Patents by Inventor Tatsuo Shimizu

Tatsuo Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210296128
    Abstract: A semiconductor device according to an embodiment includes: a silicon carbide layer; a silicon oxide layer; and a region disposed between the silicon carbide layer and the silicon oxide layer and having a nitrogen concentration equal to or more than 1×1021 cm?3. A nitrogen concentration distribution in the silicon carbide layer, the silicon oxide layer, and the region have a peak in the region, a nitrogen concentration at a first position 1 nm away from the peak to the side of the silicon oxide layer is equal to or less than 1×1018 cm?3 and a carbon concentration at the first position is equal to or less than 1×1018 cm3, and a nitrogen concentration at a second position 1 nm away from the peak to the side of the silicon carbide layer is equal to or less than 1×1018 cm?3.
    Type: Application
    Filed: August 24, 2020
    Publication date: September 23, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tatsuo SHIMIZU, Yukio NAKABAYASHI, Johji NISHIO, Chiharu OTA, Toshihide ITO
  • Publication number: 20210288175
    Abstract: A semiconductor device of an embodiment includes: a nitride semiconductor layer including a first GaN region of n-type, a second GaN region of n-type on the first GaN region, a third GaN region of p-type on the first GaN region, a fourth GaN region of p-type sandwiching the second GaN region with the third GaN region, a fifth GaN region of p-type on the third GaN region, a sixth GaN region of p-type sandwiching the second GaN region with the fifth GaN region, a seventh GaN region of n-type on the fifth GaN region, an eighth GaN region of n-type on the sixth GaN region, a trench between the seventh GaN region and the eighth GaN region, the trench having an inclination angle of less than 90 degrees; a gate insulating layer including an aluminum nitride film in the trench; a gate electrode; a first electrode; and a second electrode.
    Type: Application
    Filed: August 26, 2020
    Publication date: September 16, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tatsuo SHIMIZU, Yukio Nakabayashi
  • Publication number: 20210288158
    Abstract: A semiconductor device of an embodiment includes: a silicon carbide layer including a first silicon carbide region of n-type containing one metal element selected from a group consisting of nickel (Ni), palladium (Pd), platinum (Pt), and chromium (Cr) and a second silicon carbide region of p-type containing the metal element; and a metal layer electrically connected to the first silicon carbide region and the second silicon carbide region. Among the metal elements contained in the first silicon carbide region, a proportion of the metal element positioned at a carbon site is higher than a proportion of the metal element positioned at an interstitial position. Among the metal elements contained in the second silicon carbide region, a proportion of the metal element positioned at an interstitial position is higher than a proportion of the metal element positioned at a carbon site.
    Type: Application
    Filed: August 13, 2020
    Publication date: September 16, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Tatsuo SHIMIZU
  • Publication number: 20210288147
    Abstract: A semiconductor device according to an embodiment includes: a silicon carbide layer; a metal layer; and a conductive layer positioned between the silicon carbide layer and the metal layer, the conductive layer containing a silicide of one metal element (M) selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt), and the conductive layer having a carbon concentration of 1×1017 cm?3 or less.
    Type: Application
    Filed: August 13, 2020
    Publication date: September 16, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Tatsuo SHIMIZU
  • Patent number: 11114531
    Abstract: A semiconductor device according to an embodiment includes a first electrode; a second electrode; a gate electrode; an n-type first silicon carbide region positioned between the first electrode and the second electrode and between the gate electrode and the second electrode; a p-type second silicon carbide region positioned between the first electrode and the first silicon carbide region; a third silicon carbide region of metal containing at least one element selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt), positioned between the first electrode and the second silicon carbide region and spaced apart from the first silicon carbide region; and a gate insulating layer positioned between the gate electrode and the second silicon carbide region.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: September 7, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Shimizu, Masayasu Miyata, Hirotaka Nishino, Yoshihiko Moriyama, Yuichiro Mitani
  • Patent number: 11101355
    Abstract: A semiconductor device according to an embodiment includes a nitride semiconductor layer, an insulating layer provided on the nitride semiconductor layer, a first region provided in the nitride semiconductor layer, and a second region which is provided between the first region in the nitride semiconductor layer and the insulating layer, has a higher electric resistivity than the first region, and includes carbon (C).
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: August 24, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tatsuo Shimizu
  • Publication number: 20210257469
    Abstract: According to one embodiment, a semiconductor device includes first, second and third conductive parts, a first semiconductor region, and a first insulating part. A direction from the first conductive part toward the second conductive part is along a first direction. The first semiconductor region includes first, second, and third partial regions. A second direction from the first partial region toward the second partial region crosses the first direction. The third partial region is between the first partial region and the second conductive part in the first direction. The third partial region includes an opposing surface facing the second conductive part. A direction from the opposing surface toward the third conductive part is along the second direction. The first insulating part includes a first insulating region. At least a portion of the first insulating region is between the opposing surface and the third conductive part.
