Patents by Inventor Wen Hsu

Wen Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180186624
    Abstract: A MEMS apparatus includes a substrate, a cover disposed on the substrate, a movable mass disposed on the substrate, and an impact absorber disposed on the cover. The impact absorber includes a restraint, a stationary stopper disposed on a lower surface of the cover, a movable stopper, elastic elements connecting the restraint and the movable stopper, a supporting element connecting the restraint and the stationary stopper, and a space disposed between the stationary stopper and the movable stopper. The impact absorber is adapted to prevent the movable mass from impacting the cover. In addition, the supporting element may be made of an electrical insulation material to reduce electrostatic interaction between the movable mass and the movable stopper.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chin-Fu Kuo, Chao-Ta Huang
  • Publication number: 20180188115
    Abstract: A MEMS apparatus having measuring range selector including a sensor and an IC chip is provided. The sensor includes a sensing device. The IC chip includes a voltage range selector, an analog front end, a control device and an A/D converter. The sensing device is configured to detect the physical quantity and generate a sensing voltage. The voltage range selector is configured to select a sub-voltage range having a first upper-bound and a first lower-bound. The analog front end is configured to receive the sensing voltage and output a first voltage. The A/D converter has a full scale voltage range having a second lower-bound and a second upper-bound. A ratio of the full scale voltage range to the sub-voltage range is defined as a gain factor. A difference obtained by subtracting the first lower-bound from the first voltage is defined as a shift factor. The control device is configured to adjust the first voltage to the second voltage according to the gain factor and the shift factor.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Feng-Chia Hsu, Chao-Ta Huang, Shih-Ting Lin
  • Publication number: 20180190507
    Abstract: A manufacturing method of a chip package structure is provided. Firstly, a conductive frame including a bottom plate and a plurality of partition plates is provided. The bottom plate has a supporting surface and a bottom surface opposite thereto, and the partition plates protrude from the supporting surface to define a plurality of the accommodating regions. Subsequently, a plurality of chips is provided, and each of the chips is correspondingly accommodated in each of the accommodating regions with a back surface facing to the supporting surface. Thereafter, the conductive frame is cut to form a plurality of separated chip package structures.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 5, 2018
    Inventors: CHIH-CHENG HSIEH, HSIU-WEN HSU
  • Publication number: 20180188123
    Abstract: An interaction force detection apparatus includes a sensor, a driving element, a moving element, and a connecting element. The connecting element is connected to the driving element and the sensor. The driving element is adapted to interact with the moving element, so as to generate a pair of forces. The pair of forces includes a first force and a second force, and a magnitude of the first force is equal to that of the second force. The sensor detects the first force exerted on the driving element, and the second force is exerted on the moving element to generate a movement.
    Type: Application
    Filed: February 13, 2017
    Publication date: July 5, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Chung-Yuan Su, Chih-Yuan Chen, Chao-Ta Huang, Yu-Wen Hsu
  • Patent number: 10011476
    Abstract: A MEMS apparatus includes a substrate, a cover disposed on the substrate, a movable mass disposed on the substrate, and an impact absorber disposed on the cover. The impact absorber includes a restraint, a stationary stopper disposed on a lower surface of the cover, a movable stopper, elastic elements connecting the restraint and the movable stopper, a supporting element connecting the restraint and the stationary stopper, and a space disposed between the stationary stopper and the movable stopper. The impact absorber is adapted to prevent the movable mass from impacting the cover. In addition, the supporting element may be made of an electrical insulation material to reduce electrostatic interaction between the movable mass and the movable stopper.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 3, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Wen Hsu, Chin-Fu Kuo, Chao-Ta Huang
  • Patent number: 10014369
    Abstract: A super junction semiconductor device is provided. The super-junction semiconductor device includes a substrate, a drift layer disposed on the substrate, an insulating layer, a lightly-doped region, and a main loop-shaped field plate. The drift layer includes a plurality of n- and p-type doped regions alternately arranged in parallel to form a super-junction structure, and defines a cell region and a termination region surrounding the cell region. The lightly-doped region is formed in the drift layer and connected to a surface of the drift layer. The lightly-doped region has a first end portion closer to the cell region and a second end portion farther away from the cell region. The insulating layer disposed on the drift layer covers the termination region. The main loop-shaped field plate is disposed on the insulating layer and covers the second end portion.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: July 3, 2018
    Assignee: SUPER GROUP SEMICONDUCTOR CO., LTD.
    Inventors: Sung-Nien Tang, Ho-Tai Chen, Hsiu-Wen Hsu
  • Patent number: 10004853
    Abstract: A retractable safety syringe includes a retractable needle hub holding a needle and having a first guiding means; and a hollow barrel having a second guiding means set correspondingly to the first guiding means; and a collapsible plunger comprising of a first plunger element having a protrusion releasably coupled with a second plunger element having a longitudinal slot with a pinched zone to curb the movement of said protrusion; and a spring disposed between the needle hub and hollow barrel and acts between the needle hub and the hollow barrel. The uncoupling of the collapsible plunger triggers the retraction mechanism to enable the needle hub to retract into the barrel by the decompression force of a spring. The reliability of retraction is further improved by a longitudinal slot and a protrusion to facilitate the retreating of the collapsible plunger in an orderly way.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: June 26, 2018
    Assignee: BENCHA INTERNATIONAL GROUP INC.
