Patents by Inventor Ming Tung

Ming Tung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8829615
    Abstract: A semiconductor device and method of forming the semiconductor device are disclosed, where the semiconductor device includes additional implant regions in the source and drain areas of the device for improving Ron-sp and BVD characteristics of the device. The device includes a gate electrode formed over a channel region that separates first and second implant regions in the device substrate. The first implant region has a first conductivity type, and the second implant region has a second conductivity type. A source diffusion region is formed in the first implant region, and a drain diffusion region is formed in the second implant region.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: September 9, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Chien-Chung Chen, Ming-Tung Lee, Shih-Chin Lien, Shyi-Yuan Wu
  • Publication number: 20140248730
    Abstract: The present disclosure provides a method including providing a first substrate; and forming a microelectromechanical system (MEMS) device on a first surface of the first substrate. A bond pad is formed on at least one bonding site on the first surface of the first substrate. The bonding site is recessed from the first surface. Thus, a top surface of the bond pad may lie below the plane of the top surface of the substrate. A device with recessed connective element(s) (e.g., bond pad) is also described. In further embodiments, a protective layer is formed on the recessed connective element during dicing of a substrate.
    Type: Application
    Filed: October 18, 2013
    Publication date: September 4, 2014
    Inventors: Hsin-Ting Huang, Jung-Huei Peng, Shang-Ying Tsai, Yao-Te Huang, Ming-Tung Wu, Ping-Yin Liu, Xin-Hua Huang, Yuan-Chih Hsieh
  • Publication number: 20140199438
    Abstract: A method of supplying oxygenated water is performed on a water tank, in which oxygenated water is received. The method lets the water tank supply a constant amount of the oxygenated water once, and then supply the water tank with water and pure oxygen to recover the dissolution ratio of oxygen of the oxygenated water in the water tank. The method may supply a constant amount of oxygenated water every time for the user to drink it up once.
    Type: Application
    Filed: March 12, 2013
    Publication date: July 17, 2014
    Applicant: BIYOUNG BIOTECHNOLOGY CO., LTD.
    Inventors: SHU-FEN LEE, CHE-WEI LIN, SHIH-MING TUNG
  • Patent number: 8735260
    Abstract: The present disclosure provide a method of manufacturing a microelectronic device. The method includes forming a bonding pad on a first substrate; forming wiring pads on the first substrate; forming a protection material layer on the first substrate, on sidewalls and top surfaces of the wiring pads, and on sidewalls of the bonding pad, such that a top surface of the bonding pad is at least partially exposed; bonding the first substrate to a second substrate through the bonding pad; opening the second substrate to expose the wiring pads; and removing the protection material layer.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shang-Ying Tsai, Jung-Huei Peng, Hsin-Ting Huang, Hung-Hua Lin, Ming-Tung Wu, Ping-Yin Liu, Yao-Te Huang, Yuan-Chih Hsieh
  • Publication number: 20140123856
    Abstract: The present invention is to provide a tea brewer, which includes a container main body having a top side concavely provided with a receiving space for receiving liquid and coffee powder (or tea leaves) and a bottom side formed with a through hole in communication with the receiving space, at least one engaging element each provided on the bottom side and having at least one groove, a water-stopping plate having a post which extends into the receiving space through the through hole and peripherally provided with at least one guide rail each of which is movably received in the corresponding groove, and a water-stopping block detachably connected to the post and located in the receiving space. Since each guide rail extends into the corresponding groove with ease and without being compressed or deformed, it is easy for a user to remove the water-stopping plate from the tea brewer for cleaning.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 8, 2014
    Inventor: Ming-Tung LIU
  • Publication number: 20140054779
    Abstract: The present disclosure provides various embodiments of a via structure and method of manufacturing same. In an example, a via structure includes a via having via sidewall surfaces defined by a semiconductor substrate. The via sidewall surfaces have a first portion and a second portion. A conductive layer is disposed in the via on the first portion of the via sidewall surfaces, and a dielectric layer is disposed on the second portion of the via sidewall surfaces. The dielectric layer is disposed between the second portion of the via sidewall surfaces and the conductive layer. In an example, the dielectric layer is an oxide layer.
