Flexible expandable electrode and method of intraluminal delivery of pulsed power

A surgical instrument, such as an electrical ablation device, includes an elongate member having therealong disposed a first electrode extending along an axis. A first expandable portion extends along the axis and defines a first perimeter of the first electrode and has an associated first diameter with respect to the axis. The first expandable portion includes a first framework selectively expandable to transition the first expandable portion from a contracted state to an expanded state. The first framework is selectively contractible to transition the first expandable portion from the expanded state to the contracted state. When the first framework is expanded, the first diameter is expanded and the first expandable portion is transitioned from the contracted state to the expanded state. When the first framework is contracted, the first diameter is contracted and the first expandable portion is transitioned from the expanded state to the contracted state.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History

Description

BACKGROUND

Electrical ablation therapy has been used in medicine for the treatment of undesirable tissue, such as, for example, diseased tissue, cancer, malignant and benign tumors, masses, lesions, and other abnormal tissue growths. Apparatuses, systems, and methods for conventional ablation therapies may include electrical ablation therapies, such as, for example, high temperature thermal therapies including, focused ultrasound ablation, radiofrequency (RF) ablation, and interstitial laser coagulation, chemical therapies in which chemical agents are injected into the undesirable tissue to cause ablation, surgical excision, cryotherapy, radiation, photodynamic therapy, Moh's micrographic surgery, topical treatments with 5-fluorouracil, and laser ablation.

Drawbacks of conventional electrical ablation therapies include risk of permanent damage to healthy tissue surrounding undesirable tissue due to exposure to thermal energy and/or lack of controlled energy generated by an electrical ablation device. As such, when undesirable tissue occurs or originates at or near critical structures and surgical resection presents an increased risk of morbidity associated with damage to that critical structure, conventional electrical ablation therapies may be an unsatisfactory alternative. At times, the ability to apply controlled energy to ablate cells within a target zone may be affected by one or more characteristics of the target zone and/or available application positions provided by ablative electrodes. Solutions to address the above issues are often invasive and conflict with optimal surgical outcomes. Accordingly, minimally invasive electrical ablation therapy capable of accurately targeting ablative electrodes to a target site and delivering controlled energy to ablate cells within a target zone while retaining necessary infrastructure of the surrounding tissue is desirable.

SUMMARY

In one general aspect, the various embodiments are directed to an electrical ablation device. One embodiment of the electrical ablation device includes an elongate member having therealong disposed a first electrode extending along an axis. The first electrode has a proximal end configured to couple to an energy source and a surface configured to couple to a tissue treatment region and delivery ablative energy. A first expandable portion extends along the axis and defines a first perimeter of the first electrode and has an associated first diameter with respect to the axis. The first expandable portion includes a first framework comprising at least one first framework member. The first framework is selectively expandable to transition the first expandable portion from a contracted state to an expanded state. The first framework is selectively contractible to transition the first expandable portion from the expanded state to the contracted state. When the first framework is expanded, the first diameter is expanded and the first expandable portion is transitioned from the contracted state to the expanded state. When the first framework is contracted, the first diameter is contracted and the first expandable portion is transitioned from the expanded state to the contracted state.

In another general aspect, a method of treating tissue using the electrical ablation devices described herein includes delivering the first electrode to a tissue treatment region that includes a biological lumen and expanding the first electrode. The first electrode is contacted to a wall of the lumen proximal to tissue to be treated. Tissue is treated by applying one or more sequences of electrical pulse to the first electrode to induce cell death in the tissue by irreversible electroporation.

FIGURES

The various embodiments of electrical ablation devices, systems, and methods thereof described herein may be better understood by considering the following description in conjunction with the accompanying drawings.

FIG. 1 illustrates an electrical ablation system according to certain embodiments described herein.

FIG. 2 illustrates an embodiment of the handle and elongate member illustrated in FIG. 1 with the expandable portion of the electrode deployed and in an expanded state according to certain embodiments described herein.

FIG. 3 illustrates an electrode disposed along a distal portion of an elongate member wherein the expandable portion is deployed and in an expanded state according to certain embodiments described herein.

FIG. 4 illustrates two electrodes disposed along a distal portion of an elongate member wherein the respective expandable portions are deployed and in expanded states according to certain embodiments described herein.

FIG. 5 illustrates three electrodes disposed along a distal portion of an elongate member wherein respective expandable portions are deployed and in expanded states according to certain embodiments described herein.

FIG. 6 illustrates a flexible portion of an electrode disposed along a distal portion of an elongate member according to certain embodiments described herein.

FIG. 7 illustrates a deployed expandable portion of an electrode in an expanded state according to certain embodiments described herein.

FIG. 8 illustrates a cutaway view of an expandable portion received within a channel defined within a sheath wherein the expandable portion is in a contracted state according to certain embodiments described herein.

FIG. 9 illustrates the expandable portion illustrated in FIG. 8 deployed from the distal end of the sheath and in an expanded state according to certain embodiments described herein.

FIG. 10 illustrates a deployed expandable portion in an expanded state according to certain embodiments described herein.

FIG. 11 illustrates a deployed expandable portion transitioning from a contracted state to an expanded state according to certain embodiments described herein.

FIG. 12 illustrates an expandable portion in an expanded state according to certain embodiments described herein.

FIG. 13 illustrates an expandable portion transitioning from a contracted state to an expanded state according to certain embodiments described herein.

FIG. 14 illustrates the expandable portion illustrated in FIG. 13 in an expanded state according to certain embodiments described herein.

FIG. 15 illustrates an expandable portion transitioning from a contracted state to an expanded state according to certain embodiments described herein.

FIG. 16 illustrates the expandable portion illustrated in FIG. 15 in an expanded state according to certain embodiments described herein.

FIG. 17 illustrates an expandable portion transitioning from a contracted state to an expanded state according to certain embodiments described herein.

FIG. 18 illustrates a deployed expandable portion in a contracted state according to certain embodiments described herein.

FIG. 19 illustrates the expandable portion illustrated in FIG. 18 in an expanded state according to certain embodiments described herein.

FIG. 20 illustrates an additional embodiment of the expandable portion illustrated in FIG. 18 in an expanded state according to certain embodiments described herein.

FIG. 21 illustrates an expandable portion partially deployed and in a contracted state according to certain embodiments described herein.

FIG. 22 illustrates the expandable portion illustrated in FIG. 21 in an expanded state according to certain embodiments described herein.

FIG. 23 illustrates an additional embodiment of the expandable portion illustrated in FIG. 21 and FIG. 22 in an expanded state according to certain embodiments described herein.

FIG. 24 illustrates an expandable portion in an expanded state according to certain embodiments described herein.

FIG. 25 illustrates the expandable portion illustrated in FIG. 24 in a contracted state according to certain embodiments described herein.

FIG. 26 illustrates an electrical ablation device comprising a handle and an elongate member according to certain embodiments described herein.

FIG. 27 illustrates an electrical ablation device comprising a handle and an elongate member according to certain embodiments described herein.

FIGS. 28A-B includes photographs of porcine liver tissues after receiving electrical ablation according to certain embodiments described herein.

FIG. 29 includes a photograph of porcine heart tissue after receiving electrical ablation according to certain embodiments described herein.

FIG. 30 is a graphical representation of a use of the electrical ablation system according to certain embodiments described herein.

DESCRIPTION

The present disclosure relates generally to the field of electrosurgery. In particular, the present disclosure relates to, although not exclusively, electrosurgical devices. More particularly, the present disclosure relates to, although not exclusively, electrical ablation systems, devices, and methods.

This disclosure describes various elements, features, aspects, and advantages of various embodiments of electrical ablation systems, devices, and methods thereof. It is to be understood that certain descriptions of the various embodiments have been simplified to illustrate only those elements, features and aspects that are relevant to a more clear understanding of the disclosed embodiments, while eliminating, for purposes of brevity or clarity, other elements, features and aspects. Any references to “various embodiments,” “certain embodiments,” “some embodiments,” “one embodiment,” or “an embodiment” generally means that a particular element, feature and/or aspect described in the embodiment is included in at least one embodiment. The phrases “in various embodiments,” “in certain embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment” may not refer to the same embodiment. Furthermore, the phrases “in one such embodiment” or “in certain such embodiments,” while generally referring to and elaborating upon a preceding embodiment, is not intended to suggest that the elements, features, and aspects of the embodiment introduced by the phrase are limited to the preceding embodiment; rather, the phrase is provided to assist the reader in understanding the various elements, features, and aspects disclosed herein and it is to be understood that those having ordinary skill in the art will recognize that such elements, features, and aspects presented in the introduced embodiment may be applied in combination with other various combinations and sub-combinations of the elements, features, and aspects presented in the disclosed embodiments. It is to be appreciated that persons having ordinary skill in the art, upon considering the descriptions herein, will recognize that various combinations or sub-combinations of the various embodiments and other elements, features, and aspects may be desirable in particular implementations or applications. However, because such other elements, features, and aspects may be readily ascertained by persons having ordinary skill in the art upon considering the description herein, and are not necessary for a complete understanding of the disclosed embodiments, a description of such elements, features, and aspects may not be provided. As such, it is to be understood that the description set forth herein is merely exemplary and illustrative of the disclosed embodiments and is not intended to limit the scope of the invention as defined solely by the claims.

All numerical quantities stated herein are approximate unless stated otherwise, meaning that the term “about” may be inferred when not expressly stated. The numerical quantities disclosed herein are to be understood as not being strictly limited to the exact numerical values recited. Instead, unless stated otherwise, each numerical value is intended to mean both the recited value and a functionally equivalent range surrounding that value. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding the approximations of numerical quantities stated herein, the numerical quantities described in specific examples of actual measured values are reported as precisely as possible.

All numerical ranges stated herein include all sub-ranges subsumed therein. For example, a range of “1 to 10” is intended to include all sub-ranges between and including the recited minimum value of 1 and the recited maximum value of 10. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations. Any minimum numerical limitation recited herein is intended to include all higher numerical limitations. Additionally, in some illustrative embodiments, a parameter, measurement, diversion, or range may be given. It is to be understood that any such parameter, measurement, diversion, or range is provided as an illustrative example or instance of an embodiment and is not intended to limit that or other embodiments.

As generally used herein, the terms “proximal” and “distal” generally refer to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” generally refers to the portion of the instrument closest to the clinician. The term “distal” generally refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.

As generally used herein, the term “ablation” generally refers to removal of cells either directly or indirectly by supply of energy within an electric field and may include removal by loss of cell function, cell lysis, necrosis, apoptosis, and/or irreversible electroporation. “Ablation” may similarly refer to creation of a lesion by ablation. Additionally, the terms “undesirable tissue,” “target cells,” “diseased tissue,” “diseased cells,” “tumor,” “cell mass” and the like are generally used throughout to refer to cells removed or to be removed, in whole or in part, by ablation and are not intended to limit application of the systems, devices, or methods described herein. For example, such terms include ablation of both diseased cells and certain surrounding cells, despite no definite indication that such surrounding cells are diseased. The terms similarly include ablation of cells located around a biological lumen such as a vascular, ductal, or tract area, for example, to create a margin for a surgeon to resect additional cells by ablation or other method.

According to certain embodiments, an ablation system generally comprises first and second electrodes coupled to an energy source operative to generate an electric field between the first and second electrodes when such electrodes are contacted to tissue and energized. An electrical current supplied to the electric field is conducted between the first and second electrode through the tissue. Without wishing to be bound to any particular theory, it is believed the electrical current propagates through conductive tissue at least partially via electron and/or electrolytic carriers. Electrical ablation devices may generally comprise one or more electrodes configured to be positioned at or near undesirable tissue (e.g., target cells, target site, treatment site, diseased tissue, diseased cells, tumor, cell mass) in a tissue treatment region (e.g., a target region). In general, the electrodes may comprise an electrically conductive portion (e.g., medical grade stainless steel, gold plated, etc.) and may be configured to electrically couple to an energy source. Once positioned at or near undesirable tissue, an energizing potential may be applied to the electrodes to create an electric field to which the undesirable tissue is exposed. The energizing potential (and the resulting electric field) may be characterized by various parameters, such as, for example, frequency, amplitude, pulse width (duration of a pulse or pulse length), and/or polarity. Depending on the desired application, for example, the diagnostic or therapeutic treatment to be rendered, a particular electrode may be configured either as an anode or a cathode, or a plurality of electrodes may be configured with at least one electrode configured as an anode and at least one other electrode configured as a cathode. Regardless of the initial polarity configuration, the polarity of the electrodes may be reversed by reversing the polarity of the output of the energy source. In some embodiments, an exogenous electrolyte may be applied to tissue prior to ablation to increase conductivity. In certain embodiments, application of an exogenous electrolyte may increase or decrease an effective area or density of an electric field.

In certain embodiments, a suitable energy source may comprise an electrical waveform generator. The energy source generates an electric field having a suitable characteristic waveform output in terms of frequency, amplitude, pulse width, and polarity. Electrodes may be energized with DC voltages and conduct currents at various frequencies, amplitudes, pulse widths, and polarities. The electrodes may also be energized with time-varying voltages and currents at amplitudes and frequencies suitable for rendering the desired therapy. A suitable energy source may comprise an electrical waveform generator adapted to deliver DC and/or time-varying energizing potentials characterized by frequency, amplitude, pulse width, and/or polarity to the electrodes. The electric current flows between the electrodes and through the tissue proportionally to the potential (e.g., voltage) applied to the electrodes. In various embodiments, supplied electric current is provided by the energy source and comprises a pulse sequence applied to tissue. For example, an energy source may supply various waveforms in one or more pulse sequences tailored to the desired application. Commonly owned U.S. patent application Ser. No. 13/036,908, filed Feb. 28, 2011, titled “ELECTRICAL ABLATION DEVICES AND METHODS,” and U.S. patent application Ser. No. 13/352,495, filed Jan. 18, 2012, titled “ELECTRICAL ABLATION DEVICES AND METHODS,” disclose many such waveforms, pulse sequences, and methods of application thereof for electrical ablation treatment, the contents of which are herein incorporated by reference.

In one embodiment, the energy source may be configured to produce RF waveforms at predetermined frequencies, amplitudes, pulse widths, and/or polarities suitable for thermal heating and/or electrical ablation of cells in the tissue treatment region. One example of a suitable RF energy source may be a commercially available conventional, bipolar/monopolar electrosurgical RF generator, such as Model Number ICC 350, available from Erbe, GmbH. In one embodiment, the energy source may comprise a microwave energy source configured to produce microwave waveforms at predetermined frequencies, amplitudes, pulse widths, and/or polarities suitable for thermal heating and/or electrical ablation of cells in the tissue treatment region. The microwave power source, such as MicroThermx, available from Boston Scientific Corp., may be coupled to a microwave antenna providing microwave energy in the frequency range from 915 MHz to 2.45 GHz.

In one embodiment, the energy source may be configured to produce destabilizing electrical potentials (e.g., fields) suitable to induce thermal heating and/or irreversible electroporation. The destabilizing electrical potentials may be in the form of bipolar/monopolar monophasic electric pulses suitable for inducing thermal heating and/or irreversible electroporation. A commercially available energy source suitable for generating thermal heating and/or irreversible electroporation electric field pulses in bipolar or monopolar mode is a pulsed DC generator such as Model Number ECM 830, available from BTX Molecular Delivery Systems Boston, Mass. In bipolar mode, the first electrode may be electrically coupled to a first polarity and the second electrode may be electrically coupled to a second (e.g., opposite) polarity of the energy source. Bipolar/monopolar monophasic electric pulses may be generated at a variety of frequencies, amplitudes, pulse widths, and/or polarities. Unlike RF ablation systems, which may require high power and energy levels delivered into the tissue to heat and thermally destroy the tissue, irreversible electroporation may require very little energy applied to the tissue to heat and kill the cells of the undesirable tissue using electric field potentials rather than heat. Accordingly, irreversible electroporation systems may avoid the detrimental thermal effects caused by RF ablation systems.