    Type: Application
    Filed: September 9, 2020
    Publication date: August 19, 2021
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Tomoaki INOKUCHI, Hiro GANGI, Yusuke KOBAYASHI, Masahiko KURAGUCHI, Kazuto TAKAO, Ryosuke IIJIMA, Tatsuo SHIMIZU, Tatsuya NISHIWAKI
  • Patent number: 11075262
    Abstract: According to one embodiment, a semiconductor device includes a first electrode, a second electrode, a third electrode, a semiconductor member, and a first crystal member. A direction from the first electrode toward the second electrode is aligned with a first direction. A position in the first direction of the third electrode is between positions in the first direction of the first electrode and the second electrode. The semiconductor member includes at least one selected from the group consisting of silicon carbide, silicon, carbon, and germanium. The semiconductor member includes a first region, and first and second partial regions. The first region is between the first and second electrodes in the first direction. A second direction from the first region toward the third electrode crosses the first direction. The first crystal member is provided between the first and third electrodes in the second direction.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: July 27, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shigeya Kimura, Hisashi Yoshida, Tatsuo Shimizu, Ryosuke Iijima
  • Patent number: 11015264
    Abstract: A diamond substrate according to an embodiment includes a diamond layer including at least one first element selected from the group consisting of nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi), the number of threefold coordinated atoms of the at least one first element in the diamond layer being larger than the number of fourfold coordinated atoms of the at least one first element in the diamond layer, a surface of the diamond layer having an off angle of 10 degrees or less with respect to a (111) face.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: May 25, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tatsuo Shimizu
  • Patent number: 10998400
    Abstract: A semiconductor device includes a semiconductor layer having first and second planes; a first semiconductor region of a first conductivity type; second and third semiconductor regions of a second conductivity type between the first semiconductor region and the first plane; a fourth semiconductor region of a first conductivity type between the second semiconductor region and the first plane; a fifth semiconductor region of a first conductivity type between the third semiconductor region and the first plane; first and second trenches between the fourth and fifth semiconductor regions and over from the second to third semiconductor region; a sixth semiconductor region between the second and third semiconductor regions and between the first and second trenches; a seventh semiconductor region of a second conductivity type between the first trench and the first semiconductor region and contacting the second and third semiconductor regions; a first and second gate electrode in the trenches.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: May 4, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tatsuo Shimizu
  • Publication number: 20210118999
    Abstract: According to an embodiment of the invention, a semiconductor device includes a base body that includes silicon carbide, a first semiconductor member that includes silicon carbide and is of a first conductivity type, and a second semiconductor member that includes silicon carbide and is of a second conductivity type. A first direction from the base body toward the first semiconductor member is along a [0001] direction of the base body. The second semiconductor member includes a first region, a second region, and a third region. The first semiconductor member includes a fourth region. A second direction from the first region toward the second region is along a [1-100] direction of the base body. The fourth region is between the first region and the second region in the second direction. A third direction from the fourth region toward the third region is along a [11-20] direction of the base body.
    Type: Application
    Filed: September 8, 2020
    Publication date: April 22, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Johji NISHIO, Tatsuo SHIMIZU
  • Publication number: 20210118984
    Abstract: A method of manufacturing semiconductor device of an embodiment includes performing a first ion implantation implanting at least one element selected from a group consisting of beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), zinc (Zn), cadmium (Cd), silicon (Si), germanium (Ge), and tin (Sn) into a nitride semiconductor layer; performing a second ion implantation implanting nitrogen (N) into the nitride semiconductor layer; performing a third ion implantation implanting hydrogen (H) into the nitride semiconductor layer; forming a covering layer on a surface of the nitride semiconductor layer after the first ion implantation, the second ion implantation, and the third ion implantation; performing a first heat treatment after forming the covering layer; removing the covering layer after the first heat treatment; and performing a second heat treatment after removing the covering layer.
    Type: Application
    Filed: August 13, 2020
    Publication date: April 22, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Tatsuo SHIMIZU
  • Publication number: 20210111024
    Abstract: According to one embodiment, a method for manufacturing a substrate is disclosed. The method can include preparing a structure body. The structure body includes a first semiconductor member and a second semiconductor member. The first semiconductor member includes silicon carbide including a first element. The second semiconductor member includes silicon carbide including a second element. The first element includes at least one selected from a first group consisting of N, P, and As. The second element includes at least one selected from a second group consisting of B, Al, and Ga. The method can include forming a hole that extends through the second semiconductor member and reaches the first semiconductor member. In addition, the method can include forming a third semiconductor member in the hole. The third semiconductor member includes silicon carbide including a third element. The third element includes at least one selected from the first group.
