Patents by Inventor Hao Ho

Hao Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190103400
    Abstract: A semiconductor device includes a semiconductor substrate having a first conductivity type, wherein the semiconductor substrate includes a first region and a second region. The semiconductor device also includes a buried layer disposed in the first region of the semiconductor substrate and having the first conductivity type, wherein the buried layer has a dopant concentration that is greater than that of the semiconductor substrate. The semiconductor device further includes an epitaxial layer disposed on the semiconductor substrate, and a first element disposed on the first region of the semiconductor substrate, wherein the first element includes a bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) (BCD) transistor. In addition, the semiconductor device includes a second element disposed on the second region of the semiconductor substrate, wherein the second element includes an ultra-high voltage (UHV) transistor.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 4, 2019
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Chien-Wei CHIU, Shin-Cheng LIN, Yu-Hao HO
  • Publication number: 20190081042
    Abstract: A semiconductor device includes a substrate, first and second body regions, a well region, a source region, a drain region, and first and second doped regions. The first and second body regions are disposed in first and second regions respectively. The well region is disposed in the first and second regions and between the first and second body regions. First and second portions of the source region are disposed in the first and second body regions respectively. The drain region is disposed on the well region. The first doped region is disposed in the well region. The second doped region is disposed on the first doped region. A first portion of the first doped region and a first portion of the second doped region are disposed in the well region of the first region and extend toward the first body region and out of the well region.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 14, 2019
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Cheng-Tsung WU, Shin-Cheng LIN, Wen-Hsin LIN, Yu-Hao HO
  • Patent number: 10229907
    Abstract: A semiconductor device includes a substrate, first and second body regions, a well region, a source region, a drain region, and first and second doped regions. The first and second body regions are disposed in first and second regions respectively. The well region is disposed in the first and second regions and between the first and second body regions. First and second portions of the source region are disposed in the first and second body regions respectively. The drain region is disposed on the well region. The first doped region is disposed in the well region. The second doped region is disposed on the first doped region. A first portion of the first doped region and a first portion of the second doped region are disposed in the well region of the first region and extend toward the first body region and out of the well region.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: March 12, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Cheng-Tsung Wu, Shin-Cheng Lin, Wen-Hsin Lin, Yu-Hao Ho
  • Publication number: 20190067190
    Abstract: A semiconductor structure including a substrate, a first well, a first doped region, a second well, a second doped region, a field oxide, a first conductive layer, a first insulating layer and a second conductive layer is provided. Each of the substrate and the second well has a first conductivity type. The first and second wells are formed in the substrate. The first well has a second conductivity type. The first doped region is formed in the first well and has the second conductivity type. The second doped region is formed in the second well and has the first conductivity type. The field oxide is disposed on the substrate and is disposed between the first and second doped regions. The first conductive layer overlaps the field oxide. The first insulating layer overlaps the first conductive layer. The second conductive layer overlaps the first insulating layer.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Cheng-Tsung WU, Shin-Cheng LIN, Yu-Hao HO, Wen-Hsin LIN
  • Patent number: 10205014
    Abstract: A semiconductor device is provided. The device includes a substrate having a first conductivity type. The device further includes a drain region, a source region, and a well region disposed in the substrate. The well region is disposed between the drain region and the source region and having a second conductivity type opposite to the first conductivity type. The device further includes a plurality of doped regions disposed within the well region. The doped regions are vertically and horizontally offset from each other. Each of the doped regions includes a lower portion having the first conductivity type, and an upper portion stacked on the lower region and having the second conductivity type.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: February 12, 2019
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shang-Hui Tu, Chih-Jen Huang, Jui-Chun Chang, Shin-Cheng Lin, Yu-Hao Ho, Wen-Hsin Lin
  • Patent number: 10181512
    Abstract: A junction field effect transistor includes a substrate and a gate region having a first conductive type in the substrate. Source/drain regions of a second conductive type opposite to the first conductive type are disposed in the substrate on opposite sides of the gate region. A pair of high-voltage well regions of the second conductive type are disposed beneath the source/drain regions. A channel region is provided beneath the gate region and between the pair of high-voltage well regions. The channel region is of the second conductive type and has a dopant concentration lower than that of the pair of high-voltage well regions.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: January 15, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Wen-Hsin Lin, Shin-Cheng Lin, Cheng-Tsung Wu, Yu-Hao Ho
  • Publication number: 20190006355
    Abstract: A semiconductor structure is provided. A semiconductor substrate has a first conductivity type. A first well is formed in the semiconductor substrate and has a second conductivity type. A first well includes a first region and a second region. The dopant concentration of the first region is higher than the dopant concentration of the second region. A second well has the first conductivity type and is formed in the first region. A first doped region is formed in the first region and has the second conductivity type different than the first conductivity type. The second doped region has the first conductivity type and is formed in the second well. A third doped region has the first conductivity type and is formed in the second region. A fourth doped region has the second conductivity type and is formed in the first region.