Various embodiments of the electrical ablation systems, devices, and methods described herein utilize electroporation or electropermeabilization techniques to apply external electric fields (electric potentials) to cell membranes to significantly increase permeability of the plasma membrane of the cell. Irreversible electroporation (IRE) is the process of killing cells by increasing the electrical potential across the cell membrane for a long period of time. IRE provides an effective method for destroying cells while avoiding some of the negative complications of heat-inducing therapies. Namely, IRE kills cells without raising the temperature of the surrounding tissue to a level at which permanent damage may occur to the support structure or regional vasculature. Large destabilizing IRE electric potentials may be in the range of about several hundred to about several thousand volts applied in the tissue to increase the local electric field. The increase in the electric field will increase the membrane potential over a distance of about several millimeters, for example, for a relatively long period of time. The destabilizing electric potential forms pores in the cell membrane when the potential across the cell membrane reaches a critical level causing the cell to die by processes known as apoptosis and/or necrosis.

Application of IRE pulses to cells may be an effective way for ablating large volumes of undesirable tissue with no or minimal detrimental thermal effects to the surrounding healthy tissue. As such, in some embodiments, IRE may be utilized in conjunction with the various electrodes and/or other electrical ablation devices disclosed herein to perform one or more minimally invasive surgical procedures or treatments. Without wishing to be bound to any particular theory, it is believed that IRE destroys cells with no or minimal heat, and thus, may not destroy the cellular support structure or regional vasculature. A destabilizing irreversible electroporation pulse, suitable to cause cell death without inducing a significant amount of thermal damage to the surrounding healthy tissue, may have amplitude in the range of several hundred to several thousand volts and may be generally applied across biological membranes over a distance of several millimeters, for example, for a relatively long duration of 1 μs to 100 ms. Thus, the undesirable tissue may be ablated in-vivo through the delivery of destabilizing electric fields by quickly causing cell necrosis.

In certain embodiments, the energy source may comprise a wireless transmitter to deliver energy to the electrodes using wireless energy transfer techniques via one or more remotely positioned antennas. Those skilled in the art will appreciate that wireless energy transfer or wireless power transmission refers to the process of transmitting electrical energy from an energy source to an electrical load without interconnecting wires. In one embodiment, the energy source may be coupled to first and second electrodes by a wired or a wireless connection. In a wired connection, the energy source may be coupled to the electrodes by way of the electrical conductors. In a wireless connection, the electrical conductors may be replaced with a first antenna coupled the energy source and a second antenna coupled to the electrodes, wherein the second antenna may be remotely located from the first antenna. In one embodiment, the energy source may comprise a wireless transmitter to deliver energy to the electrodes using wireless energy transfer techniques via one or more remotely positioned antennas. As previously discussed, wireless energy transfer or wireless power transmission is the process of transmitting electrical energy from the energy source to an electrical load, e.g., the abnormal cells in the tissue treatment region, without using the interconnecting electrical conductors. An electrical transformer is the simplest example of wireless energy transfer. The primary and secondary circuits of a transformer may not be directly connected and the transfer of energy may take place by electromagnetic coupling through a process known as mutual induction. Power also may be transferred wirelessly using RF energy.

As will be appreciated, the electrical ablation devices, systems, and methods may comprise portions that may be inserted into the tissue treatment region percutaneously (e.g., where access to inner organs or other tissue is done via needle-puncture of the skin). Other portions of the electrical ablation devices may be introduced into the tissue treatment region endoscopically (e.g., laparoscopically and/or thoracoscopically) through trocars or channels of the endoscope, through small incisions, or transcutaneously (e.g., where electric pulses are delivered to the tissue treatment region through the skin).

The systems, devices, and methods for electrical ablation therapy may be adapted for use in minimally invasive surgical procedures to access tissue treatment regions in various anatomic locations, such as, for example, the brain, lungs, breast, liver, gall bladder, pancreas, prostate gland, and various internal body or biological lumen (e.g., a natural body orifice) defined by the esophagus, stomach, intestine, colon, arteries, veins, anus, vagina, cervix, fallopian tubes, and the peritoneal cavity. Minimally invasive electrical ablation devices may be introduced to the tissue treatment region though a small opening formed in the patient's body using a trocar or through a natural body orifice such as the mouth, anus, or vagina using translumenal access techniques known as Natural Orifice Translumenal Endoscopic Surgery (NOTES)™ wherein electrical ablation devices may be initially introduced through a natural body orifice and then advanced to the tissue treatment site by puncturing the walls of internal body lumen. In various embodiments, the electrical ablation system may be adapted to treat undesirable tissue in the brain, lung, breast, liver, gall bladder, pancreas, or prostate gland, using one or more electrodes positioned percutaneously, transcutaneously, translumenally, minimally invasively, and/or through open surgical techniques, or any combination thereof.

In certain embodiments, the systems, devices, and methods may be configured for minimally invasive ablation treatment of cell masses, tumors, growths, or other undesirable tissue. Minimally invasive ablation treatment of undesirable tissue may be characterized by the ability to reduce trauma by accurately targeting undesirable tissue through one or more biological lumens (e.g., a natural body orifice, vascular, duct, or tract area) and applying an electric field to ablate undesirable tissue in a controlled and focused manner while at the same time retaining the cellular infrastructure of the surrounding healthy tissue. According to various embodiments, delivering an electrode to a biological lumen and contacting the lumen wall in a controlled manner provides increased electroablative accuracy which may reduce undesirable lesions, increase probability of desirable circumferential ablation zones, and/or retain necessary infrastructure in surrounding tissue. For example, uniformity and/or density of an electric field over particular regions of the electric field established by various electrodes and/or returns may be more precisely focused or controlled. In certain embodiments, contacting a lumen wall in a controlled manner comprises circumferentially contacting the lumen wall at two or more locations about the circumference of the wall at or near a treatment site, for example, at or along two locations about the circumference of the wall separated by 15°, 30°, 90°, or 180°, for example. Such contact may be continuous, such as contact connecting two points, or discontinuous, such as contact at a first point and at a second point without contact along at least an intervening portion of the lumen wall between the first and second points.

When a tissue treatment region is located at or near a biological lumen, such as a vascular, duct, cavity, orifice, or tract area, for example, minimally invasive electrical ablation devices comprising electrodes may be delivered to the tissue treatment region through an artificial lumen (e.g., channel of endoscope, sheath, sleeve, trocar) and/or through one or more biological lumens, as herein described. In various embodiments, an electrical ablation device (e.g., electrode or an electrode disposed along a probe comprising an elongate member) may be fed through the biological lumen within an endoscope, trocar, sheeth, sleeve, or channel, for example. An electrical ablation device may also be configured to be fed through a biological lumen “naked,” that is, without assistance from the above instruments. For example, an electrode may be configured to be flexibly fed or directed through one or more biological lumens to the treatment region. In some embodiments, electrodes may be provided along a distal portion of an elongate member comprising a probe. The elongate member may thereby be configured to deliver one or more electrodes to a tissue region. Portions of the elongate member proximal to an electrode may respond to signals from a clinician directing one or more of such positions along a length of the elongate member to move. For example, an elongate member may be responsive to signals to bend at the one or more positions along its length during delivery to a tissue region. Once electrical ablation devices (e.g., electrodes) are delivered or located at or near undesirable tissue in the treatment region, electrodes may be deployed to contact lumen tissue and apply ablative treatment. Such bending, therefore, may assist in navigation and/or placement of the electrical ablation device through or within a biological lumen during delivery, deployment, or during or after ablative treatment.

In particular embodiments, electrodes may be configured to expand circumferentially, for example, when deployed or once located at or near undesirable tissue within a tissue region. Expansion may be the result of deployment, an electrical, mechanical, chemical, or thermal signal actuating an expansion, or, in some instances, a contraction. In some embodiments, electrodes may be configured to expand in at least one dimension. For example, electrodes may be configured to expand in diameter. Electrodes may further be configured to expand in length, such as extending a length of the electrode. In some embodiments, an extension in length may be independent of an expansion in diameter. For example, electrodes may expand in length without expanding in diameter or may expand in diameter without expanding in length. In other embodiments, however, an expansion in diameter or length may be concomitant with an increase or decrease in diameter or length. In certain embodiments, electrodes may be configured to expand only in diameter or length. In various embodiments, electrodes expandable in one or more dimensions may be similarly configured to contract in one or more dimensions. Such electrodes may be said to be transitionable between an expanded state and a contracted state. In some embodiments, transitions between one or more expanded states and one or more contracted states may be in response to a signal provided by a clinician. Thus, in some embodiments, a clinician may selectively transition an electrode to a desired expanded and/or contracted state to beneficially fit an electrode to a desired application, such as a procedure and/or biological structure. In certain instances, selecting an expanded state may provide increase contact about a circumference of a lumen thereby creating a more precisely defined electric field and increasing controllability of electric field potentials, for example. In various embodiments, an electrode may comprise an antenna, such as a microwave antenna, wherein undesirable tissue positioned adjacent to or near the antenna may be more fully exposed to ablative energy when the electrode is in an expanded state compared to a contracted state. For example, a diameter, length, and/or surface area of an electrode comprising antenna may be increased in the expanded state such undesirable tissue is fully exposed to ablative energy.

An electrical ablation system 10 incorporating an electrical ablation device 12 according to one embodiment is illustrated in FIG. 1 and includes an elongate member 18 having therealong disposed a connector 19 configured to couple to an energy source 11, a handle 14, a first electrode 21 (not shown), and a distal tip 28. The handle 14 is configured to provide a clinician a point of manipulation to, for example, manipulate and/or maneuver the elongate member 18. The elongate member 18 includes a conductive structure comprising a lead wire 17 through which energy may be transmitted between the connector 19 and the first electrode 21. It is to be appreciated, however, that in some embodiments the elongate member 18 or electrode 21 may be wirelessly coupled to the energy source 11 or may be coupled to the energy source 11 by various methods known in the art. The handle 14 includes a sheath 40 extending from a distal end thereof through a protective sleeve 38. In the embodiment illustrated, the handle 14 and sheath 40 define a channel 15 through which the conductive structure extends. The sleeve 38 may comprise an insulative material, such as heat shrink, for example, and may be fixed to the handle 14. As illustrated, the sheath 40 comprises a flexible insulator such as a nonconductive material by which electric current may be insulated. As is to be appreciated, respective lengths of the elongate member 18 and/or the sheath 40 will most generally depend on the desired application; thus, the lengths illustrated herein are not intended to be drawn to scale.

In FIG. 1, the first electrode 21 (not shown) is in a withdrawn or non-deployed position and is received within the sheath 40. In various embodiments, the distal portion of the elongate member 18, including the sheath 40, may be configured as a delivery platform from which the first electrode 21 may be manipulatively delivered to a treatment region and subsequently deployed to a treatment site. Accordingly, the handle 14 may include an actuator configured to deploy the first electrode (not shown). In the illustrated embodiment, the handle 14 includes and actuator comprising a slide member 30 configured to be slidable through an aperture 32 and is coupled to a slide assembly 34 comprising a piston 35, which is translatable through a cylinder 36 defined within the handle 14. The slide assembly 34 is operatively coupled to the elongate member 18 such that movement of the slide member 30 retracts or advances the distal portion of the elongate member 18 relative to the distal end of the handle 14. In this embodiment, the sheath 40 is fixed relative to the distal end of the handle 14. However, in certain embodiments, the sheath 40 may be movable relative to the distal end of the handle 14 using an actuator, such the slide member 30, for example. The distal portion of the elongate member 18 may be deliverable to a tissue treatment region by, for example, physically advancing the elongate member 18, such as feeding the elongate member 18 into a patient within the sheath 40, artificial lumen, natural orifice, or biological lumen. In some embodiments, one of which is illustrated in FIG. 2, the elongate member 18 may be advanced to deploy and expose the first electrode 21 beyond the distal end of the handle 12, sheath 40, endoscope (not shown), or other delivery device (e.g., a channel). In certain embodiments, the elongate member 18 may also be retracted relative to the distal end of the handle 14, sheath 40, endoscope (not shown), or other delivery device. As shown in FIGS. 1 and 2, a clinician may reposition the slide member 30 to selectively extend and retract the elongate member 18 relative to the distal end of the sheath 40. For example, distally positioning the slide member 30 extends the elongate member 18 relative to the distal end of the sheath, exposing the first 21 electrode, and subsequently repositioning the slide member 30 proximally retracts the elongate member 18 relative to the distal end of the sheath, receiving the first electrode 21 within the sheath 40.

The electrical ablation system 10 illustrated in FIG. 1 further comprises a second electrode 22 coupled to the energy source 11. In this particular embodiment, the second electrode 22 comprises a return pad. In various embodiments, the second electrode 22 may be a return pad, needle, clamp, second elongate member, or second electrode disposed along the distal portion of the elongate member 18. Notably, those having ordinary skill in the art will appreciate that the optimal type of second electrode 22 will generally be dependent upon the desired application of the system 10.

In some embodiments, electrodes 21, 22 may deliver electric field pulses to the undesirable tissue. Such electric field pulses may be characterized by various parameters, such as, for example, pulse shape, amplitude, frequency, pulse width, polarity, total number of pulses and duration. In various embodiments, the electric field pulses may be sufficient to induce thermal heating in the undesirable tissue without inducing irreversible electroporation in the undesirable tissue. In certain embodiments, the electric field pulses may be sufficient to induce irreversible electroporation in the undesirable tissue. The effects induced may depend on a variety of conditions, such as, for example, tissue type, cell size, and electrical field pulse parameters. For example, the transmembrane potential of a specific tissue type may primarily depend on the amplitude of the electric field and pulse width.

In one embodiment, the input to the energy source 11 may be connected to a commercial power supply by way of a plug (not shown). The output of the energy source 11 is coupled to electrodes 21, 22, which may be energized using an activation switch (not shown) on the handle 14, or an activation switch mounted on a foot activated pedal (not shown). The energy source 11 may be configured to generate electric pulses at a predetermined frequency, amplitude, pulse width, and/or polarity that are suitable to induce thermal heating in the undesirable tissue in the treatment region or induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region. The polarity of the DC pulses may be reversed or inverted from positive-to-negative or negative-to-positive a predetermined number of times to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region.

In some embodiments, one or more series of electric pulses may be applied to induce IRE. In one embodiment, a timing circuit may be coupled to the output of the energy source 11 to generate electric pulses. The timing circuit may comprise one or more suitable switching elements to produce the electric pulses. For example, the energy source 11 may produce a series of m electric pulses (where m is any positive integer) of sufficient amplitude and duration less than the necrotic threshold to induce thermal heating in the undesirable tissue when the m electric pulses are applied and a series of n electric pulses (where n is any positive integer) of sufficient amplitude and duration to induce irreversible electroporation suitable for tissue ablation when the n electric pulses are applied. In various embodiments, the electric pulses may have a fixed or variable pulse width, amplitude, and/or frequency.

The electrical ablation device 12 may be operated either in bipolar mode, e.g., the electrodes are relatively close to one another, or monopolar mode, e.g., the electrodes are far apart and one electrode typically has a much larger surface area. For example, the electrodes 21, 22 may be employed in a bipolar electrical ablation system in which the first electrode 21 has a positive polarity relative to the other electrode 22. In monopolar mode, a grounding pad, as illustrated in FIG. 1, for example, may be substituted for one of the electrodes 21, 22. In some embodiments, the second electrode 22 comprises one of an electrode disposed along the elongate member 18, an electrode disposed along a second elongate member, a needle electrode, or a clamp. In some embodiments, the electrodes 21, 22 may be employed in a biphasic electrical ablation system in which the polarity of each electrode 21, 22 alternates. In biphasic mode, the first electrode 21 may be electrically connected to a first polarity and the second electrode 22 may be electrically connected to the opposite polarity. In monopolar mode, the first electrode 21 may be coupled to a prescribed voltage and the second electrode 22 may be set to ground. The energy source 11 may be configured to operate in either a biphasic or monophasic mode with the electrical ablation system 10. In bipolar mode, the first electrode 21 may be electrically connected to a prescribed voltage of one polarity and the second electrode 22 may be electrically connected to a prescribed voltage of the opposite polarity. When more than two electrodes are used, the polarity of the electrodes may be alternated so that any two adjacent electrodes may have either the same or opposite polarities.