    Type: Application
    Filed: September 8, 2020
    Publication date: April 15, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Johji NISHIO, Tatsuo SHIMIZU
  • Publication number: 20210083062
    Abstract: A method for manufacturing a semiconductor device according to an embodiment includes: forming a first silicon oxide film on a surface of a silicon carbide layer; and performing first heat treatment at 1200° C. or more in an atmosphere including nitrogen gas and carbon dioxide gas.
    Type: Application
    Filed: February 14, 2020
    Publication date: March 18, 2021
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Tatsuo Shimizu
  • Publication number: 20210066467
    Abstract: A semiconductor device according to an embodiment includes a gate electrode, a gate insulating layer, and a silicon carbide layer. The silicon carbide layer includes at least one first element selected from the group consisting of S, Se, Te, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. The first distance between a first position and an interface between the gate insulating layer and the silicon carbide layer is equal to or less than 20 nm, and the first position is a position where a concentration of the first element is maximized. The second distance between a second position and the interface is equal to or less than 20 nm, second position is a position where a concentration of the first element is 1/10 of a concentration of the first element at the first position, and the second position is farther from the interface than the first position.
    Type: Application
    Filed: February 13, 2020
    Publication date: March 4, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tatsuo Shimizu, Ryosuke Iijima
  • Patent number: 10930732
    Abstract: A semiconductor device of the embodiment includes: a first region provided in a silicon carbide layer; and a second region provided around the first region in the silicon carbide layer, the second region having a higher concentration of at least one kind of a lifetime killer impurity selected from the group consisting of B (boron), Ti (titanium), V (vanadium), He (helium) and H+ (proton) than a concentration of a lifetime killer impurity in the first region.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: February 23, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Johji Nishio, Mitsuhiro Kushibe, Tatsuo Shimizu
  • Patent number: 10923568
    Abstract: A semiconductor device includes a p-type SiC layer, a gate electrode, and a gate insulating layer between the SiC layer and the gate electrode. The gate insulating layer includes first and second layers and first and second regions. The second layer is between the first layer and the gate electrode and has a higher oxygen density than the first layer. The first region is across the first layer and the second layer, and includes at least one first element selected from the group consisting of N (nitrogen), P (phosphorus), As (arsenic), Sb (antimony), and Bi (bismuth) and the first region having a first concentration peak of the at least one first element. The second region is provided in the first layer, includes a second element from Ta (tantalum), Nb (niobium), and V (vanadium) and, the second region having a second concentration peak of the at least one second element.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: February 16, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Shimizu, Ryosuke Iijima
  • Patent number: 10916646
    Abstract: According to one embodiment, a semiconductor device includes first to third electrodes, first and second semiconductor regions, and a first insulating film. The first semiconductor region includes a first partial region, a second partial region, a third partial region between the first and second partial regions, a fourth partial region between the first and third partial regions, and a fifth partial region between the third and second partial regions. The second semiconductor region includes a sixth partial region and a seventh partial region. The third electrode overlaps the sixth and seventh partial regions. The first insulating film includes a portion provided between the third electrode and the third partial region, between the third electrode and the fourth partial region, between the third electrode and the fifth partial region, between the third electrode and the sixth partial region, and between the third electrode and the seventh partial region.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: February 9, 2021
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Daimotsu Kato, Toshiya Yonehara, Hiroshi Ono, Yosuke Kajiwara, Masahiko Kuraguchi, Tatsuo Shimizu
  • Patent number: 10861944
    Abstract: According to one embodiment, a semiconductor device includes a first layer, a first electrode, and a first nitride region. The first layer includes a first material and a first partial region. The first material includes at least one selected from the group consisting of silicon carbide, silicon, carbon, and germanium. The first partial region is of a first conductivity type. The first conductivity type is one of an n-type or a p-type. A direction from the first partial region toward the first electrode is aligned with a first direction. The first nitride region includes Alx1Ga1-x1N (0?x1<1), is provided between the first partial region and the first electrode, is of the first conductivity type, and includes a first protrusion protruding in the first direction.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: December 8, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shigeya Kimura, Hisashi Yoshida, Tatsuo Shimizu, Ryosuke Iijima
  • Publication number: 20200303494
    Abstract: A semiconductor device includes a semiconductor layer having first and second planes; a first semiconductor region of a first conductivity type; second and third semiconductor regions of a second conductivity type between the first semiconductor region and the first plane; a fourth semiconductor region of a first conductivity type between the second semiconductor region and the first plane; a fifth semiconductor region of a first conductivity type between the third semiconductor region and the first plane; first and second trenches between the fourth and fifth semiconductor regions and over from the second to third semiconductor region; a sixth semiconductor region between the second and third semiconductor regions and between the first and second trenches; a seventh semiconductor region of a second conductivity type between the first trench and the first semiconductor region and contacting the second and third semiconductor regions; a first and second gate electrode in the trenches.
    Type: Application
    Filed: August 29, 2019
    Publication date: September 24, 2020
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Tatsuo Shimizu