    Type: Application
    Filed: June 28, 2017
    Publication date: January 3, 2019
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Wen-Hsin LIN, Shin-Cheng LIN, Cheng-Tsung WU, Yu-Hao HO
  • Patent number: 10170468
    Abstract: A semiconductor structure is provided. A semiconductor substrate has a first conductivity type. A first well is formed in the semiconductor substrate and has a second conductivity type. A first well includes a first region and a second region. The dopant concentration of the first region is higher than the dopant concentration of the second region. A second well has the first conductivity type and is formed in the first region. A first doped region is formed in the first region and has the second conductivity type different than the first conductivity type. The second doped region has the first conductivity type and is formed in the second well. A third doped region has the first conductivity type and is formed in the second region. A fourth doped region has the second conductivity type and is formed in the first region.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: January 1, 2019
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Wen-Hsin Lin, Shin-Cheng Lin, Cheng-Tsung Wu, Yu-Hao Ho
  • Publication number: 20180350799
    Abstract: A semiconductor structure is provided. A substrate has a first conductivity type. A first well and a second well are formed in the substrate. The first well has a second conductivity type. The second well has the first conductivity type. A doped region is formed in the first well and has the second conductivity type. A gate structure is disposed over the substrate and overlaps a portion of the first well and a portion of the second well. An insulating layer is disposed over the substrate and is spaced apart from the gate structure. A conducting wire is disposed on the insulating layer and includes a first input terminal and a first output terminal. The first input terminal is configured to receive an input voltage. The first output terminal is electrically connected to the doped region.
    Type: Application
    Filed: May 30, 2017
    Publication date: December 6, 2018
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Yu-Hao HO, Shin-Cheng LIN, Wen-Hsin LIN, Cheng-Tsung WU
  • Patent number: 10128331
    Abstract: A high-voltage semiconductor device is provided. The device includes an epitaxial layer formed on a semiconductor substrate. The semiconductor substrate includes a first doping region having a first conductivity type. The epitaxial layer includes a body region that has a second conductivity type and a second doping region and a third doping region that have the first conductivity type. The second doping region and the third doping region are respectively on both opposite sides of the body region. A source region and a drain region are respectively in the body region and the second doping region. A gate structure is on the epitaxial layer. A fourth doping region having the second conductivity region is below the source region and adjacent to the bottom of the body region. The fourth doping region has a doping concentration greater than that of the body region.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: November 13, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Cheng-Tsung Wu, Shin-Cheng Lin, Wen-Hsin Lin, Yu-Hao Ho
  • Publication number: 20180308934
    Abstract: A junction field effect transistor includes a substrate and a gate region having a first conductive type in the substrate. Source/drain regions of a second conductive type opposite to the first conductive type are disposed in the substrate on opposite sides of the gate region. A pair of high-voltage well regions of the second conductive type are disposed beneath the source/drain regions. A channel region is provided beneath the gate region and between the pair of high-voltage well regions. The channel region is of the second conductive type and has a dopant concentration lower than that of the pair of high-voltage well regions.
    Type: Application
    Filed: January 10, 2018
    Publication date: October 25, 2018
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Wen-Hsin LIN, Shin-Cheng LIN, Cheng-Tsung WU, Yu-Hao HO
  • Patent number: 10101362
    Abstract: A probe module, which is provided between a tester and a DUT for transmitting electrical signals therebetween, includes a signal transmitting member, a plurality of probes, a positioning member, and a signal connector. The signal transmitting member has a circuit and two grounding. The probes are electrical connected to the circuit and the groundings of the signal transmitting member. The positioning member is made of an insulating material, and provided on the probes. The signal connector is adapted to be electrically connected to the tester, wherein the signal connector has a signal transmission portion and a grounding portion; the signal transmission portion is electrically connected to the circuit of the signal transmitting member, and the grounding portion is electrically connected to the at least one grounding of the signal transmitting member.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: October 16, 2018
    Assignee: MPI CORPORATION
    Inventors: Wei-Cheng Ku, Hao Wei, Yu-Hao Chen, Chih-Hao Ho
  • Patent number: 10070512
    Abstract: A multilayer circuit board includes a first substrate and a second substrate in stack. The first substrate is provided with two first pads, two second pads, and two first sub-circuits. The first pads and the second pads are electrically connected to the first sub-circuits. The second substrate has a top surface, a bottom surface, a lateral edge, and two openings. The bottom surface of the second substrate is attached to the top surface of the first substrate. The openings extend from the top surface to the bottom surface of the second substrate. The first pads of the first substrate are in the opening of the second substrate; the second pads of the first substrate are not covered by the second substrate. The second substrate is further provided with a pad on the top surface and a second sub-circuit electrically connected to the pad of the second substrate.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 4, 2018
    Inventors: Wei-Cheng Ku, Jun-Liang Lai, Chih-Hao Ho
  • Patent number: 10054160