Returning to FIG. 2, the first electrode 21 includes an expandable portion 20 expandable in at least one dimension. In particular, the expandable portion 20 illustrated in FIG. 2 includes an expanded diameter compared to the diameter of the expandable portion 20 when received within the sheath 40. When received within the sheath 40, the sheath 40 defines a channel having a diameter greater than that of the received expandable portion 20. However, when deployed from the sheath 40 and expanded, as illustrated in FIG. 2, the expandable portion 20 is expanded such that the diameter of the expandable portion 20 is greater than that of the channel defined within the sheath 40. Thus, when received, the expandable portion 20 is in a contracted state and when deployed and/or expanded the expandable portion 20 is in an expanded state.

In various embodiments, the elongate member 18 may be flexible along all or a portion of its length. Such flexible portions may be bendable, deformable, or elastic, for example. Flexible portions may also be conditionally flexible or conditionally rigid, for example. In some embodiments, the elongate member 18 comprises flexible portions which may be mechanically bendable such that portions of the elongate member 18 are pivotable in response to a signal or otherwise manipulatable. In some embodiments, the elongate member 18 may be proximally and/or distally advanced relative to the handle 14. A distal advance of the elongate member 18 relative to the distal end of the handle 14, for instance, may coincide with a distal advance of the elongate member 18 relative to the proximal end of the handle 14. In certain embodiments, when advancing the elongate member 18 increases a length of the elongate member 18, distal to the distal end of the handle 14, the increase in length coincides with a decrease in length of the elongate member 18 proximal to the proximal end of the handle 14. In various embodiments, a proximal advance of the elongate member 18 relative to the distal end of the handle 14 coincides with a proximal advance of the elongate member 18 relative to the proximal end of the handle 14. In certain embodiments, when advancing the elongate member 18 decreases a length of the elongate member 18 distal to the distal end of the handle 14, the decrease in length coincides with an increase in length of the elongate member 18 proximal to the proximal end of the handle 14. While the elongate member 18 illustrated in FIG. 1 is depicted as having a general cylindrical shape, it is to be appreciated that the elongate member 18 may have any suitable shape or cross-section. For example, cross-sections of the elongate member 18 or portions thereof may be generally defined by circular, triangular, rectangular, pentagonal, hexagonal, or any of the suitable bounded shape, be it a regular geometric shape or irregular, for example.

In some embodiments, one or more portions of the elongate member 18 may be coiled, nested, or otherwise contained within the handle 14 or a distal portion of the elongate member 18. In some such embodiments, a distal advance of the elongate member 18 relative to the distal end of the handle 14 does not coincide with a distal advance of the elongate member 18 relative to the proximal end of the handle 14. In one such embodiment, a proximal advance of the elongate member 18 relative to the distal end of the handle 14 does not coincide with a proximal advance of the elongate member 18 relative to the proximal end of the handle 14. In certain embodiments, when advancing the elongate member 18 increases a length of the elongate member 18 distal to the distal end of the handle 14, the length of the elongate member 18 proximal to the proximal end of the handle 14 remains the same. In one such embodiment, when advancing the elongate member 18 decreases a length of the elongate member 18 distal to the distal end of the handle 14, the length of the elongate member 18 proximal to the proximal end of the handle 14 remains the same.

In certain embodiments, the electrical ablation system 10 comprises a relatively flexible elongate member 18 and may be introduced, directed, and delivered to a tissue treatment region within the sheath 40. The sheath 40 may be a hollow bore, such as a tube, for example. In some embodiments, the sheath 40 is semi-rigid and may be used to accurately deliver the first electrode 21 to a tissue treatment region. The elongate member 18 may be translatable through the hollow bore to alternately withdraw and deploy one or more electrode(s) 21, 22 or a portions thereof. In some embodiments, the elongate member 18 comprises an extendable portion, such as an extendable length. The length may be extendable by, for example, distally extending the elongate member 18 such that the elongate member 18 distally elongates relative to the distal end of the handle 14, thus advancing or deploying the first electrode 21 or a portion thereof. Similarly, an actuator, such as slide assembly 34, may be provided to extend the elongate member 18. For example, the elongate member 18 may advance or deploy the first electrode 21 or a portion thereof by distally feeding an additional length of the elongate member 18. It is to be appreciated that extension of the elongate member 18 is not limited to feeding additional elongate member 18 distally from the handle 14. In some embodiments, a portion of the elongate member 18 may extend by moving a first portion of the elongate member 18 relative to a second portion of the elongate member 18. The first and second portions of the elongate member 18 may flank both sides of a nested portion such that a relative movement between the first and second portions of the elongate member 18 may thereby result from a telescopic extension or retraction of a length of the elongate member 18, increasing or decreasing the overall length of the elongate member 18. The first and second portions of the elongate member 18 may also flank both sides of a folded portion of the elongate member 18 such that a relative movement between the first and second portions of the elongate member 18 may thereby result from a folding or unfolding of the folded portion resulting in an accordion-like extension or retraction of a length of the elongate member 18. Relative movement between first and second portions may be accomplished by any known mechanism, such as pulleys, reciprocating extension members, slide mounts, gears, and/or tracks, for example. In some embodiments, the elongate member 18 may advance or deploy the first electrode 21 by progressive release of a bias within the elongate member 18. In the embodiment illustrated in FIG. 1, an actuator is configured to deploy the first electrode 21 from the distal end of the sheath 40. However, in other embodiments, a sheath 40 may not be provided and the clinician may deploy the first electrode 21 by advancing the first electrode 21 from the distal end of an endoscope, trocar, or other artificial lumen configured to receive the elongate member 18 and deliver the first electrode 21 to the target region. In these and other embodiments, the sheath 40 or artificial lumen may be configured to deploy or withdraw the first electrode 21 or portion thereof by advancing or retracting to expose or receive the first electrode 21 or portion thereof.

As previously described, the elongated member 18 may comprise a distally located tip 28. In certain embodiments, the tip 28 may include an insulator configured to resist conduction of electric current. It is to be appreciated that tips 28 of various dimensions may be provided to suit particular applications. For example, in some embodiments, the length of the tip 28 may be longer than the first electrode 21 while in other embodiments the length of the tip 28 may be shorter than the first electrode 21. Tips 28 of various lengths may beneficially increase stability of the first electrode 21 during ablation or assist delivery of the first electrode 21 by, for example, increasing steerability of the elongate member 18. In various embodiments, a diameter of the tip 28 may be greater than or less than a diameter of the first electrode 21 in a contracted state. In some such embodiments, the tip 28 may comprise multiple diameters. Tips 28 comprising multiple diameters may be configured to assist in delivery, placement, and/or positioning of the first electrode 21. For example, contours provided about the multiple diameters of the tip 28 may be designed to anchor or fitably position the first electrode 21 at or near a treatment site. Such contours may also include one or more surface features configured to grippably engage tissue at or near a treatment site. In various embodiments, the tip 28 comprises a distal end configured to assist in delivery, placement and/or positioning of the first electrode 21. For example, a distal end of the tip 28 may comprise a dull or blunt end, as illustrated in FIG. 1, for example. In some embodiments, the distal end of the tip 28 comprises a comparatively sharp point configured to direct the elongate member 18 along surfaces and within channels. FIG. 3 illustrates an embodiment comprising such a tip 28. In particular, FIG. 3 illustrates a first electrode 21 disposed along a distal portion of the elongate member 18. The distal end of the elongate member 18 comprises a tip 28. The tip 28 is tapered to a comparatively sharp point. It is to be appreciated the degree of taper may be more or less than depicted in FIG. 1 or 3, depending on the desired application. In some embodiments, the tip 28 may be a sharp point configured to pierce tissue and/or anchor the first electrode 21. The tip 28 may also comprise a thin catheter configured to drain fluid, for example. As will be explained in more detail below, in certain embodiments, the tip 28 may perform any number of functions such as sensory functions (e.g., optics, temperature, location, etc.) and/or electrolyte delivery. It is to be appreciated that in some embodiments an electrode 21 may comprise the tip 28 and be configured to deliver or receive electric current. For example, in some embodiments, the tip 28 may be a needle electrode.

In various embodiments, the slide assembly 34 is operatively coupled to the sheath 40 such that movement of the slide member 30 in a first direction advances the sheath 40 relative to the distal end of the handle 14 and movement of the slide member 30 in a second direction retracts the sheath relative to the distal end of the handle 14. In some embodiments, the sheath may be retractable relative to the distal end of the handle 14 to expose or deliver the first electrode 21 to a deployed position at or near a treatment site. In some embodiments, the sheath 40 may be advanceable relative to the distal end of the handle 14 to envelope or withdraw the first electrode 21 to a withdrawn position. It will be appreciated that the elongate member 18 may be advanceable by arrangements other than the slide member 30, such as a lever, trigger, actuator, or button, for example, and advancement or retraction may be effectuated manually, electrically, and/or mechanically, for example. In one embodiment, the elongate member 18 may be advanced or retracted by increasing or decreasing a length of the elongate member 18. For example, one or more electrodes 21 or other portions of the elongate member 18 may comprise an adjustable length comprised of an elastic or otherwise extendable or compressible material such that an adjustment of the length effectuates an advancement or retraction of the elongate member 18. In some embodiments, a distal advancement of the elongate member 18 deploys the first electrode 21 to target tissue and a proximal retraction of the elongate member 18 withdraws the first electrode 21 from target tissue. In some embodiments, one or more actuators may be configured to deploy the first electrode 21 to a treatment region, to withdraw the first electrode 21 from a treatment region, to extend or flex the first electrode 21, and/or to transition the expandable portion 20 between contracted and expanded states. In some embodiments, multiple transitions may be actuated by the same or different actuators. For example, an actuation signal to transition between a contracted state and an expanded state may be coupled with an actuation signal to withdraw or deploy the first electrode 21.

In various embodiments, first and second electrodes 21, 22 may be disposed along the distal portion of the elongate member 18 and may be employed to more precisely define a treatment area to, for example, ablate undesirable tissue while reducing muscle contractions in adjoining tissues. FIG. 4 illustrates an embodiment of the electrical ablation device 12 and system 10 depicted in FIG. 1 comprising a first electrode 21 and a second electrode 22 disposed along the distal portion of the elongate member 18. The first electrode 21 may be configured as the positive electrode and the second electrode 22 may be configured as the negative electrode. The first electrode 21 may be electrically coupled to the conductive structure, which may be coupled to the positive terminal of the energy source 11. The second electrode 22 may be electrically coupled to a conductive structure, such as an electrically conductive lead or wire, which may be coupled to the negative terminal of the energy source 11. The conductive structures may be electrically insulated from each other and surrounding structures, except for the electrical connections to the respective electrodes 21, 22. The first and second electrodes 21, 22 may be deployed using actuation methods similar to those described with respect to the first electrode 21. For example, the first electrode 21 may be withdrawn or advanced by repositioning of slide member (not shown) or other actuator. The second electrode 22 may similarly be withdrawn or advanced by repositioning of the same or different slide member or other actuator. In some embodiments, advancing the first electrode 21 or second electrode 22 deploys respective electrodes 21, 22 from the distal end of the sheath 40. One or both electrodes 21, 22 may be coupled to the slide member, or additional slide members may be provided to advance and/or withdraw the electrodes 21, 22 and/or to deploy the electrodes 21, 22. Additionally, it is to be appreciated that, in certain embodiments, first and second electrodes 21, 22 may be selectively deployable. Thus, a clinician may optionally use the first electrode 21 or the second electrode 22 by selectively deploying only the first electrode 21 or only the second electrode 22. In this way, the clinician may independently locate additional electrodes before or after applying power to the first electrode 21 and/or second electrode 22, thus, providing flexibility to create a variety of electric fields during a single insertion of the electrical ablation device 12. It is to be appreciated that, in some embodiments, the identities of the first electrode 21, second electrode 22, or additional electrodes may be selectively changed or switched. For example, in one embodiment, the functionality of the first electrode 21 may be disabled and the identity of the second electrode 22 switched to the previous identity of the first electrode 21.

In some embodiments, where the elongate member comprises multiple electrodes, the distance “d” between electrodes may be adjustable. Referring again to FIG. 4, the illustrated embodiment includes an adjustable distance between the first electrode 21 and second the electrode 22. Such an adjustable distance may be adjustable between 2 mm and 25 mm, for example, and may be used to flexibly confine a treatment zone. A clinician may accordingly adjust the distance “d” between electrodes 21, 22 prior to use by, for example, inserting one or more extenders or inserts between electrodes 21, 22. Multiple extenders or inserts of suitable lengths may be provided to allow a clinician to customize the distance between electrodes 21, 22 and tailor the length to a desired use. In some embodiments, the distance between to electrodes 21, 22 may be adjusted by advancing or rotating the first electrode 21 relative to the second electrode 22 by actuation of one or more slides or actuators located on the handle 14. For example, electrodes 21, 22 may be threadably or slidably disposed along the elongate member about threads or along another track. In various embodiments, the intervening length of elongate member between electrodes 21, 22 may expand thereby increasing the distance.

FIG. 5 illustrates an additional embodiment of the electrical ablation device 12 and system depicted in FIG. 1 comprising a first electrode 21 and a second electrode 22 disposed along the distal portion of the elongate member 18. The electrodes 21, 22 are illustrated in various levels of expanded states. For example, both the first electrode 21 and second electrode 22 are expanded about the axis. The second electrode 22, however, is also extended along the axis and comprises a length greater than the first electrode 21. In some embodiments, asymmetrical electrodes may be provided such that when the electrodes 21, 22 expand, the electrodes 21, 22 comprise divergent dimensions. In other embodiments, however, symmetrical electrodes (e.g., electrodes comprising the same or substantially similar dimensions) may be provided. Divergent dimensions may include, for example, different diameters and/or lengths, as illustrated in FIG. 5. Selection of optimal divergent dimensions with respect to two or more electrodes 21, 22 will, in general, be dictated by the desired application. Notably, and as will be explained in more detail below, first 21 and second electrodes 22 may diverge in one or more dimensions as the result of selective expansion, as a by-product of a method of expansion, or due to construction. For example, the length of the first electrode 21 in the contracted state may or may not be the same length of the second electrode 22 in the contracted state, however, the length of the two electrodes 21, 22 may nonetheless be the same length in respective expanded states. The embodiment illustrated in FIG. 5 further comprises a third electrode 23 disposed along the distal portion of the elongate member 18. The third electrode 23, is distal to the first electrode 21 and, in some embodiments, may be attachable to the first electrode 21 at a connection at or near the distal tip 28 of the elongate member 18 or first electrode 21. In some embodiments, the third electrode 23 is configured as a return or comprises a polarity different from that of the first 21 and/or second electrode 22. In other embodiments, however, the third electrode 23 is configured to extend the electrical identity of the first 21 or second electrode 22.

According to the various embodiments of electrical ablation systems, devices, and methods disclosed herein, electrodes 21 may comprise flexible and/or expandable portions. In some instances, such flexible and/or expandable portions may include a framework comprising one or more framework members providing, which may provide structure to the flexible and/or expandable portions. In various embodiments, a framework defines a selectively expandable perimeter and/or diameter of the expandable portion and may include one or more energy delivery surfaces configured to contact tissue and deliver ablative energy. Herein, the generalized shape and periphery surfaces of expandable and/or flexible portions may be generally referred to as a basket. It is to be appreciated that the electrodes in FIGS. 2-5 and 7 include one or more generalized depictions of baskets and, thus, are not intended to limit the disclosure with respect to appearance or construction of frameworks. Notably, as will become apparent below, flexible and/or expandable portions may comprise baskets comprising various framework constructions having various perimeters and cross-sections including helical, circular, triangular, rectangular, pentagonal, hexagonal, or any other suitable shape, be it a regular geometric shape or irregular, for example. Furthermore, while, in some embodiments, a framework may comprise, for example, a conductive sleeve having an energy delivery surface configured to apply ablative energy that may or may not be dressed about internally arranged framework members, baskets in various other embodiments need not comprise a continuous surface. For example, in certain embodiments, a basket comprises a discontinuous surface defined by a framework of two or more framework members which include tissue contract regions having energy delivery surfaces configured to contact tissue and deliver ablative energy. It is also to be appreciated that while embodiments of electrodes 21 and portions thereof may be referred to as expandable or flexible, the two are not mutually exclusive. Indeed, in certain embodiments, an electrode 21 comprises a flexible portion and an expandable portion wherein at least a portion of the expandable portion comprises at least a portion of the flexible portion. That is, at least a portion of the expandable portion and the flexible portion of the electrode 21 overlap. In some embodiments, however, the expandable portion and the flexible portion may not overlap or may only overlap when the electrode 21 is in the contracted state or the expanded state.