    Inventors: Lee Lin Lee, Wen-Hsu Chang
  • Patent number: 10008971
    Abstract: The invention provides a monitor circuit, which is used for a fan and receives a driving current and a driving voltage of the fan. The monitor circuit includes sensing circuits and a microcontroller. The sensing circuits respectively sense statuses of the fan and output sensing values. The microcontroller is used for monitoring whether the sensing values exceed preset value ranges respectively to obtain comparison results. The microcontroller outputs warning signals according to the comparison results. Each of the warning signals has a specific frequency.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: June 26, 2018
    Assignee: Delta Electronics, Inc.
    Inventors: Yueh-Lung Huang, Jung-Yuan Chen, Ching-Sen Hsieh, Yu-Cheng Lin, Nai-Wen Hsu
  • Publication number: 20180175173
    Abstract: A semiconductor device includes a substrate, a fin structure protruding from the substrate, a gate insulating layer covering a channel region formed of the fin structure, a gate electrode layer covering the gate insulating layer, and isolation layers disposed on opposite sides of the fin structure. The fin structure includes a bottom portion, a neck portion, and a top portion sequentially disposed on the substrate. A width of the neck portion is less than a width of the bottom portion and a width of a portion of the top portion.
    Type: Application
    Filed: October 5, 2017
    Publication date: June 21, 2018
    Inventors: Chia-Wei CHANG, Chiung Wen Hsu, Yu-Ting WENG
  • Publication number: 20180175714
    Abstract: The disclosure discloses an electromagnetic driving module which includes a base, two magnetic elements, a wiring assembly, a reference element, and a sensor element. The two magnetic elements are arranged along a reference line and positioned at two sides of the base. The wiring assembly is connected to the base and arranged adjacent to the two magnetic elements. The reference element is positioned on the base. The sensor element is adjacent to the reference elements and configured to detect the movement of the reference element to position the base. A lens device using the electromagnetic driving module is also disclosed.
    Type: Application
    Filed: January 31, 2018
    Publication date: June 21, 2018
    Inventors: ShangYu HSU, Nai-Wen HSU
  • Patent number: 9997672
    Abstract: An electrode structure of an LED includes an adhesion layer and a bond pad layer. The adhesion layer is stacked on the LED. The bond pad layer is stacked on the adhesion layer. The bond pad layer includes at least two first metal layers, at least two second metal layers and an outermost gold layer sequentially and alternately stacked. The first metal layers are selected from the group consisting Al and an Al alloy, and the second metal layers are selected from the group consisting of Ti, Ni, Cr, Pt, Pd, TiN, TiW, W, Rh and Cu. Thus, the main structure of the bond pad layer is a stacked structure of the first metal layers and the second metal layers. The first metal layers may be selected from a low-cost material, and the second metal layers improve issues of inadequate hardness and electromigration of the first metal layers.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: June 12, 2018
    Assignee: TEKCORE CO., LTD.
    Inventors: Hai-Wen Hsu, Jia-Hong Sun
  • Patent number: 9997660
    Abstract: A light blocking sheet includes a first outer layer, a second outer layer, an inner substrate layer and a central axis. The first outer layer includes a first opening. The second outer layer includes a second opening. The inner substrate layer is disposed between the first outer layer and the second outer layer. The inner substrate layer connects the first outer layer to the second outer layer, and the inner substrate layer includes a substrate opening. The central axis is coaxial with the first opening, the second opening and the substrate opening.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: June 12, 2018
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Chih-Wen Hsu, Chih-Wei Cheng, Ming-Ta Chou
  • Patent number: 9991303
    Abstract: An image sensor structure is provided. The image sensor device structure includes a substrate, and the substrate includes an array region and a peripheral region. The image sensor device structure includes an anti-reflection layer formed on the substrate and a buffer layer formed on the anti-reflection layer. The image sensor device structure includes a first etch stop layer formed on the buffer layer and a metal grid structure formed on the first etch stop layer. The image sensor device structure also includes a dielectric layer formed on the metal grid structure.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: June 5, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Wen Hsu, Ching-Chung Su, Cheng-Hsien Chou, Jiech-Fun Lu, Shih-Pei Chou, Yeur-Luen Tu
  • Publication number: 20180138351
    Abstract: A light blocking sheet includes a first outer layer, a second outer layer, an inner substrate layer and a central axis. The first outer layer includes a first opening. The second outer layer includes a second opening. The inner substrate layer is disposed between the first outer layer and the second outer layer. The inner substrate layer connects the first outer layer to the second outer layer, and the inner substrate layer includes a substrate opening. The central axis is coaxial with the first opening, the second opening and the substrate opening.