    Abstract: An end seal device of a linear guide includes a main plate and a cladding member. The main plate includes an upper portion, two engaging portions extending downwardly and bent rearwardly from the upper portion, and two lower contact portions extending downwardly from the engaging portions and each having a penetrating hole. The cladding member includes cladding portions respectively attached to major surfaces of the main plate, and two filling portions each filling the penetrating hole to interconnect the cladding portions for firmly covering and protecting the main plate.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: August 21, 2018
    Assignee: AIRTAC INTERNATIONAL GROUP
    Inventors: Shih-Chung Wang, Chang-Ye Li, Kuo-Tung Ho, Chia-Hao Ho
  • Patent number: 10054627
    Abstract: A testing jig includes a substrate and a plurality of conductive elastic pieces, wherein the substrate has a recess and a plurality of circuits; the recess is located on a top surface of the substrate, while the circuits are provided on the top surface of the substrate. The conductive elastic pieces are provided on the substrate, and are respectively electrically connected to the circuits. Each of the conductive elastic pieces has a contact portion located within an orthographic projection range of the recess, wherein each of the contact portions contacts a pad of a DUT. Whereby, attenuation happens while transmitting test signals with high frequency can be effectively reduces by using the conductive elastic pieces to transmit test signals.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: August 21, 2018
    Assignee: MPI CORPORATION
    Inventors: Wei-Cheng Ku, Hao Wei, Chia-Nan Chou, Chih-Hao Ho
  • Patent number: 10043901
    Abstract: An ultra-high voltage device is provided. The ultra-high voltage device includes a substrate, a first well zone formed in the substrate, a second well zone having a surface formed in the substrate adjacent to the first well zone, a gate oxide formed on the first well zone and the second well zone of the substrate, a gate formed on the gate oxide, a channel formed in the first well zone underneath the gate oxide, an accumulation region formed in the second well zone underneath the gate oxide adjacent to the channel, wherein only a part of the accumulation region is implanted with a dopant to form an implant region therein, and an insulation region formed on the surface of the second well zone of the substrate adjacent to the accumulation region, wherein a boundary is formed between the insulation region and the accumulation region.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: August 7, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Wen-Hsin Lin, Yu-Hao Ho, Shin-Cheng Lin
  • Publication number: 20180209174
    Abstract: An induction type padlock includes a shell, a lock bolt, a shackle, a driving unit, a light-emitting component, and an induction control unit. The lock bolt slides in the shell and has a recess. The shackle is inserted into the shell through the lock bolt and has a latch portion being able to be latched by the lock bolt. The driving unit rotates the position limiter in the recess; the position limiter has a wide portion and a narrow portion. The induction control unit is electrically connected to the driving unit and the light-emitting component. The induction control unit senses a signal to select the wide or the narrow portion of the position limiter to be disposed in the recess and controls the light-emitting component. Therefore, the time delay problems of unlocking and locking can be solved and the distinguishable lighting indications of unlocking and locking can be obtained.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 26, 2018
    Inventor: Hsi-Hao HO
  • Patent number: 10033260
    Abstract: A switch-mode converter includes a high-side driver, a high-side transistor, a low-side driver, a low-side transistor, a capacitor, and an active diode. The high-side driver is supplied by the bootstrap voltage of the bootstrap node and a floating reference voltage of a floating reference node, and generates the high-side output signal. The high-side transistor provides an input voltage to the floating reference node according to the high-side output signal. The low-side driver generates the low-side output signal. The low-side transistor couples the floating reference node to a ground according to the low-side output signal. The capacitor is coupled between the bootstrap node and the floating reference node. The active diode provides the supply voltage to the bootstrap node. When the bootstrap voltage exceeds the supply voltage, the active diode isolates the supply voltage from the bootstrap node.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: July 24, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Yu-Lung Chin, Shin-Cheng Lin, Wen-Hsin Lin, Yu-Hao Ho
  • Patent number: 10030417
    Abstract: An induction type padlock includes a shell, a lock bolt, a shackle, a driving unit, a light-emitting component, and an induction control unit. The lock bolt slides in the shell and has a recess. The shackle is inserted into the shell through the lock bolt and has a latch portion being able to be latched by the lock bolt. The driving unit rotates the position limiter in the recess; the position limiter has a wide portion and a narrow portion. The induction control unit is electrically connected to the driving unit and the light-emitting component. The induction control unit senses a signal to select the wide or the narrow portion of the position limiter to be disposed in the recess and controls the light-emitting component. Therefore, the time delay problems of unlocking and locking can be solved and the distinguishable lighting indications of unlocking and locking can be obtained.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: July 24, 2018
    Assignee: REAL LOCKS & SECURITY CO., LTD.
    Inventor: Hsi-Hao Ho
  • Patent number: 10014408
    Abstract: A semiconductor device includes a semiconductor substrate having a first conductivity type, and a first well region disposed in the semiconductor substrate, wherein the first well region has a second conductivity type opposite to the first conductivity type. The semiconductor device also includes a buried layer disposed in the semiconductor substrate and under the first well region, wherein the buried layer has the first conductivity type and is in contact with the first well region. The semiconductor device further includes a source electrode, a drain electrode and a gate structure disposed on the semiconductor substrate, wherein the gate structure is located between the source electrode and the drain electrode.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: July 3, 2018
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Shin-Cheng Lin, Yu-Hao Ho, Wen-Hsin Lin, Cheng-Tsung Wu, Manoj Kumar