Framework members may be configured to flex or bend in one or more directions and may comprise flexible materials exhibiting elastic and/or reflexive properties. For example, framework members may comprise materials such as plastics, polymers, alloys, metallics, or other elastics including superelastics. Framework members may similarly comprise rigid or conditionally rigid materials configures to flex or bend about a joint or socket, for example. In some embodiments, a clinician may decrease trauma associated with directing electrodes through tortuous biological lumens by utilizing a flexible electrode 21. Flexible electrodes 21 may beneficially reach undesirable tissues in target regions that may otherwise be considered inoperable. In various embodiments, flexible electrodes 21 may also increase the contact area between tissue contact regions of the flexible electrodes 21 and undesirable tissue. As those having skill in the art will recognize, flexible electrodes 21 may be especially helpful by providing greater control over an application when, for example, undesirable tissue is partially obstructing a biological lumen.

FIG. 6 illustrates a flexible portion 16 according to certain embodiments. The flexible portion 16 is disposed along a distal portion of the elongate member 18 and includes a cylindrical framework 50 comprising a coiled framework member 52 (e.g., a spring). The framework 50 extends along a longitudinal axis defined by the flexible portion 16. The framework further comprises a proximal coupler 54 and a distal coupler 56. The proximal coupler 54 and distal coupler 56 are configured to couple the framework member 52 to the elongate member 23 and tip 28. In the embodiment illustrated, the tip 28 provides a blunt and rounded terminus and the flexible portion 16 is flexibly configured for insertion into a biological lumen such that it may flex or bend, for example, in response to curvatures of the lumen. The electrode 21 may also beneficially bend or flex during delivery to a tissue treatment region either through an artificial delivery channel such as an endoscope, trocar, or lumen, for example, or naked (i.e., exposed or not within an artificial delivery channel). In this way, the flexible portion 16 may be flexibly delivered to a target region in a minimally invasive manner.

In various embodiments, electrodes 21 may be expandable in any physical dimension, such as, for example, width or height. In some embodiments, for instance, an expansion of an electrode 21 may be described as an increase in a diameter of the electrode 21. As generally used herein, the term “diameter” generally means a straight line distance between two points located along a perimeter of an expandable portion 20 such that the straight line passes through the axis of the expandable portion 20. The perimeter of an expandable portion 20 may comprise a periphery or external surface of the expandable portion 20. For example, in some embodiments, the framework 50 defines a perimeter of the expandable portion 20 and a diameter may be the distance between two tissue contact regions on opposing sides of the framework. It is to be appreciated that diameter is not limited to a specific geometric shape or cross-section and includes helical, circular, triangular, rectangular, pentagonal, hexagonal, or any other suitable shape, be it a regular geometric shape or irregular, for example.

In addition to expandability and/or flexibility, an electrode 21 may also be extendable. That is, a length of the electrode 21 may be extendable by extending a movable portion of the electrode 21 relative to a fixed portion of the electrode 21. For example, in one embodiment of the flexible electrode 21 illustrated in FIG. 6, a clinician may extend the flexible electrode 21 by actuating a relative movement between the proximal coupler 54 and the distal coupler 56 such that the length of the flexible portion 16 increases. Such an extension may or may not reduce flexibility of the flexible portion 16. As those having skill in the art may recognize, in various embodiments of the electrodes disclosed herein, an extendable length may be utilized by a clinician increase an application area to beneficially reduce trauma that may otherwise result from multiple ablative treatments.

In various embodiments, an electrical ablation device 12 comprises one or more expandable electrodes 21. Expandable electrodes 21, such as those illustrated in FIGS. 2, 3, and 4, for example, may comprise a framework 50 comprising one or more framework members 52. It is to be appreciated that framework members 52 may have an associated first form and an associated second form. In some embodiments, the first form comprises a memory form and the second form comprises a retained form. The retained form may comprise an arrangement or orientation of framework members 52 in an other than memory form. For example, in the retained form, framework members 52 may be deformed, retarded, or otherwise strained as a result of manipulation by, for example, a retaining structure. Manipulation may include stress such as torque, compressive, and/or tension on one or more framework members 52 such that the expandable portion 20 comprises an increased or decreased diameter. In some embodiments, manipulation may result in plastic deformation. In certain embodiments, framework members 52 in the retained form may be transitioned to the memory form by release or removal of a retaining structure retaining the framework members 52 in the retained form. In certain embodiments, framework members 52 in the retained form may also be returned to the memory form by manipulation including application of torque, compression, and/or tension stress on one or more framework members 52 such that the expandable portion 20 and/or framework 50 comprises an increased or decreased diameter.

The degree to which a dimension of an expandable portion 20 may expand may be many multiples of the original value of the dimension. For example, a dimension of an expandable portion 20 in a first state may have a value of 1 and the dimension of the expandable portion 20 in a second state may have a value of 2, 3, 10, 20 or greater, such as 40. In certain embodiments, the degree of expansion is limited only by the length of the expandable portion 20 in the first state. In some embodiments, a variable expansion feature is provided. A variable expansion feature may enable the clinician to adjust the degree to which an electrode 21 expands. For example, a clinician may adjust the degree of expansion to a predetermined diameter before or during a procedure. A variable expansion feature may also be configured to adapt to a procedure or provide feedback to the clinician such that the degree of expansion may be adjusted. For example, the magnitude of an expansion force may be finite and/or nominal after a particular degree of expansion has taken place such that degree of expansion may be limited when external resistance to expansion is at or near a predetermined threshold, for example, when a wall or structure is obstructing a full expansion. Such a variable expansion feature may be further adjustable to tailor to specific applications. For example, an electrode 21 comprising a conductive balloon may be inserted into a lumen and inflated by controllable pressure to substantially conform to the shape of the lumen. Such a complementary shape may increase circumferential contact about the lumen without exerting an invasive force on tissue. Similarly, in various embodiments, framework members 52 retain at least partial flexibility when the expandable portion 20 is in the expanded state. For example, framework members 52 may be flexible inward toward the axis and/or outward of the axis. The elongate member 18 and/or expandable portion 20 may similarly be flexible away from the axis at various angles and directions. In some embodiments, an adaptable feature includes an electrode 21 wherein the length of the expandable portion 20 may be adjustable. For example, in some embodiments, an expandable portion 20 may be withdrawn or received within the sheath 40 such that only the portion of the expandable portion 20 that remains deployed is expanded when the expandable portion 20 is selectively transitioned to the expanded state.

FIG. 7 illustrates an embodiment of an expandable portion 20 disposed along an elongate member 18 according to various embodiments. The expandable portion 20 is shown deployed from a sheath 40 and is in an expanded state. A framework 50 defines a general perimeter (e.g., a basket) about an axis of the expandable portion 20 and includes a first tapered length 24a diverging about 50° from the axis, a second length 24b extending substantially parallel to the axis, and a third tapered length 24c converging about 50 degrees toward the axis. In various embodiments, the basket may be representative of a metallic balloon, metallic covering, or an embodiment similar to FIG. 9, 13, or 24, for example, wherein the degree of expansion is a function of the first and/or third tapered lengths and the degree to which the tapered lengths diverge relative to the axis. The elongate member 18 further comprises a distal tip 28 providing a terminus tapered to a sharp point. In the contracted state (not shown) the diameter of the expandable portion 20 is reduced by a factor of at least 8 such that the expandable portion 20 may be received within a channel defined within the sheath 40. When deployed from the distal end of the sheath 40, the expandable portion 20 may be expanded by any disclosed method. As can be seen, the degree of expansion may be a function of the first and/or third tapered lengths 24a,c and the degree to which the tapered lengths 24a,c respectively diverge or converge relative to the axis. For example, increasing or decreasing the degree of divergence or convergence of the first and/or third tapered lengths 24a,c respectively increases or decreases the degree of expansion while also respectively decreasing or increasing the length of the expandable portion 20. Additionally, increasing or decreasing the lengths of the first and/or third tapered lengths 24a,c respectively increases or decreases the degree of expansion. In embodiments where the first and/or third tapered lengths 24a,c may be extendable, for example, the length of the expandable portion 20 may not increase or decrease during a transition between the expanded state and the contracted state. However, in embodiments, wherein the first and/or third tapered lengths 24a,c do not extend, an expansion may decrease the length of the expandable portion 20.

According to various embodiments, electrodes 21 or expandable portions 20 thereof may be selectively transitioned between a contracted state and one or more expanded states. FIGS. 8-25 illustrate various non-limiting embodiments of expandable portions 20 of electrodes 21 comprising frameworks 50 and framework members 52 as well as various non-limiting embodiments of methods of expanding and/or contracting expandable portions 20. Before addressing these embodiments, however, a number of beneficial aspects of these and other embodiments will be introduced to assist those having skill in the art in their understanding of the various embodiments.

In some embodiments, transitioning an expandable portion 20 from a contracted state to an expanded state may be driven by an expansion force. Expansion forces may be applied to one or more framework members 52 to effectuate an expansion. Expansion forces may comprise any known force, such as torque, compression, or tension, for example. In one embodiment, for instance, changes in internal pressure drive transitions using an injectable, such as a solid, liquid, or gas, injected into or released from a cavity defined within a framework 50. Increase in interior pressure may expand the framework 50 to an equilibrium pressure in one or more regions of the framework 50 or may drive further expansion by increasing tension about the cavity of the framework 50. Similarly, contraction forces may be applied to one or more framework members 52 to drive a contraction, such as a contraction between an expanded state and a less expanded state. Contraction forces may comprise any known force, such as torque, compression, and tension, for example, to decrease a dimension. For example, in one embodiment, changes in internal pressure drive transitions using an injectable, such as a solid, liquid, or gas, injected into or released from a cavity defined within a framework 50. Decrease in interior pressure, such as a release of an injectable, may contract the framework 50 to an equilibrium pressure in one or more regions of the framework 50 by relieving tension about the cavity or may drive further contraction by releasing additional injectable, thereby allowing external pressure to compress the framework 50 and occupy the cavity.

In various embodiments, electrical ablation devices 12 may employ compression, tension, and/or rotation to transition electrodes 21 or expandable portions 20 between contracted and expanded states. In some embodiments, compression of framework members 52 may decrease a length of the expandable portion 20 while, at the same time, increase a diameter of the expandable portion 20. For example, compressed framework members 52 may strain, bow, or bend outward of the axis to relieve compressive stress. Compression may also drive a repositioning of framework members 52 within the framework 50 to effectuate a transition that increases a diameter of an expandable portion 20 without decreasing a length of the expandable portion 20. For example, one or more framework members 52 or portions thereof may be urged outward of the axis or along the elongate member 18 resulting in repositioning of those or other framework members 52 and an increase in a dimension of the expandable portion 20. In some embodiments, tension of framework members 52 may increase a length of the expandable portion 20 while, at the same time, decreasing a diameter of the expandable portion 20. For example, otherwise bowed or outward extending framework members 52 may be tensioned to strain, stretch, or straighten inward toward the axis as to relieve tension stress. Tension may also drive repositioning of framework members 52 within the framework 50 to effectuate a transition that increases a diameter of the expandable portion 20 without decreasing a length of the expandable portion 20. For example, one or more framework members 52 or portions thereof may be pulled inward toward the axis or along the elongate member 18 resulting in repositioning of those or other framework members 52 and a decrease in a dimension of the expandable portion 20. In some embodiments, a rotation of a first coupler configured to couple manipulations effectuating relative movements between framework members 52 or portions thereof relative to a second coupler may increases or decreases a distance between framework members 52 or portions thereof. For example, a decrease in the distance may compress one or more intervening portions or other framework members 52 while an increase in the distance may tension one or more intervening portions or framework members 52.

In various embodiments, framework members 52 comprise memory materials. Memory materials may include reflexive and/or elastic materials configured to return to a memory orientation or arrangement following removal of a deformative stress. For example, in some embodiments, framework members 52 are configured to be deformed by a deformative stress above or below an elastic limit and return to a memory form upon removal of the deformative stress and/or subsequent manipulation, such as a change in temperature. In certain embodiments, memory materials include shape memory materials having one-way and/or two-way memory effect. Memory materials may also include materials that may be deformable and reformable by manipulation. For example, a first counter rotation between two portions of a coil may partially unwind the coil while a second counter rotation, opposite of the first, may rewind the coil. Materials having such properties are known in the art and include polymers such as memory foams, plastics, elastomers, and rubbers as well as metallics and alloys. It is to be appreciated that such materials include superelastics and shape memory materials, such as alloys (e.g., NiTi), ceramics, and polymers including gels, foams, and solids. Notably, when framework members 52 comprise memory materials that are poor conductors, conductive materials may be used to establish an electrical path for ablative energy to be transmitted and delivered to tissues. For example, conductive coatings, wires, sleeves, and/or tissue contact regions may be used to transmit and deliver energy to tissue. In some embodiments, elastic limits of framework members 52 may be increased due to arrangement and/or orientation of framework members 52. For example, framework members 52 may comprise configurations of coils or braids comprising increased elastic limits due to, for example, distributed strains.

In various embodiments, framework members 52 a memory form that may be manipulated or otherwise deformed or retained by a retaining force and upon removal of the retaining force, the material at least partially returns to the memory form. Framework members 52 having a memory form may be arranged within the expandable portion 20 in any suitable manner such that the framework members 52 will return to the memory form following removal of a retaining force or upon manipulation. For example, a framework 50 comprising a conductive coating and including framework members 52 comprising a foam polymer may be configured to expand in at least one dimension upon removal of a retaining force and contract in the at least one dimension upon application of the retaining force. In certain embodiments, the retaining force is provided by a channel (e.g., an artificial channel defined within an endoscope, trocar, or sheath) in which the expandable portion 20 is received. Other retaining structures may also be used to apply a retaining force. For example, hooks, latches, constrictable loops, or other retaining mechanisms may be employed in certain embodiments to retain framework members 52 and/or prevent framework members 52 from transitioning to one or more memory forms.

Framework members 52 may individually or collectively have one or more memory forms and/or retained forms. For example, framework members 52 may deform in response to a retaining force and return to a memory form when the retaining force is removed. Alternately, framework members 52 may comprise a first memory form and a second memory form wherein when one or more framework members 52 are in the first memory form the expandable portion 20 is in an expanded state and wherein when one or more of the framework members 52 are in the second memory form, the expandable portion 20 is in a contracted state. In certain embodiments, the memory form may correspond to the expanded state and thus comprises an increased diameter compared to the retained form or may correspond to the contacted state and thus comprises a decreased diameter compared to the retained form. Of course, in some embodiments, a retaining force may be combined with and or coupled to a second, third, or plurality of additionally forces to effectuate an active transition between contracted and expanded states.

Framework members 52 may be configured to deform or strain to reduce a diameter of the expandable portion 20 when framework members 52 are compressed toward the axis or are otherwise retained. In this way, an electrode 21 may be directed to a tissue treatment region within an artificial channel in a contracted state and be expandable upon deployment at or near the tissue treatment site and/or in response to removal of the retaining force. In one embodiment, a first framework member 52 comprising a bias, such as a spring, foam, or other memory material, is biased outward of the axis, such as radially. When the expandable portion 20 is pushed, pulled, or rotated within a channel having a diameter less than a diameter of the expandable portion 20 in the expanded state, the channel compresses the first framework member 52 toward the axis, retaining it in a retained form. However, when the expandable portion 20 is pushed, pulled, or rotated from the channel, the first framework member 52 is no longer retained by the channel and, therefore, transitions to the memory form upon deployment and extends outward of the axis. In a further embodiment, a second framework member 52 extends proximally toward the channel when the expandable portion 20 is deployed and in the expanded state. The second framework member 52 comprises a proximal lip and a distal compression surface coupled to the outward extending portion of the first framework member 52. When the expandable portion 20 is received within the channel, the proximal lip is progressively drawn into the channel, leveraging the distal compression surface toward the axis, compressing the first framework member 52, and decreasing a diameter of the expandable portion 20.