    Type: Application
    Filed: November 6, 2013
    Publication date: February 27, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuan-Chih Hsieh, Li-Cheng Chu, Ming-Tung Wu, Ping-Yin Liu, Lan-Lin Chao, Chia-Shiung Tsai
  • Patent number: 8598687
    Abstract: The present disclosure provides various embodiments of a via structure and method of manufacturing same. In an example, a via structure includes a via having via sidewall surfaces defined by a semiconductor substrate. The via sidewall surfaces have a first portion and a second portion. A conductive layer is disposed in the via on the first portion of the via sidewall surfaces, and a dielectric layer is disposed on the second portion of the via sidewall surfaces. The dielectric layer is disposed between the second portion of the via sidewall surfaces and the conductive layer. In an example, the dielectric layer is an oxide layer.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: December 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuan-Chih Hsieh, Richard Chu, Ming-Tung Wu, Martin Liu, Lan-Lin Chao, Chia-Shiung Tsai
  • Publication number: 20130312621
    Abstract: The present invention is to provide a fine filter structure including two filter units, wherein the first filter unit comprises an upper frame, a coarse screen laid over top side of the upper frame, and a post having a top end formed with at least one through hole, a bottom end fixedly provided on top side of the coarse screen, and a channel in communication with each through hole and bottom side of the coarse screen; and the second filter unit comprises a lower frame and a fine screen laid over top side of the lower frame and having more mesh openings per unit area than the coarse screen. The top side of the lower frame can be connected with the bottom side of the upper frame so as not only to form a single unit but also to form a re-filtration space between the coarse screen and fine screen.
    Type: Application
    Filed: August 14, 2012
    Publication date: November 28, 2013
    Inventor: Ming-Tung LIU
  • Publication number: 20130306291
    Abstract: A strip heatsink has a base, multiple dissipating strips and a fastening loop. The strip heatsink uses a row of the dissipating strips to replace one conventional fin, and a shape of the strip part of each dissipating strip is circular. Therefore a whole surface area of the row of the dissipating strips is much bigger. Besides, because a cross section area of the mounting part is bigger than a cross section area of the strip part in a dissipating strip, the strip parts of the dissipating strips are mounted separately, and the blocking of the airflow is reduced. Therefore, air can flow more smoothly in an interval between the strip parts. To sum up, the strip heatsink enhances the heat conduction by increasing the whole surface area, and enhances the heat convection by making more space between the dissipating strips.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Inventor: Chia-Ming TUNG
  • Patent number: 8580594
    Abstract: The present disclosure provides a method including providing a first substrate; and forming a microelectromechanical system (MEMS) device on a first surface of the first substrate. A bond pad is formed on at least one bonding site on the first surface of the first substrate. The bonding site is recessed from the first surface. Thus, a top surface of the bond pad may lie below the plane of the top surface of the substrate. A device with recessed connective element(s) (e.g., bond pad) is also described. In further embodiments, a protective layer is formed on the recessed connective element during dicing of a substrate.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Ting Huang, Jung-Huei Peng, Shang-Ying Tsai, Yao-Te Huang, Ming-Tung Wu, Ping-Yin Liu, Xin-Hua Huang, Yuan-Chih Hsieh
  • Patent number: 8581339
    Abstract: A bipolar junction transistor and a manufacturing method for the same are provided. The bipolar junction transistor includes a well region, an emitter electrode, a base electrode, a collector electrode, and a conductive layer. The emitter electrode, the base electrode and the collector electrode are separated from each other by the well region. The conductive layer is on the well region between the base electrode and the collector electrode.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: November 12, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chin-Wei Chang, Ching-Lin Chan, Chin-Shien Lu, Ming-Tung Lee, Shuo-Lun Tu
  • Publication number: 20130285136
    Abstract: An apparatus of and method for making enhanced Schottky diodes having p-body regions operable to pinch a current flow path in a high-voltage n-well region and field plate structures operable to distribute an electric potential of the Schottky diode allow for a device with enhanced breakdown voltage properties. N-well regions implanted into the substrate over a p-type epitaxial layer may act as an anode of the Schottky diode and n-type well regions implanted in the high-voltage n-well regions may act as cathodes of the Schottky diode. The Schottky diode may also be used as a low-side mosfet structure device.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 31, 2013
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chin-Hsien LU, Shuo-Lun TU, Chin-Wei CHANG, Ching-Lin CHAN, Ming-Tung LEE
  • Publication number: 20130208371
    Abstract: A method of forming of biological sensing structures including a portion of a substrate is recessed to form a plurality of mesas in the substrate. Each of the plurality of mesas has a top surface and a sidewall surface. A first light reflecting layer is deposited over the top surface and the sidewall surface of each mesa. A filling material is formed over a first portion of the first light reflecting layer. A stop layer is deposited over the filling material and a second portion of the first light reflecting layer. A sacrificial layer is formed over the stop layer and is planarized exposing the stop layer. A first opening is formed in the stop layer and the first light reflecting layer. A second light reflecting layer is deposited over the first opening. A second opening is formed in the second light reflecting layer.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 15, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Hua LIN, Li-Cheng CHU, Ming-Tung WU, Yuan-Chih HSIEH, Lan-Lin CHAO, Chia-Shiung TSAI
