a member which is moveably attached to the substrate, wherein the member is formed in an electrically conductive layer, wherein a first area of the moveable member forms a first electrode, a second area of the moveable member forms a second electrode, and wherein the first electrode and the second electrode are electrically insulated from each other by an electrically insulating third area which penetrates the conductive layer, and wherein the substrate comprises a third electrode which is at least partially arranged opposed to the first electrode and the second electrode.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: July 18, 2006
    Assignee: Fraunhofer-Gessellschaft zur Foerderung der angewandten Forschung e.V.
    Inventor: Harald Schenk
  • Patent number: 7078813
    Abstract: A semiconductor device comprising a first insulation layer, a second insulation layer, a first barrier film, a second barrier film, a diffusion layer. The device further comprises an upper contact hole, a lower contact hole, and a contact plug. The upper contact hole penetrates the second insulation layer and has a bottom in the second barrier film. The bottom has a width greater than a trench made in the first insulation layer, as measured in a direction crossing the widthwise direction of the trench. The lower contact hole penetrates the first insulation layer and first barrier film, communicates with the first contact hole via the trench and is provided on the diffusion layer. The upper portion of the lower contact hole has the same width as the trench. The contact plug is provided in the upper contact hole and lower contact hole.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: July 18, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Sakuma, Yasuhiko Matsunaga, Fumitaka Arai, Kikuko Sugimae
  • Patent number: 7078804
    Abstract: A micro-electro-mechanical system (MEMS) package with a side sealing member and a method of manufacturing the package are disclosed. In the MEMS package and method of the present invention, a sealing member is formed on a side surface of a lid glass that is mounted on a spacer surrounding MEMS elements provided on a base substrate and covers the MEMS elements, so that the sealing member hermetically seals the MEMS elements from the external environment.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: July 18, 2006
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Suk-Kee Hong, Yeong-Gyu Lee, Heung-Woo Park
  • Patent number: 7078785
    Abstract: By forming a conductive smoothing layer over the bottom electrode and/or a capacitor dielectric, a MIM capacitor with improved reliability due to reduction of geometrically enhanced electric fields and electrode smoothing is formed. In one embodiment, layer including a refractory metal or a refractory metal-rich nitride, is formed over a first capping layer formed of a refractory nitride. In addition, a second refractory metal or a refractory metal-rich nitride layer may be formed on the capacitor dielectric. The smoothing layer could also be used in other semiconductor devices, such as transistors between a gate electrode and a gate dielectric.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: July 18, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Anthony Ciancio, Mark D. Griswold, Amudha R. Irudayam, Jennifer H. Morrison
  • Patent number: 7078753
    Abstract: It is an object of this invention to provide the structure of an image sensor capable of efficiently collecting light in the center and in the periphery of an imaging plane. To achieve this object, an image sensor includes a plurality of photoelectric conversion portions, a high refractive index portion having a first portion formed into the shape of a pillar and a taper shape portion whose aperture area increases toward a side close to a photographing lens, and a low refractive index portion placed around the high refractive index portion.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: July 18, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hideki Dobashi
  • Patent number: 7078817
    Abstract: Electromigration can be reduced in a copper-based metallization of an integrated circuit that includes a first copper-containing via that electrically connects an underlying conductive line and an overlying copper-containing line through an intervening insulating layer. Electromigration can be reduced by forming at least a second copper-containing via that electrically connects the underlying conductive line and the overlying copper-containing line through the intervening insulating layer, in parallel with the first copper-containing via. Multi-vias can provide redundancy to reduce early failure statistics. Moreover, since current is distributed among the vias, the electromigration driving force can be reduced and local Joule heating, in voids at the via interface, also may be reduced. Accordingly, even if via voids are formed, the structure may not fail by catastrophic thermal runaway due to Joule heating.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: July 18, 2006
    Assignee: Board of Regents, The University of Texas System
    Inventors: Paul S. Ho, Ki-Don Lee, Ennis Ogawa, Hideki Matsuhashi
  • Patent number: 7075148
    Abstract: The invention relates to a semiconductor memory having a multiplicity of memory cells, each of the memory cells having N (e.g., four) vertical memory transistors with trapping layers. Higher contact regions are formed in higher semiconductor regions extending obliquely with respect to the rows and columns of the cell array, the gate electrode generally being led to the step side areas of the higher semiconductor region. A storage density of 1-2F2 per bit can thus be achieved.
    Type: Grant
    Filed: March 5, 2005
    Date of Patent: July 11, 2006
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Erhard Landgraf, Richard Johannes Luyken, Thomas Schulz, Michael Specht
  • Patent number: 7071565
    Abstract: A three dimensional circuit structure including tapered pillars between first and second signal lines. An apparatus including a first plurality of spaced apart coplanar conductors disposed in a first plane over a substrate; a second plurality of spaced apart coplanar conductors disposed in a second plane, the second plane parallel to and different from the first plane; and a plurality of cells disposed between one of the first conductors and one of the second conductors, wherein each of the plurality of cells have a re-entrant profile.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: July 4, 2006
    Assignee: Sandisk 3D LLC
    Inventors: Calvin K. Li, N. Johan Knall, Michael A. Vyvoda, James M. Cleeves, Vivek Subramanian