FIG. 8 illustrates an expandable portion 20 disposed along a distal portion of an elongate member 18. The expandable portion 20 is in the contracted state and is within an artificial channel defined within a sheath 40. The channel has a diameter less than a diameter of the expandable portion 20 in the expanded state and retains the framework members 52 in a retained form. The sheath 40 is operatively connected to a handle 14 (not shown). The handle includes an actuator (not shown), which may be similar to the slide member 30 illustrated in FIG. 1, configured to deploy and withdraw the expandable portion 20 from the distal end of the sheath 40. In some embodiments, the expandable portion 20 may be deployed by advancing the expandable portion 20 distally of the sheath 40. Accordingly, advancing the expandable portion 20 may comprise proximally withdrawing the sheath 40 or distally advancing the expandable portion 20 relative to the handle 14. When the expandable portion 20 is received within the sheath 40, a retaining force is applied to the expandable portion 20 by the channel, thus, restraining the expandable portion 20 in the contracted state. However, as illustrated in FIG. 9, when the expandable portion 20 is deployed from the sheath 40, the framework members 52 are no longer retained by the channel and, therefore, transition to a memory form. In this embodiment, the memory form corresponds to the expanded state of the expandable portion 20.

Still referring to FIG. 9, the expandable portion may be transitioned to the contracted state by withdrawing the expandable portion 20 within the channel. When the expandable portion 20 in received within the channel, the channel applies a retaining force to the framework members 52, thereby retaining the framework members 52 in the retained form. An active force such as a compression, tension, and/or torque may be employed to withdraw and/or deploy the expandable portion 20. For example, the expandable portion 20 may be pushed, pulled, or rotated from or into the channel. Pushing, pulling, or rotating the expandable portion 20 may further be combined with compression applied by the channel to force framework members 52 to deform toward the axis and transition the expandable portion 20 to the contracted state, as illustrated in FIG. 8. In some embodiments, transitioning the expandable portion 20 to a contracted state comprises applying tension to one or more framework members 52. Tension may also be combined with rotation, for example. In some embodiments, a proximal tension may force framework members 52 to deform toward the axis and may be combined with a distal compression of framework members 52.

The expandable portion 20 in the expandable state illustrated in FIG. 9 includes framework members 52 including a linear portion 25b flanked by a distal tapered portion 25c and a proximal tapered portion 25a. In the memory form, the proximal tapered portion 25a diverges away from the axis at a first angle, and the distal tapered portion 25c converges toward the axis at a second angle. As can be seen, the degree of expansion is a function of the lengths and degree of divergence and convergence of the tapered portions 25a,c. For example, increasing the length of the tapered portions 25a,c increases the diameter of the expandable portion 20. Additionally, the degree of expansion increases as the degree of divergence and convergence approaches 90°. In some embodiments, such an expansion in diameter is also accompanied by a reduction in length of the expandable portion 20. While FIGS. 8 & 9 illustrate a framework 50 comprising four framework members 52 in a basket arrangement, frameworks 50 may include any number of framework members 52. For example, in some embodiments, a framework 50 comprises two framework members 52 extending along the axis. According to the desired application, the diverging and converging tapered lengths and angles they define may be increased to increase the degree of expansion or decreased to decrease the degree of expansion. In certain embodiments, a plurality of 5, 10, 20, or more framework members 52 may extend along the axis and be expandable to a predetermined diameter. In certain embodiments, framework members 52 may be formed from a sheet or tube of framework material. For example, a framework 50 comprising a sheet or tube may be cut or etched, for example with a laser, such that one or more framework members 52 or portions thereof may be extendable away from the axis when the expandable portion 20 is in the expanded state. In certain embodiments, a framework 50 comprises an alloy tube body comprising one or more longitudinal framework members 52 laser etched along the body, and when the expandable portion 20 is in the expanded state, the one or more framework members 52 extend outward of the axis.

The framework members 52 illustrated in FIGS. 8 and 9, may comprise a memory material, such as superelastics. Memory materials comprising superelastics, such as shape memory materials, may be configured to expand or contract to a memory form upon release of a retaining force or upon manipulation. Framework members 52 incorporating superelastics may therefore comprise an associated memory form and an associated retained form. The retained form may correspond to a martensitic conformation while the memory form may correspond to an austenitic conformation. For example, at austenitic temperatures, framework members 52 may be retained by a retaining structure, e.g., compressed within the channel, in a martensitic conformation and return to an austenitic conformation comprising an increased diameter when no longer retained by a retaining structure, e.g., when deployed from the distal end of the sheath 40. Similarly, at martensitic temperatures, framework members 52 may be plastically deformed to a reduced diameter in a martensitic conformation and then returned to an expanded diameter in an austenitic confirmation upon increase to the austenitic transition temperature. Similarly, framework members 52 may be received within the channel of the sheath 40 in an austenitic confirmation and then deployed from the distal end of the sheath in the austenitic confirmation. Once deployed, a retaining force comprising a relative decrease in the distance between framework members 52 or portions thereof or an internal extension extending framework members 52 or portions thereof outward of the axis may compress or tense framework members 52 into a martensitic confirmation comprising an increased diameter. Upon removal of the retaining force at austenitic temperatures, framework members 52 return to an austenitic conformation comprising a reduced diameter. Upon removal of the retaining force at martensitic temperatures, framework members 52 may return to reduced diameter by application of a deformative stress or an increase to austenitic temperatures. In some embodiments, framework members 52 have two-way memory. For example, framework members 52 may comprise at least two memory forms and be transitional between the at least two memory forms in response to manipulation. For instance, in some embodiments, framework members 52 comprise a low temperature memory form and a high temperature memory form. The framework members 52 may thereby be transitioned between the two memory forms via manipulation comprising a change in temperature above and below associated transition temperatures. Of course, as those having ordinary skill in the art may deduce from this disclosure, countless variations of one-way and two-way shape memory may be employed to achieve desired transitions of expandable portions 20 herein described and, therefore, further description of all the possible variations is unnecessarily.

In some embodiments, framework members 52 are arranged as a regular or an irregular grouping of looped coils, braids, or folds occupying a portion of the expandable portion. In various embodiments, framework members 52 may comprise a material, orientation, and/or arrangement imparting the framework members 52 with a memory form when loads are within an associated elastic limit. For example, a framework member 52 may comprise a spring (e.g., a bow, compression, torsion, or tension spring) having an associated memory form and associated elastic limit. The spring may increase or decrease in a dimension in response to an application or removal of a load. When springs are coils or helixes wound about the axis, framework members 52 may be at least partially unwound when the expandable portion 20 is in the contracted state and framework members 52 may be rewound when the expandable portion 20 is in the expanded state. Framework members 52 comprising coils or helixes may also comprise a changed diameter upon application or removal of a load when, for example, a load longitudinally strains a spring. In this way, a clinician may, for example, increase a diameter of a framework member 52 by compressing a compression spring or releasing tension applied to a tension spring. Similarly, a clinician may, for example, decrease a diameter of a framework member 52 by releasing a compressive load applied to a compression spring or apply a tension to a tension spring. Thus, framework members 52 may undergo deformative strains, such as linear or torsion, in a retained form and transition to a memory form upon removal or reversal of a load or force.

FIG. 10 illustrates an expandable portion 20 disposed along a distal portion of an elongate member 18 comprising a tip 28. The expandable portion 20 is illustrated deployed from a sheath 40 and in an expanded state. A coiled framework member 52 comprising a spring is looped about the axis and is depicted in a memory form comprising an increased diameter. It will be appreciated that the diameter of the expandable portion 20 in FIG. 10 may be configured to increase as a function of the pitch between coils. For example, as pitch decreases and the length of the spring approaches its solid height, the diameter of the spring increases. The expandable portion 20 in FIG. 10 may be transitioned to a contracted state by withdrawing the framework member 52 within a channel defined within the sheath 40 (or a separate channel) comprising a diameter less than the diameter of the expandable portion 20 in the expanded state. For example, when a proximal tension force is applied to the expandable portion 20, the expandable portion 20 is received within the channel forcing the framework member 52 to longitudinally extend, thus, reducing the diameter of the spring and transitioning the framework member 52 into a retained form. While the framework member 52 is retained within the channel, the length of the expandable portion 20 is increased and the diameter of the expandable portion 20 is decreased. When desired, a clinician may subsequently transition the expandable portion 20 from the contracted state to the expanded state (as illustrated in FIG. 9) by deploying the expandable portion 20 from the distal end of the sheath 40. Deploying the expandable portion 20 releases the retaining force and allows the framework member 52 to transition from the retained form to the memory form. In some embodiments, channels may also be fitted with spaced grooves, threads, or tracts, for example, configured to precisely deploy a length of spring or number of coils from the channel.

In various embodiments, framework members 52 may be braided to form one or more baskets along a length of the expandable portion 20. In one embodiment, framework members 52 are braided into a general cylindrical or tube-like arrangement as illustrated in FIG. 11. The expandable portion 20 is shown in the process of deploying from a distal end of a sheath 40 concomitant with a transition between a contracted state and an expanded state. The framework members 52 comprise a conductive braid having an associated retained form and memory form. The framework members 52 are configured to expand to the memory form upon removal of a retaining force, thereby transitioning the expandable portion 20 from the contracted state to the expanded state. For example, when the expandable portion 20 is in the expanded state, it may be proximally withdrawn and received within a channel comprising a lesser diameter and transitioned to the contracted state. Tension stress is applied to the braid when the expandable portion 20 is proximally withdrawn into the lesser diameter of the channel, urging the braid to increase in length while decreasing in diameter. Thereafter, the reduced diameter of the channel maintains compression on the braid and retains the tension stress within the braid. In the contracted state, the expandable portion 20 is deliverable to a tissue treatment region within the channel. Once delivered to the tissue treatment region, the expandable portion 20 may be deployed from the distal end of the sheath 40, thereby decompressing the braid and relieving the tension stress. Consequently, the braid decreases in length and expands about its diameter when the braid is transitioned from the retained form to the memory form. Thus, removal of the retaining force relieves the tension stress within the braid resulting in a reduction in the length of the braid and an increase in a diameter of the braid. As such, the expandable portion 20 may transition from the contracted state to the expanded state upon removal of the retaining force.

In additional embodiments, framework members 52 may be arranged in one or more concentric coils (e.g., loops or wrappings) of framework members 52 arranged about the axis. An outer band of the coil may thereby be rotatable relative to an inner band of the coil such that the expandable portion 20 may be transited between contracted and expanded states by relative rotations between the bands. Such framework members 52 may further comprises an associated memory form and an associated retained form such that a relative rotation between bands comprises a retain force and transitions the expandable portion 20 from the expanded state to the contracted state and a release of the retaining force transitions the expandable portion 20 from the contracted state to the expanded state. In other embodiments, however, a relative rotation between bands may transition the expandable portion 20 from the contracted state to the expanded state and a release of a retaining force may transition the expandable portion 20 from the expanded state to the contracted state. It is to be appreciated that multiple coils comprising multiple bands rotatable relative to one another such that various diameters along the length of the expandable portion 20 may be used to adjustable diameters of the expandable portion 20 to meet various applications.

In various embodiments, electrical ablation devices 12 comprise movable portions. Movable portions may comprise framework couplers and/or movable elements including rings, blocks, or collars disposed about or along the elongate member 18. Movable portions may be slidable along a tract, rotatable about threads, or movable along a distance of the elongate member 18, for example. Elongate members 18 and/or expandable portions 20 may further comprise an adjustable distance such that a movable portion does not physically transition along an elongate member 18 but rather moves as a result of a decrease or increase in the relative distance between the movable portion and another movable portion or position along the elongate member 18 or with respect to the axis. For example, an elongate member 18 may comprise an adjustable distance wherein an adjustment in the distance results in a first movable portion moving relative to a second movable portion. In certain embodiments, the distance between movable portions may be adjusted by extending or retracting a folded or nested portion of the adjustable distance, for example. Extending or retracting may be accomplished by, for example, relative rotations, release of a bias, and/or application of counter or relative forces between two portions. In one embodiment, an electric ablation device 12 comprises a movable portion such as a block, ring, coupler, or other element comprising an abutment surface. The element may be configured to be movable along an elongate member 18 and abut a framework member 52. In some embodiments, movement of the element applies a compressive stress to framework members 52 or relieves a compressive strain. In various embodiments, pulleys or gears may also be employed to move movable portions. For example, movable portions may ride along a track defined along the elongate member 18. The track may include gears configured to move a movable portion or adjust a length of the elongate member 18 between movable portions, for example, by nesting a portion of the elongate member 18.

In various embodiments, framework members 52 may be movable with respect to the elongate member 18. One or more framework members 52 or portions thereof may be configured to slide along or pivot with respect to the elongate member 18. For example, a first portion of a framework member 52 may be fixed or pivotably fixed to the elongate member 18 at a first position and a second portion of the framework member 52 may be fixed or pivotably fixed to the elongate member 18 at a second position. FIG. 12 illustrates an embodiment of an expandable portion 20 in an expanded state. The expandable portion 20 comprises a plurality of longitudinal framework members 52 disposed along a distal portion of the elongate member 18. For simplicity, only two longitudinal framework members 52 are illustrated. The longitudinal framework members 52 extend along the axis between a proximal movable portion comprising a proximal coupler 54 and at distal coupler 56 adjacent to the tip 28. The proximal coupler 54 comprises a rotatable portion rotatably movable along the elongate member 18 upon threads 60 provided about the elongate member 18. Rotation of the proximal coupler 54 in a first direction moves the proximal coupler 54 proximally and rotation of the proximal coupler 54 in a second direction moves the proximal coupler 54 distally. Proximal and distal movement of the proximal coupler 54 corresponds to a relative movement between the proximal coupler 54 and the distal coupler 56. In one embodiment, when the proximal coupler 54 moves distally, the distance between the proximal coupler 54 and the distal coupler 56 decreases and a compressive stress is applied to the longitudinal framework members 52. The compressive stress causes a deformative strain marked by bowing of the longitudinal framework members 52 outward of the axis, thus, increasing a diameter of the expandable portion 20. Alternately, when the proximal coupler 54 moves proximally, the distance between the proximal coupler 54 and the distal coupler 56 increases and the compressive stress is relieved. Relief of the compressive stress allows the longitudinal framework 52 members to relax inward and longitudinally align along the axis, thus, decreasing a diameter of the expandable portion 20. In another embodiment, a proximal movement of the proximal coupler 54 applies a tension stress to the longitudinal framework members 52 resulting in a deformative strain marked by inward positioning of longitudinal framework members 52 decreasing a diameter of the expandable portion 20. Alternately, a distal movement of the proximal coupler 54 relieves the tension stress allowing longitudinal framework members 52 to relax outward of the axis, thus, increasing the diameter of the expandable portion 20. In some embodiments, the compressive stress comprises a retaining force and the proximal coupler 54 comprises a retaining structure. Thus, in a memory form, longitudinal framework members 52 may extend inward or bow outward of the axis, and, in the retained form, longitudinal framework members 52 may be compressed to bow outward of the axis or tensioned to straighten and radially align inward toward the axis. In some embodiments, framework members 52 do not rotate corresponding to rotation of a proximal or distal coupler 56. For example, couplers may comprise abutment surfaces configured to compress a first portion of a framework member 52 against or relative to a second portion of a framework member 52. In certain embodiments, couplers may comprise a track upon which a first portion of framework member 52 may maintain axial positioning relative to a second portion of the framework member 52. Similarly, couplers may comprise a sleeve upon which a first portion of a framework member 52 is coupled. The sleeve may be rotatable about an inner portion of the coupler upon bearings such that the first portion of the framework member 52 may maintain axial positioning corresponding to movements of the inner portion of the coupler.