    Type: Application
    Filed: February 16, 2017
    Publication date: May 17, 2018
    Inventors: Chih-Wen HSU, Chih-Wei CHENG, Ming-Ta CHOU
  • Publication number: 20180122317
    Abstract: An image processing method includes detecting one or more edge regions in a plurality of input image frames; detecting movement of the edge region in the input image frames to generate a movement detecting result; and generating a plurality of output image frames by selectively smoothing at least a portion of the edge region at least according to the movement detecting result.
    Type: Application
    Filed: June 23, 2017
    Publication date: May 3, 2018
    Inventors: Kuo-Jung Lee, Mao-Jung Chung, Yuet Wing LI, Wen-Hsu Chen
  • Publication number: 20180114782
    Abstract: A manufacturing method of a package-on package structure including at least the following steps is provided. A die is bonded on a first circuit carrier. A spacer is disposed on the die. The spacer and the first circuit carrier are connected through a plurality of conductive wires. An encapsulant is formed to encapsulate the die, the spacer and the conductive wires. A thickness of the encapsulant is reduced until at least a portion of each of the conductive wires is removed to form a first package structure. A second package structure is stacked on the first package structure. The second package structure is electrically connected to the conductive wires.
    Type: Application
    Filed: September 28, 2017
    Publication date: April 26, 2018
    Applicant: Powertech Technology Inc.
    Inventors: Chi-An Wang, Hung-Hsin Hsu, Yuan-Fu Lan, Hsien-Wen Hsu
  • Patent number: 9947551
    Abstract: A chip package structure and the manufacturing method thereof are provided. Firstly, a conductive frame including a bottom plate and a plurality of partition plates is provided. The bottom plate has a supporting surface and a bottom surface opposite thereto, and the partition plates protrude from the supporting surface to define a plurality of the accommodating regions. Subsequently, a plurality of chips is provided, and each of the chips is correspondingly accommodated in each of the accommodating regions with a back surface facing to the supporting surface. Thereafter, the conductive frame is cut to form a plurality of separated chip package structures.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: April 17, 2018
    Assignees: NIKO SEMICONDUCTOR CO., LTD., SUPER GROUP SEMICONDUCTOR CO., LTD.
    Inventors: Chih-Cheng Hsieh, Hsiu-Wen Hsu
  • Publication number: 20180100987
    Abstract: The disclosure provides an optical driving mechanism, including a frame body, a holding member, a plate coil and a magnet. The holding member is movably disposed in the frame body and configured to hold an optical element. The plate coil is disposed on the holding member. The magnet is disposed on the frame body and corresponds to the plate coil. The plate coil acts with the magnet to generate an electromagnetic force to drive the holding member and the optical element to move along an optical axis of the optical element relative to the frame body.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 12, 2018
    Inventors: Fu-Yuan WU, Kuo-Chun KAO, Nai-Wen HSU, Shih-Ting HUANG, Shao-Chung CHANG, Sin-Jhong SONG
  • Publication number: 20180100983
    Abstract: A multiple lenses driving mechanism is provided, including a frame, a first lens holder, a second lens holder, a first lens driving assembly, a second lens driving assembly and a stopper. The first and second lens holders are disposed in the frame, arranged along a longitudinal axis for respectively holding a first lens and a second lens. The first lens and the second lens define a first optical axis and a second optical axis, respectively. The first and second lens driving assemblies are disposed in the frame to drive the first lens holder and the second lens holder, respectively. The stopper is disposed between the first and second lens holders and has a first restricting surface and a second restricting surface, facing the first and second lens holders, so as to restrict the first and second lens holders in a first restricted position and a second restricted position.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 12, 2018
    Inventors: Kuo-Chun KAO, Nai-Wen HSU, Shih-Ting HUANG, Shao-Chung CHANG, Fu-Yuan WU, Sin-Jhong SONG
  • Publication number: 20180100984
    Abstract: An optical system includes a base, a first lens driving module, and a second lens driving module. The first lens driving module includes a first lens holder, a first magnet, and a first coil. The first lens holder is configured to hold a first optical element. The first coil corresponding to the first magnet is configured to drive the first lens holder to move relative to the base. The second lens driving module includes a second lens holder, a second magnet, and a second coil. The second lens holder is configured to hold a second optical element. The second coil corresponding to the second magnet is configured to drive the second lens holder to move relative to the base. The first magnet is disposed between the first and second lens holders, and no other magnet is disposed between the first and second lens holders except the first magnet.
    Type: Application
    Filed: July 14, 2017
    Publication date: April 12, 2018
    Inventors: Fu-Yuan WU, Kuo-Chun KAO, Nai-Wen HSU, Shih-Ting HUANG, Shao-Chung CHANG, Sin-Jhong SONG