  • Patent number: 8487645
    Abstract: A through-silicon via (TSV) testing structure is disclosed herein and includes a plurality of controllers, a plurality of transmitters and a plurality of receivers. The controllers are configured to output a first controlling signal and a second controlling signal. The transmitters are respectively connected to the output end of the through-silicon via and one of the controllers, and output a testing output signal in accordance with the first controlling signal and the second controlling signal. The receivers are respectively connected to the input end of the through-silicon via and another one of the controllers, and input a testing input signal in accordance with the first controlling signal and the second controlling signal.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: July 16, 2013
    Assignee: Global Unichip Corporation
    Inventors: Ming-Tung Chang, Min-Hsiu Tsai, Chih-Mou Tseng
  • Patent number: 8479644
    Abstract: An assembly structure of a rigid body and an elastic body is provided. The rigid body made of glass or ceramics has a chamber and an opening exposing the chamber. The elastic body made of plastics has an indentation and a through hole inside the indentation. The assembly structure further contains an interface element attached to a bottom side of the chamber and has an extension element corresponding to the opening of the chamber. The interconnection between the rigid and elastic bodies is achieved by joining the extension element with the indentation so that the rigid and elastic bodies could be easily put together and separated. The advantages of the rigid body such as robust to deformation and fine surface finish are thereby combined with the advantages of the elastic body such as easy shaping and assembly.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: July 9, 2013
    Inventor: Ming-Tung Liu
  • Patent number: 8468407
    Abstract: In a method for creating a clock domain in a layout of an integrated circuit, a test circuit of the integrated circuit includes a plurality of first scan cells and a plurality of second scan cells, the first scan cells are arranged to be on a first scan chain, and the second scan cells are arranged to be on a second scan chain. The method includes: for a first region in the layout, determining whether the first region needs a test clock domain adjustment according to densities of first scan cells and second scan cells within the first region; and when it is determined that the first region needs the test clock domain adjustment, arranging at least one first scan cell within the first region to be on the second scan chain.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: June 18, 2013
    Assignees: Global Unichip Corp., National Taiwan University, Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Tung Chang, Min-Hsiu Tsai, Chih-Mou Tseng, Jen-Yang Wen, Chien-Mo Li
  • Patent number: 8445380
    Abstract: The present disclosure provides various embodiments of a via structure and method of manufacturing same. In an example, a method for forming a via structure includes forming a via in a semiconductor substrate, wherein via sidewalls of the via are defined by the semiconductor substrate; forming a dielectric layer on the via sidewalls; removing the dielectric layer from a portion of the via sidewalls; and forming a conductive layer to fill the via, wherein the conductive layer is disposed over the dielectric layer and the portion of the via sidewalls. In an example, the dielectric layer is an oxide layer.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: May 21, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuan-Chih Hsieh, Richard Chu, Ming-Tung Wu, Martin Liu, Lan-Lin Chao, Chia-Shiung Tsai
  • Publication number: 20130056825
    Abstract: A semiconductor device and method of forming the semiconductor device are disclosed, where the semiconductor device includes additional implant regions in the source and drain areas of the device for improving Ron-sp and BVD characteristics of the device. The device includes a gate electrode formed over a channel region that separates first and second implant regions in the device substrate. The first implant region has a first conductivity type, and the second implant region has a second conductivity type. A source diffusion region is formed in the first implant region, and a drain diffusion region is formed in the second implant region.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chien-Chung Chen, Ming-Tung Lee, Shih-Chin Lien, Shyi-Yuan Wu
  • Publication number: 20130037891
    Abstract: The present disclosure provides a method including providing a first substrate; and forming a microelectromechanical system (MEMS) device on a first surface of the first substrate. A bond pad is formed on at least one bonding site on the first surface of the first substrate. The bonding site is recessed from the first surface. Thus, a top surface of the bond pad may lie below the plane of the top surface of the substrate. A device with recessed connective element(s) (e.g., bond pad) is also described. In further embodiments, a protective layer is formed on the recessed connective element during dicing of a substrate.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 14, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd., ("TSMC")
    Inventors: Hsin-Ting Huang, Jung-Huei Peng, Shang-Ying Tsai, Yao-Te Huang, Ming-Tung Wu, Ping-Yin Liu, Xin-Hua Huang, Yuan-Chih Hsieh
  • Patent number: D699998
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: February 25, 2014
    Inventor: Ming-Tung Liu