It is to be appreciated that the proximal and distal orientation is provided to assist in the understanding of the systems, devices, and methods disclosed herein. In certain embodiments orientations and/or arrangements may be reversed such that the goal of transitioning an expandable portion remains that same. For example, the distal coupler 56 may be rotatably movable upon threads, for instance, provided near the distal coupler 56. Such orientational variations do not deviate from this disclosure. Indeed, in one embodiment, the proximal coupler 54 and the distal coupler 56 are rotatable about threads provided about the surface of the elongate member 18. Similarly, in another embodiment, the distal coupler 56 is clickably movable along the elongate member 18. In further embodiments, a series of framework 50 arrangements and/or expandable portions 20 may be disposed along the distal portion of the elongate member 18. Such a series of framework 50 arrangements and/or expandable portions 20 may be configured for a desired application and provide customizable ablation zones within a biological lumen or treatment site.

FIG. 13 illustrates an embodiment of an expandable portion 20 comprising a four member basket. The framework members 52 are coupled at a proximal coupler 54 and a distal coupler 56. The proximal coupler 54 is movable relative to the distal coupler 56 such that a decrease in the distance between the couplers 54, 56 increases a diameter of the expandable portion 20, as shown in FIG. 14, and an increase in the distance between the couplers 54, 56 decreases the diameter of the expandable portion 20, as shown in FIG. 13. As shown in FIG. 14, in the expanded state, framework members 52 have a proximal tapered portion 26a and a distal tapered portion 26b defining an interior angle of about 80°. In some embodiments, the degree of expansion is a function of the lengths 26a,b and the angle defined therebetween. For example, increasing a length 26a,b may increase degree of expansion and decreasing the angle defined between the lengths 26a,b may increase degree of expansion. In some embodiments, a portion of the elongate member 18 may be translatable through the proximal coupler 54 and fixed relative to the distal coupler 56 such that retracting the elongate member 18 relative to the proximal coupler 54 decreases the distance between the proximal coupler 54 and the distal coupler 56 and advancing the elongate member 18 relative to the proximal coupler 54 increases the distance between the proximal coupler 54 and the distal coupler 56. Accordingly, when the elongate member 18 is withdrawn proximally, the distal coupler 56 moves proximally and framework members 52 compress and bow outward in a retained form corresponding to an expanded state of the expandable portion 20. Similarly, framework members 52 may comprise a memory form corresponding to an expanded state of the expandable portion 20 such that when the elongate member 18 is withdrawn proximally, the distal coupler 56 moves proximally and framework members 52 tense and straighten inward in a retained form corresponding to a contracted state of the expandable portion 20. Compression of the framework members 52, as illustrated in FIG. 14, may result in radial bowing of the framework members 52 outward of the axis, increasing a diameter of the expandable portion 20. Depending on the desired application, numerous configurations of a plurality of framework members 52 arranged along an axis may be configured to flex, bend, deform, or otherwise strain in response to stress. For example, framework members 52 may be configured to flex, bend, deform, or otherwise strain at two or more positions, thus forming a basket similar to that which is depicted in FIG. 9. In some embodiments, 5, 6, 8, 15, or more framework members 52 may be provided that flex, bend, deform, or otherwise strain along a plurality of positions and, for example, take on a spherical shape in the expanded state.

FIG. 15 illustrates yet another embodiment of an expandable portion 20. In this embodiment, relative movements between framework members 52 expand the expandable portion 20 similar to an umbrella. In particular, one or more framework members 52 comprising extenders 53 are provided. First ends 53a of the extenders 53 are pivotably coupled to a proximal coupler 54 positionable along a length of the elongate member 18. Second ends 53b of the extenders 53 are pivotably coupled to one or more additional framework members comprising ribs 51. Ribs 51 may comprise a flexible material (e.g., an elastic, series of jointed framework members, or a portion of a flexible covering) or, in some embodiments, a rigid material and may be fixedly coupled to the elongate member 18 at a distal coupler 56 adjacent to the distal tip 28 such that extension of extenders 53 extend portions of the ribs 51 outward of the axis. The extenders 53 are preferably sufficiently rigid to extend ribs 51 by, for example, bending, flexing, or swinging the ribs 51 outward of the axis. In the illustrated embodiment, a transition between the contracted state and an expanded state comprises a relative movement between the proximal 54 and distal 56 couplers. For example, a transition from the contracted state to an expanded state comprises decreasing the distance between the couplers 54, 56. A relative movement between couplers 54, 56 may be accomplished in any suitable manner. For example, in one embodiment a clinician may distally reposition the proximal coupler 54 by proximally pulling a nested portion of the elongate member 18 comprising the distal coupler 56 using an actuator provided on the handle (not shown). FIG. 16 illustrates an embodiment of the expandable portion 20 depicted in FIG. 15 in an expanded state. As can be seen, the extenders 53 prop and extend the ribs 51 outward of the axis in response to a relative movement between the proximal 54 and distal 56 couplers. In this embodiment, the proximal coupler 54 includes a rotatable portion rotatable upon threads 60 provided about an adjacent surface of the elongate member 18. Extenders 53 are extendable by distally rotating the proximal coupler 54 and retractable by proximally rotating the proximal coupler 54. In various embodiments, the proximal coupler 54 is repositionable by proximally or distally sliding the coupler 52 along the elongate member 18. In additional embodiments, second or third extenders may be associated with first extenders 53. For example, second extenders may comprise a first end pivotably coupled to a central portion of a first extender and a second end pivotably coupled to an additional framework member, such as a rib 51. Third extenders may be similarly configured. Second and third extenders may provide additional structure and or support to expandable portions 20 or increase expansion. In other embodiments, an extender 53 may be a wedge having an engagement surface configured to engage and prop up a rib 51. For example, as the distance between the wedge and the distal coupler 56 decreases, the wedge progressively moves along the underside of the rib 51, swinging the rib 51 outward of the axis, and expanding a diameter of the expandable portion 20.

FIG. 18 illustrates yet an additional embodiment of an expandable portion 20 comprising two pivotably coupled framework members 52a,b. The expandable portion 20 is illustrated in a slightly expanded state. The framework members 52a,b are pivotably coupled about a joint 62 (e.g., a hinge, pin, or flexible portion) at adjacent ends. Each framework member 52a,b is pivotably coupled to the elongate member 18 about additional joints 62 at respective proximal 54 and distal couplers 56. The proximal 54 and distal couplers 56 are relatively movable with respect to each other. In this embodiment, transitioning the expandable portion 20 from the contracted state to the expanded state comprises relatively moving the proximal 54 and distal couplers 56 and comprises nesting an intervening portion of the elongate member 18. For example, nesting the distal portion within the proximal portion of the elongate member 18 decreases the distance between the proximal 54 and distal couplers 56, resulting in an outward pivoting of the adjacent ends of the framework members 52a,b, increasing a diameter of the expandable portion 20, and thereby expanding the expandable portion 20. Conversely, unnesting the distal portion from the proximal portion increases the distance between the proximal 54 and distal couplers 56, resulting in an inward pivoting of the adjacent ends of the framework members 52a,b, decreasing the diameter of the expandable portion 20, and thereby contracting the expandable portion 20. For simplicity, FIG. 18 includes only two coupled framework members 52a,b; however, additional framework members may similarly be coupled to the framework members 52a,b. For example, a third framework member may be coupled between the two framework members 52a,b illustrated in FIG. 18 such that a relative movement between the proximal 54 and distal couplers 56 extends the third framework member outward of the axis relatively parallel with the axis. Also for simplicity, FIG. 18 includes only two sets of coupled framework members 52a,b; in additional embodiments, three or more sets of coupled framework members 52a,b are provided about the circumference of the elongate member 18 to further increase the diameter of the expandable portion 20 in the expanded state.

In certain embodiments, framework members 52 may comprise a coil operatively coupled to the elongate member 18 at a first position. In such an embodiment, relative counter rotation between the first position and a second position at least partially unwinds the coil and corresponds to an increase in a diameter of the expandable portion 20. For example, when the framework member 52 is a right-handed coil or helix a clockwise rotation of a proximal position relative to a distal position transitions the expandable portion 20 between the contracted state and an expanded state while a counterclockwise rotation of the proximal position relative to the distal position transitions the expandable portion 20 from an expanded state to the contracted state. Similarly, when the framework member 52 is a left-handed coil or helix a clockwise rotation of the distal position relative to the proximal position transitions the expandable portion 20 from the contracted state to an expanded state while a counterclockwise rotation of the distal position relative to the proximal position transitions the expandable portion 20 from an expanded state to a more contracted state. In a similar embodiment, the longitudinal distance between the proximal and distal positions is also adjustable. For example, the proximal position may be slidable toward the distal position, thus, reducing the distance between the two. In one embodiment, one or both positions are threadably rotatable about the elongate member 18 such that rotation of the positions increases or decreases the distance between the proximal and distal positions. In other embodiments, one or both positions are clickably or slidably positionable along the elongate member 18. It is to be appreciated that a coil may be rotatable at multiple positions such that various diameters along the length of the expandable portion 20 may be adjustable to meet various applications.

FIG. 18 illustrates an embodiment of an expandable portion 20 in the contracted state comprising a coiled framework member 52. The coil is coupled to the elongate member 18 at a distal coupler 56 adjacent to a distal tip 28 such that a transition of the expandable portion 20 from the contracted state to an expanded state comprises a counter rotation between the distal coupler 56 and a proximal position 58 of the framework member 52, as illustrated in FIG. 19. It is to be appreciated that the coil may be proximally coupled or fixed relative to the sheath 40 or otherwise proximally independent of a rotation of the distal coupler 56. FIG. 19 illustrates an embodiment of the expandable portion 20 shown in FIG. 18 in the expanded state following multiple clockwise rotations of the distal coupler 56 relative to the proximal portion 58 of the coil. According to this embodiment, counterclockwise rotation of the distal coupler 56 relative to the proximal portion 58 of the coil transitions the expandable portion 20 from an expanded state to a less contracted state. FIG. 20 illustrates a further embodiment of the expandable portion 20 depicted in FIGS. 18 and 19 and includes a method of further increasing the degree of expansion of the expandable portion 20 by decreasing its length. For example, a clinician may withdraw a portion of the elongate member 18 within the sheath 40 while maintaining the length of framework member 52 deployed from its distal end. In this way, the expandable dimension may be further customized to fit any one of a number of desired applications.

FIG. 21 illustrates an expandable portion 20 comprising a framework member 52 orientated in a tube-like braid extending along a distal portion of a elongate member 18. The expandable portion 20 is illustrated in a partially deployed position and is in a contracted state. A proximal end of the braid is coupled to a proximal coupler 54 (shown in cutaway). A distal end of the braid is coupled to a distal coupler 56 adjacent to a distal tip 28. In this embodiment, relative movement between the proximal coupler 54 and the distal coupler 56 transitions the expandable portion 20 between the contracted state and an expanded state. Notably, in some embodiments, a sheath 40 may be provided that may, in certain instances, at least partially be utilized as a proximal coupler 54. For example, as illustrated in FIG. 22, when the distal coupler 56 moves proximally with respect to the proximal coupler 54, the braid is compressed. The braid orientation of the framework member 52 also enables loosening of the braid such that the distance between individual overlaps of framework members 52 within the braid increases in response to compressive stress. Because the length of deployed braid does not decrease to the extent of the relative movement between the proximal coupler 54 and the distal coupler 56, a dimension, or in this instance, a diameter, of the expandable portion 20 increases. Alternatively, when relative movement between the proximal coupler 54 and the distal coupler 56 results in an increase in the distance between the respective couplers 54, 56, tension on the framework members 52 decompresses the braid, decreasing a diameter of the expandable portion 20 to a less expanded state. In some embodiments, a full transition from an expanded state to a contracted state comprises relative movement between the proximal coupler 54 and the distal coupler 56 increasing the distance between the two couplers such that the tension stress applied to the braid is sufficient to contract the braid to a predetermined diameter.

FIG. 23 illustrates a further embodiment of the expandable portions 20 illustrated in FIGS. 21 and 22 that includes an additional feature to customize the degree of expansion. In this embodiment, a clinician may selectively control or choose the degree to which the expandable portion 20 expands by adjusting the distance between the proximal coupler 54 and the distal coupler 54. As can be seen, a decrease in distance between the coupler 54, 56 increases a diameter of the expandable portion 20 while an increase in the distance between the couplers 54, 56 decreases the diameter. In this way, a clinician may beneficially control the diameter of the expandable portion 20. Furthermore, when a sheath 40 is provided that may be at least partially utilized as a proximal coupler 54, a clinician may compensate for a decrease in length of the deployed expandable portion 20 by deploying additional expandable portion 20 (such as framework members 52) that may also be compressed to increase the diameter of the expandable portion 20.

As previously described, one or a multiple of methods may be employed to effectuate a relative movement between a first movable portion comprising a proximal portion of framework members 50, such as a proximal coupler, and a second movable portion comprising a distal portion of framework members 52, such as a distal coupler. For example, in some embodiments, a clinician may engage an interface to signal actuation or a relative movement between the first and second portions. Actuation signals may trigger transitions effectuated by mechanical and/or electrical elements. In certain embodiments, an actuator comprises a manipulator configured to manually extend or retract portions of framework members 52 and/or portions of the elongate member 18. A signal may result in a rotation of a coupler about a threaded track, as in FIG. 12, for example, or a slide of the first movable portion relative to the second movable portion, as in, FIG. 14, for example. The elongate member 18 may additionally be fitted with longitudinal tracks or rails in which the first and/or second movable portions may transition. In some embodiments, an intervening span of elongate member 18 between the first and second movable portions may decrease in length by telescopically nesting or folding into an adjacent span, as in, for example, FIG. 17. Such a decrease in length of an intervening span of elongate member 18 may be aided by a bias configured to releasably extend or retract the intervening span. In certain embodiments, framework members 52 and/or the elongate member 18 may be fitted with gears configured to relatively move portions thereof.

FIG. 24 illustrates an expandable portion 20 in an expanded state according to various embodiments. The expandable portion 20 comprises a plurality of framework member 52 comprising a thermoresponsive shape memory material defining a basket. The framework members 52 extend along the axis and each comprise a linear portion 27b flanked by a distal tapered portion 27c and proximal tapered portion 27a. As shown, the proximal tapered portion 27a of each framework member 52 diverges away from the axis at a first angle, and the distal tapered portion 27c of each framework member 52 converges toward the axis at a second angle. As can be seen, the degree of expansion is a function of the lengths of the tapered portions 27a,c and their degree of divergence away and convergence toward the axis. For example, increasing the length of the tapered portions 27a,c increases the diameter of the expandable portion 20. Additionally, the degree of expansion increases as the degree of divergence and convergence approaches 90°. In some embodiments, such an expansion in diameter is also accompanied by a reduction in length of the expandable portion 20. When the expandable portion 20 is in the contracted state, as illustrated in FIG. 25, proximal tapered portions 27a, linear portions 27b, and distal tapered portions 27c extend relatively linearly along the axis such that the expandable portion 20 may be received by a channel defined within the sheath 40.

In the embodiment illustrated in FIGS. 24 and 25, framework members 52 exhibit two-way memory. That is, framework members 52 comprise at least two memory forms and are transitional between the at least two memory forms in response changes in temperature. At temperatures at or below a low transition temperature, framework members 52 are in a low temperature form. At temperatures at or above a high transition temperature, framework members 52 are in a high temperature form. Depending on desired application, the low temperature form may correspond to either the expanded state or the contracted state and the high temperature form may correspond to either the expanded state or contracted state. A clinician may signal a transition comprising a temperature change through an actuator located on the handle (not shown). Actuation may result in transmission of energy, such as vibrations, to the framework members 52 sufficient to increase the temperature of framework members 52 and effectuate a transition to the high temperature form. Actuation may also comprise deployment into a biological environment, in some embodiments. For example, a transition temperature may be set at or below a biological temperature such that when framework members 52 are exposed to biological temperatures, the expandable portion 20 undergoes a transition.

In some embodiments, a sheath 40 is not provided and an electrode 21 may be delivered to a target region within another delivery device. In some such embodiments, the electrode 21 may be delivered to the target region naked, that is, not within an artificial channel. In these and other embodiments, the electrode 21 may be delivered to a target region by advancing the elongate member 18 through a biological orifice or lumen. Once delivered to the target region, the electrode 21 may be expanded in response to an actuation signal. The electrical ablation device 12 illustrated in FIG. 26 is configured for use and delivery to a target region either within an artificial delivery channel or naked. The device 12 includes a handle 14 through which a conductive elongate member 18 extends. Near the proximal end of the handle 14, the elongate member 18 comprises a connector 19 for connecting the elongate member 18 to a power source (not shown). The elongate member 18 extends distally from the distal end of the handle 14 and includes an electrode 21 disposed along a distal portion of its length and a distal tip 28. The electrode 21 comprises an expandable portion 20 comprising a plurality of framework members 52 arranged in a basket similar to the embodiment depicted in FIG. 24. The handle 14 comprises an actuator 31 configured to transition the expandable portion 20 between contracted and expanded states by any suitable method.

In various embodiments, the elongate member 18 may be flexible along all or a portion of its length. Such flexible portions may be bendable, deformable, or elastic, for example. Flexible portions may also be conditionally flexible or conditionally rigid. In some embodiments, the elongate member 18 comprises flexible portions which may be mechanically bendable such that portions of the elongate member 18 are pivotable in response to a signal or otherwise manipulable. In one embodiment, the elongate member 18 comprises a maneuverable portion configured to maneuver within a biological lumen such as vascular, duct, cavity, orifice, or tract area, for example, and deliver an electrode 21, to a target site. In one embodiment, a cardiac catheter platform comprises one or more electrodes 21 disposed along the distal portion of a flexible and/or maneuverable elongate member 18 configured to deliver the one or more electrodes 21 into chamber, vessel, or a surface of the heart to endocardially ablate spots for treatment for atrial fibrillation, for example. The one or more electrodes 21 may be selectively expandable between contracted and expanded states. In some embodiments, multiple electrodes 21 are disposed along the distal portion of the elongate member 18 and spaced to deliver energy to cardiac tissue within a tightly controlled electric field. In some such embodiments, the distance between electrodes 21 along the distal portion of the elongate member 18 may be adjustable to conform to a particular procedure.

Referring to FIG. 27, a cardiac catheter platform according to various embodiments is illustrated. The platform comprises a catheter assembly comprising an electrode 21 disposed along a distal portion of an elongate member 18. The platform further comprises a handle 14 configured to maneuver the elongate member 18 and electrode 21 under imaging into the heart to endocardially ablate spots or points as a treatment for atrial fibrillation. In the illustrated embodiment, the elongate member 18 is equipped with a long insulated tip 28 located at the distal end of the elongate member 18. The tip 28 may be configured to beneficially increase the ability of a clinician to thread, steer, or navigate the elongate member 18 and electrode 21 to a tissue treatment region. In various embodiments, a cardiac catheter platform may comprise an expandable portion 20 comprising a comparatively increased length over certain other embodiments. An increased length may be advantageous in certain treatment applications by allowing a clinician to more easily connect ablative points along a desired lesion line. In some embodiments, an expandable portion 20 comprising an adjustable length, as previously described, may be provided to customize the expandable portion 20 to flexibly suit particular surgical applications. In some embodiments, the length may be conveniently adjusted at or near the tissue treatment site. Such a feature may beneficially decrease treatment time by enabling a clinician to adjust the expanded length of the electrode 21 to adaptively connect ablative points during a procedure without a need to completely remove the catheter. Referring again to FIG. 27, a system comprising the illustrated cardiac catheter may further comprise a second electrode 22 (not shown) configured to couple to an energy source (not shown). The second electrode 22 may be a return pad, needle, clamp, second probe, or second electrode disposed along the distal portion of the elongate member 18.

FIG. 28A includes a photograph of an ablation zone following ablative treatment according to various embodiments. Using intravascular approaches described herein, an electrode 21 was placed in a porcine liver duct and a second electrode 22 comprising a return was placed on the skin. As can be seen, following ablative treatment, an ablation zone 80 surrounded the vessel. No lesions or burns were observed at the tissue around the site of the return. FIG. 28B includes a photograph of an ablation zone 80 following ablative treatment according to various embodiments. Using intravascular approaches described herein an electrode 21 was placed in a porcine liver vessel and a second needle electrode 22 was placed into the liver parenchyma. As can be seen, following ablative treatment, an ablation zone 80 surrounded the vessel. FIG. 29 includes a photograph of an endocardiac ablation zone 80 following ablative treatment according to various embodiments. Using intravascular approaches described herein, an electrode 21 was contacted with porcine heart tissue. Following ablative treatment, an ablation zone 80 comprising a lesion line along cardiac tissue was observed.

In various embodiments, electrical ablation devices 12 include accessory features such as optics, applicators, and sensors. For example, transducers or sensors may be located in the handle 14, or tip 28, or other suitable location to sense, for example, the force required to expand an electrode 21. This feedback information may be useful to determine whether electrodes 21 have been properly positioned within a biological lumen at or near a tissue treatment site. Manual actuation of an expandable portion 20 may similarly provide feedback to a clinician regarding the force required to fully expand the expandable portion 20. In this way, the clinician may decide that full expansion of the expandable portion 20 is either unnecessary or may otherwise result in unnecessary trauma and adjust the degree of expansion accordingly. In certain embodiments, feedback is provided to the clinician to physically sense when an electrode 21 is placed at or near a tissue treatment site. In some embodiments, feedback information provided by the transducers or sensors may be processed and displayed by circuits located either internally or externally to the energy source 11. Sensor readings may be employed, for example, to determine whether an electrode 21 has been properly located at or near a tissue treatment site thereby assuring a suitable margin of error has been achieved in locating the electrode 21. Sensor readings may also be employed, for example, to determine whether pulse parameters need to be adjusted to achieve a desired result, such as, for example, reducing the intensity of muscular contractions in the patient.

In one embodiment, an electrical ablation device 12 includes an accessory feature comprising an electrolyte applicator. An electrolyte applicator may be configured to apply or deliver an exogenous electrolyte at or near a tissue treatment site. An electrolyte applicator may include a delivery portion and a reservoir portion. In some instances, the delivery portion may comprise the reservoir portion. The reservoir portion may be configured to contain electrolyte for delivery. The delivery portion may be configured to deliver electrolyte at or near the tissue treatment site. In some embodiments, the delivery portion comprises a channel adjacent to or within the elongate member 18 or sheath 40. In one embodiment, the delivery portion comprises the tip 28. A clinician may actuate an actuator located on the handle 14, for example, to deliver electrolyte from the delivery portion. In certain embodiments, the delivery portion may be deployable independent of the electrode 21 from a lumen or artificial channel. In some embodiments, the delivery portion, reservoir portion, or the electrolyte applicator may be separate from the electrical ablation system 10. In various embodiments, the delivery portion of an electrolyte applicator may apply an aqueous electrolyte solution to the treatment area prior to or during a treatment to increase conductivity. In other embodiments, however, no solution may be added or a separate or same accessory feature may be configured to apply suction to a treatment area to, for example, remove fluids prior to or during a treatment.

In certain embodiments, at least one of a temperature sensor and pressure sensor may be located in or proximate the electrical ablation system 10. The temperature sensor and/or pressure sensor may be located within the handle 14, protective sleeve 38, sheath 40, elongate member 18, at the distal end of the elongate member 18, such as the tip 28, or within one or more electrodes 21. In certain embodiments, the temperature sensor and/or pressure sensor may be separate from the electrical ablation system 10. The temperature sensor and pressure sensor may provide feedback to the operator, surgeon, or clinician to apply an electric field pulse to the undesirable tissue. The pressure and/or temperature information may be useful to determine whether the undesirable tissue may be treated having reduced or no detrimental thermal effects to surrounding healthy tissue. According to certain embodiments, the temperature sensor may measure the temperature of the tissue treatment region, undesirable tissue, or the area surrounding one or more electrodes before, during, and/or after treatment such as before and/or after the first and/or second sequences of electrical pulses are delivered to the tissue. According to certain embodiments, the pressure sensor may measure the pressure of the tissue treatment region, the space between the electrodes, and/or the area surrounding one or more electrodes before, during, and/or after treatment, such as before and/or after the first and/or second sequences of electrical pulses are delivered to the tissue.

The electrical ablation system 10 may be employed to ablate undesirable tissue in delicate zones or near critical structures and be deployed through a biological lumen, such as vascular, ducts, or tract areas. The electrical ablation system 10 may be configured to treat a number of lesions and osteopathologies comprising metastatic lesions, tumors, fractures, infected sites, and inflamed sites in a tissue treatment region using electrical energy. The electrical ablation devices 12 may be configured to be positioned within a patient's natural body orifice, e.g., the mouth, anus, and vagina, and/or advanced through internal body lumen or cavities, e.g., the esophagus, stomach, intestines, colon, cervix, and urethra, to reach the tissue treatment region. For example, an elongate member 18 may be configured to be positioned and passed through a small incision or keyhole formed through the patient's skin or abdominal wall using a trocar to reach the tissue treatment region. The tissue treatment region may be located in the patient's brain, lung, breast, liver, gall bladder, pancreas, prostate gland, various internal body lumen defined by the esophagus, stomach, intestine, colon, arteries, veins, anus, vagina, cervix, fallopian tubes, and the peritoneal cavity. The electrical ablation system 10 may be used in conjunction with endoscopic, laparoscopic, thoracoscopic, open surgical procedures via small incisions or keyholes, percutaneous techniques, transcutaneous techniques, and/or external non-invasive techniques, and any combinations thereof.

In one embodiment, the electrical ablation device 12 may be employed in conjunction with an artificial channel (e.g., a flexible endoscope, as well as a rigid endoscope, laparoscope, or thoracoscope, such as the GIF-100 model available from Olympus Corporation). In one embodiment, the endoscope may be introduced to the tissue treatment region trans-anally through the colon, trans-orally through the esophagus and stomach, trans-vaginally through the cervix, transcutaneously, or via an external incision or keyhole formed in the abdomen in conjunction with a trocar. The electrode 21 may thereby be delivered to a tissue treatment region via insertion and guided into or proximate the tissue treatment region using the endoscope. Such delivery may also be accomplished using other various artificial channels. The endoscope or other artificial channel may define one or more channels for receiving additional devices such as a light source and a viewing port. Images within the field of view of the viewing port may be received by an optical device, such as, for example, a camera comprising a charge coupled device (CCD) usually located within the endoscope, and transmitted to a display monitor (not shown) outside the patient. In other embodiments, the endoscope is not utilized, and the electrical ablation device 12 comprises a light source and/or a viewing port, for example. Still additional embodiments employ other techniques to determine proper instrument placement, such as, for example, ultrasound or a computerized tomography (CT) scan.

According to one embodiment, methods of electrically ablating tissue include delivering a first electrode 21 to a tissue treatment region. The first electrode 21 may be configured to couple to the energy source and to a tissue treatment region located within or near a lumen. In one embodiment the first electrode 21 is delivered or directed into a lumen at or near a tissue treatment region through a hollow bore, such as an artificial channel. The first electrode 21 may then be deployed at or near a tissue treatment site. Once deployed, an expandable portion 20 of the first electrode 21 may be expanded in at least one dimension (e.g., diameter or length) and then contacted with the lumen wall. A second electrode 22 may be coupled to the first electrode 21 and the patient such that the second electrode 22 is in conductive communication with the first electrode 21 through the patient and represents a difference in electric potential with respect to the first electrode 21. For example, in some embodiments, the second electrode 22 may be a ground or return pad, a needle electrode, or medical clamp in contact or conductive communication with the patient. In various embodiments, the second electrode 22 may be a separately placed electrode, such as a conductive material, return pad, needle, or clamp, for example, may be located at a near by or adjacent tissue, surface, or lumen. Once delivered to a tissue treatment region, the first electrode 21 may be actuated (e.g., deployed, expanded, and energized) to ablate the undesirable tissue.

In some embodiments, expanding an expandable portion 20 of a first electrode 21 comprises transitioning the expandable portion 20 from a contracted state to an expanded state. Transitioning an electrode 21 from a contracted state to an expanded state may comprise increasing at least one dimension of the electrode 21. In certain embodiments, when the expandable portion 20 transitions from the contracted state to the expanded state, a diameter of the expandable portion 20 proportionally decreases in length. In other embodiments, however, the diameter of the expandable portion 20 does not expand proportionally to a decrease in length.

In some embodiments, the first electrode 21 may be alternately or selectively transitionable between a contracted state and an expanded state. In certain embodiments, a transition from a contracted state to an expanded state comprises a relative movement between two portions of a framework or framework members 52. The relative movement may be rotational or longitudinal. For example, a decrease in the distance between two portions of a framework 50 or framework members 52 may transition an expandable portion 20 from a contracted state to an expanded state. Relative movement may result in one or more framework members 52 extending outward of the axis. Outward extension may be the result of bowing of one or more framework members 52. Framework members 52 extending outward of the axis may similarly prop-up, extend, or otherwise reposition other framework members 52 outward of the axis. Various memory materials and orientations of framework members 52 may be employed to assist in transitioning an expandable portion 20 between contracted and expanded states. For example, framework members 52 may be arranged as springs, coils, braids, multi-member baskets, umbrellas, and injectable cavities and may comprise rigid, jointed, or memory materials, including shape set memory superelastics. For example, framework members 52 may comprise metallics, alloys, rubbers, plastics, polymers, and various conductive materials.

In various embodiments, expanding an electrode comprises expanding a diameter or radius or of the expandable portion many times that of the electrode in a contracted state. Depending on the desired application, electrodes may expand 2, 5, 10, 20, 40 or more times in diameter or radius to expand to a diameter conforming to a diameter of a tissue treatment region comprising a biological lumen, such as, for example, a larynx. In various embodiments, the diameter of the first electrode may by different from the diameter of the second electrode. Similarly, in some embodiments, the first electrode may have a different length than the second electrode. Again, depending on the desired application, such variations are contemplated and are considered within this disclosure. As is to be appreciated, when multiple electrodes are disposed along the distal portion of an elongate member, various spacing between the electrodes may also be desirable. In some such embodiments, the distance from the first electrode to the second electrode may be adjusted from 0.5 cm to 3 cm, such as, for example, 1 cm, 1.5 cm, 2.0 cm, and 3 cm. However, in other applications it may be desirable to greatly increase the distance between first and second electrodes to, for example, customize the size of the electric field to a particular application.

Electrodes 21 may be introduced, delivered, deployed, or expanded according to any of the above methods and then contacted with a lumen wall. Contact with a lumen wall is preferably at least partially circumferential. Electrical current may then be applied in various pulse power outputs, such as monophasic square waves, biphasic square waves, RF modulated high voltage, or nanosecond duration pulses, for example. The applied current and waveform can be customized for the desired application and clinical goal to provide various tissue effects such as cell lysis, apoptosis, or irreversible electroporation.

FIG. 30 is a representative use of an electrical ablation system and device according to various embodiments. An elongate member 18 delivers the expandable portion 20 to a tissue region comprising a lumen 82 (e.g., a hepatic vein) employing methods herein disclosed. An alternate delivery placement of the elongate member 18′ is additionally indicated by the dashed outline. The expandable portion 20 is then deployed from the distal end of the sheath 40 to the target site (e.g., a tumor surrounding the hepatic vein). Once deployed, the expandable portion 20 is expanded, e.g., transitioned from a contracted state to an expanded state. In FIG. 30, saline is introduced into the lumen to increase electrical conductivity prior to treatment (not shown). The expandable portion 20 is then contacted with a wall of the lumen and ablative treatment is applied. FIG. 30 illustrates an ablation zone 80 of ablated cells following such treatment. As can be seen in this depiction, in some embodiments, the dimensions of the expandable portion 20 in the lumen may determine the size of the zone.

Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors such as tips, electrodes, and elongate members may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.

Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims

1. An electrical ablation device, comprising:

an elongate member;
a first electrode disposed along the elongate member and extending along an axis, the first electrode having a proximal end configured to couple to an energy source and a surface configured to couple to a tissue treatment region and apply ablative energy; and
a first expandable portion having a proximal end and a distal end and extending along the axis, the first expandable portion defining a first perimeter of the first electrode and having an associated first diameter with respect to the axis, wherein the first expandable portion comprises a first framework comprising a framework member, wherein the framework member comprises a helix extending along the first expandable portion, wherein a distal end of the framework member is configured to deliver electric current,
wherein the first framework is selectively expandable to transition the first expandable portion from a contracted state to an expanded state, and the first framework is selectively contractible to transition the first expandable portion from the expanded state to the contracted state,
wherein, when the first framework is expanded, the first diameter is expanded and the first expandable portion is transitioned from the contracted state to the expanded state,
wherein, when the first framework is contracted, the first diameter is contracted and the first expandable portion is transitioned from the expanded state to the contracted state,
wherein a relative rotation between a proximal portion and a distal portion of the framework member transitions the first expandable portion between the contracted state and the expanded state, and
wherein the relative rotation between the proximal portion and the distal portion of the framework member comprises a counter rotation of the distal portion of the framework member relative to the proximal portion of the framework member.

2. The electrical ablation device of claim 1, wherein the first electrode comprises a first flexible portion, and wherein at least a portion of the first expandable portion comprises at least a portion of the first flexible portion.

3. The electrical ablation device of claim 1, wherein the first framework is expandable to expand the first diameter to circumferentially contact a biological lumen at two or more locations about the circumference of a biological lumen.

4. The electrical ablation device of claim 1, wherein the framework member has an associated memory form and an associated retained form, and wherein the framework member is transitionable between the memory form and the retained form to expand and contract the first framework.

5. The electrical ablation device of claim 4, further comprising a retaining structure configured to retain the framework member in the retained form.

6. The electrical ablation device of claim 5, wherein the retaining structure comprises a sheath defining a channel configured to receive the framework member within a distal portion thereof, wherein the framework member is deployable from a distal end of the distal portion of the sheath, wherein the framework member is transitioned from the retained form to the memory form when deployed from the distal end of the sheath.

7. The electrical ablation device of claim 1, wherein the framework member is transitionable between an associated low temperature form and an associated high temperature form.

8. The electrical ablation device of claim 1, wherein the first framework further comprises a proximal and a distal coupler configured to couple the framework member within the first framework, wherein the proximal and distal couplers are separated by a distance, and wherein a transition from the contracted state to the expanded state further comprises a decrease in the distance between the proximal coupler and the distal coupler.

9. The electrical ablation device of claim 8, wherein the decrease in the distance between the proximal and distal coupler pivots at least a portion of the framework member outward of the axis.

10. The electrical ablation device of claim 1, further comprising:

a second electrode disposed along the elongate member and extending along the axis, the second electrode having a proximal end configured to couple to the energy source and a surface configured to couple to the tissue treatment region;
a second expandable portion having a proximal end and a distal end and extending along the axis, the second expandable portion defining a second perimeter of the second electrode having an associated second diameter with respect to the axis, wherein the second expandable portion comprises a second framework comprising one or more second framework members; and
the second framework selectively expandable to transition the second expandable portion from a contracted state to an expanded state, and the second framework selectively contractible to transition the second expandable portion from the expanded state to the contracted state, wherein, when the second framework is expanded, the second diameter is expanded and the second expandable portion is transitioned from the contracted state to the expanded state, and wherein, when the second framework is contracted, the second diameter is contracted and the second expandable portion is transitioned from the expanded state to the contracted state.

11. The electrical ablation device of claim 10, wherein the first electrode and the second electrode are separated by a distance along the elongate member, and wherein the distance between the first electrode and the second electrode is selectively adjustable.

12. A method of electrosurgically treating tissue, comprising:

obtaining the electrical ablation device of claim 1;
delivering the first electrode to a tissue treatment region comprising a biological lumen;
expanding the first electrode;
contacting the first electrode to a wall of the biological lumen proximal to the tissue to be treated; and
treating the tissue by applying, with the first electrode, one or more sequences of electric pulses to the tissue to be treated sufficient to induce cell death in the tissue by irreversible electroporation.

13. The method of electrosurgically treating tissue of claim 12, further comprising rotating the helix in a first direction within the biological lumen to continuously treat the entire biological lumen.

14. An electrical ablation device, comprising:

an elongate member;
a first electrode disposed along the elongate member and extending along an axis, the first electrode having a proximal end configured to wirelessly couple to an energy source and a surface configured to couple to a tissue treatment region and apply ablative energy; and
a first expandable portion having a proximal end and a distal end and extending along the axis, the first expandable portion defining a first perimeter of the first electrode and having an associated first diameter with respect to the axis, wherein the first expandable portion comprises a first framework comprising a framework member, wherein the framework member comprises a helix extending along the first expandable portion,
wherein a distal end of the framework member is configured to deliver electric current,
wherein the first framework is selectively expandable to transition the first expandable portion from a contracted state to an expanded state, and the first framework is selectively contractible to transition the first expandable portion from the expanded state to the contracted state,
wherein a relative rotation between a proximal portion and a distal portion of the framework member transitions the first expandable portion between the contracted state and the expanded state, and
wherein the relative rotation between the proximal portion and the distal portion of the framework member comprises a counter rotation of the distal portion of the framework member relative to the proximal portion of the framework member.

15. An electrical ablation device, comprising:

an elongate member;
an electrode disposed along the elongate member and extending along an axis, the electrode having a proximal end configured to couple to an energy source and a surface configured to couple to a tissue treatment region and apply ablative energy; and
an expandable portion comprising a proximal end and a distal end and extending along the axis, the expandable portion defining a perimeter of the electrode and having an associated diameter with respect to the axis, wherein the expandable portion comprises a framework comprising a framework member, wherein the framework member comprises a helix extending along the expandable portion,
wherein the framework is selectively expandable to transition the expandable portion from a contracted state to an expanded state, and the framework is selectively contractible to transition the expandable portion from the expanded state to the contracted state,
wherein a relative rotation between a proximal portion and a distal portion of the framework member transitions the expandable portion between the contracted state and the expanded state, and
wherein the relative rotation between the proximal portion and the distal portion of the framework member comprises a counter rotation of the distal portion of the framework member relative to the proximal portion of the framework member.

Referenced Cited

U.S. Patent Documents

112794 March 1871 Felton
645576 March 1900 Tesla
649621 May 1900 Tesla
787412 April 1905 Tesla
1039354 September 1912 Bonadio
1127948 February 1915 Wappler
1482653 February 1924 Lilly
1581706 April 1926 White
1581707 April 1926 White
1581708 April 1926 White
1581709 April 1926 White
1581710 April 1926 White
1625602 April 1927 Gould et al.
1916722 July 1933 Ende
2028635 January 1936 Wappler
2031682 February 1936 Wappler et al.
2113246 April 1938 Wappler
2137710 November 1938 Anderson
2155365 April 1939 Rankin
2191858 February 1940 Moore
2196620 April 1940 Attarian
2388137 October 1945 Graumlich
2451077 October 1948 Emsig
2493108 January 1950 Casey, Jr.
2504152 April 1950 Riker et al.
2938382 May 1960 De Graaf
2952206 September 1960 Becksted
3044461 July 1962 Murdock
3069195 December 1962 Buck
3070088 December 1962 Brahos
3110956 November 1963 Fischer, Jr.
3170471 February 1965 Schnitzer
3435824 April 1969 Gamponia
3470876 October 1969 Barchilon
3481325 December 1969 Glassman
3595239 July 1971 Petersen
3669487 June 1972 Roberts et al.
3746881 July 1973 Fitch et al.
3799672 March 1974 Vurek
3854473 December 1974 Matsuo
3854743 December 1974 Hansen
3929123 December 1975 Jamshidi
3946740 March 30, 1976 Bassett
3948251 April 6, 1976 Hosono
3961632 June 8, 1976 Moossun
3965890 June 29, 1976 Gauthier
3994301 November 30, 1976 Agris
4011872 March 15, 1977 Komiya
4012812 March 22, 1977 Black
4043342 August 23, 1977 Morrison, Jr.
4071028 January 31, 1978 Perkins
4085743 April 25, 1978 Yoon
4164225 August 14, 1979 Johnson et al.
4170997 October 16, 1979 Pinnow et al.
4174715 November 20, 1979 Hasson
4178920 December 18, 1979 Cawood, Jr. et al.
4207873 June 17, 1980 Kruy
4235238 November 25, 1980 Ogiu et al.
4258716 March 31, 1981 Sutherland
4269174 May 26, 1981 Adair
4278077 July 14, 1981 Mizumoto
4281646 August 4, 1981 Kinoshita
4285344 August 25, 1981 Marshall
4311143 January 19, 1982 Komiya
4329980 May 18, 1982 Terada
4393872 July 19, 1983 Reznik et al.
4396021 August 2, 1983 Baumgartner
4396139 August 2, 1983 Hall et al.
4406656 September 27, 1983 Hattler et al.
4452246 June 5, 1984 Bader et al.
4461281 July 24, 1984 Carson
4491132 January 1, 1985 Aikins
4492232 January 8, 1985 Green
4527331 July 9, 1985 Lasner et al.
4527564 July 9, 1985 Eguchi et al.
4538594 September 3, 1985 Boebel et al.
D281104 October 22, 1985 Davison
4569347 February 11, 1986 Frisbie
4580551 April 8, 1986 Siegmund et al.
4646722 March 3, 1987 Silverstein et al.
4649904 March 17, 1987 Krauter et al.
4653476 March 31, 1987 Bonnet
4655219 April 7, 1987 Petruzzi
4657016 April 14, 1987 Garito et al.
4657018 April 14, 1987 Hakky
4669470 June 2, 1987 Brandfield
4671477 June 9, 1987 Cullen
4677982 July 7, 1987 Llinas et al.
4685447 August 11, 1987 Iversen et al.
4711239 December 8, 1987 Sorochenko et al.
4711240 December 8, 1987 Goldwasser et al.
4712545 December 15, 1987 Honkanen
4721116 January 26, 1988 Schintgen et al.
4727600 February 23, 1988 Avakian
4733662 March 29, 1988 DeSatnick et al.
D295894 May 24, 1988 Sharkany et al.
4742817 May 10, 1988 Kawashima et al.
4753223 June 28, 1988 Bremer
4763669 August 16, 1988 Jaeger
4770188 September 13, 1988 Chikama
4790624 December 13, 1988 Van Hoye et al.
4791707 December 20, 1988 Tucker
4796627 January 10, 1989 Tucker
4807593 February 28, 1989 Ito
4815450 March 28, 1989 Patel
4819620 April 11, 1989 Okutsu
4823794 April 25, 1989 Pierce
4829999 May 16, 1989 Auth
4836188 June 6, 1989 Berry
4846573 July 11, 1989 Taylor et al.
4867140 September 19, 1989 Hovis et al.
4869238 September 26, 1989 Opie et al.
4869459 September 26, 1989 Bourne
4873979 October 17, 1989 Hanna
4880015 November 14, 1989 Nierman
4904048 February 27, 1990 Sogawa et al.
4911148 March 27, 1990 Sosnowski et al.
4926860 May 22, 1990 Stice et al.
4934364 June 19, 1990 Green
4938214 July 3, 1990 Specht et al.
4950273 August 21, 1990 Briggs
4950285 August 21, 1990 Wilk
4953539 September 4, 1990 Nakamura et al.
4960133 October 2, 1990 Hewson
4977887 December 18, 1990 Gouda
4979496 December 25, 1990 Komi
4979950 December 25, 1990 Transue et al.
4984581 January 15, 1991 Stice
4990152 February 5, 1991 Yoon
4991565 February 12, 1991 Takahashi et al.
4994079 February 19, 1991 Genese et al.
5007917 April 16, 1991 Evans
5010876 April 30, 1991 Henley et al.
5015249 May 14, 1991 Nakao et al.
5020514 June 4, 1991 Heckele
5020535 June 4, 1991 Parker et al.
5025778 June 25, 1991 Silverstein et al.
5026379 June 25, 1991 Yoon
5033169 July 23, 1991 Bindon
5037433 August 6, 1991 Wilk et al.
5041129 August 20, 1991 Hayhurst et al.
5046513 September 10, 1991 Gatturna et al.
5049153 September 17, 1991 Nakao et al.
5050585 September 24, 1991 Takahashi
5052372 October 1, 1991 Shapiro
5065516 November 19, 1991 Dulebohn
5066295 November 19, 1991 Kozak et al.
5098378 March 24, 1992 Piontek et al.
5099827 March 31, 1992 Melzer et al.
5108421 April 28, 1992 Fowler
5123913 June 23, 1992 Wilk et al.
5123914 June 23, 1992 Cope
5133727 July 28, 1992 Bales et al.
5147374 September 15, 1992 Fernandez
5156609 October 20, 1992 Nakao et al.
5174300 December 29, 1992 Bales et al.
5176126 January 5, 1993 Chikama
5190050 March 2, 1993 Nitzsche
5190555 March 2, 1993 Wetter et al.
5192284 March 9, 1993 Pleatman
5192300 March 9, 1993 Fowler
5197963 March 30, 1993 Parins
5201752 April 13, 1993 Brown et al.
5201908 April 13, 1993 Jones
5203785 April 20, 1993 Slater
5203787 April 20, 1993 Noblitt et al.
5209747 May 11, 1993 Knoepfler
5217003 June 8, 1993 Wilk
5217453 June 8, 1993 Wilk
5219357 June 15, 1993 Honkanen et al.
5219358 June 15, 1993 Bendel et al.
5222362 June 29, 1993 Maus et al.
5222961 June 29, 1993 Nakao et al.
5222965 June 29, 1993 Haughton
5234437 August 10, 1993 Sepetka
5234453 August 10, 1993 Smith et al.
5235964 August 17, 1993 Abenaim
5242456 September 7, 1993 Nash et al.
5245460 September 14, 1993 Allen et al.
5246424 September 21, 1993 Wilk
5257999 November 2, 1993 Slanetz, Jr.
5259366 November 9, 1993 Reydel et al.
5263958 November 23, 1993 deGuillebon et al.
5273524 December 28, 1993 Fox et al.
5275607 January 4, 1994 Lo et al.
5275614 January 4, 1994 Haber et al.
5275616 January 4, 1994 Fowler
5284128 February 8, 1994 Hart
5284162 February 8, 1994 Wilk
5287845 February 22, 1994 Faul et al.
5287852 February 22, 1994 Arkinstall
5290299 March 1, 1994 Fain et al.
5290302 March 1, 1994 Pericic
5295977 March 22, 1994 Cohen et al.
5297536 March 29, 1994 Wilk
5297687 March 29, 1994 Freed
5301061 April 5, 1994 Nakada et al.
5312023 May 17, 1994 Green et al.
5312333 May 17, 1994 Churinetz et al.
5312351 May 17, 1994 Gerrone
5312416 May 17, 1994 Spaeth et al.
5312423 May 17, 1994 Rosenbluth et al.
5318589 June 7, 1994 Lichtman
5320636 June 14, 1994 Slater
5324261 June 28, 1994 Amundson et al.
5325845 July 5, 1994 Adair
5330471 July 19, 1994 Eggers
5330486 July 19, 1994 Wilk
5330488 July 19, 1994 Goldrath
5330496 July 19, 1994 Alferness
5330502 July 19, 1994 Hassler et al.
5331971 July 26, 1994 Bales et al.
5334168 August 2, 1994 Hemmer
5334198 August 2, 1994 Hart et al.
5336192 August 9, 1994 Palestrant
5336222 August 9, 1994 Durgin, Jr. et al.
5339805 August 23, 1994 Parker
5341815 August 30, 1994 Cofone et al.
5342396 August 30, 1994 Cook
5344428 September 6, 1994 Griffiths
5345927 September 13, 1994 Bonutti
5348259 September 20, 1994 Blanco et al.
5350391 September 27, 1994 Iacovelli
5352184 October 4, 1994 Goldberg et al.
5352222 October 4, 1994 Rydell
5354302 October 11, 1994 Ko
5354311 October 11, 1994 Kambin et al.
5356381 October 18, 1994 Ensminger et al.
5356408 October 18, 1994 Rydell
5360428 November 1, 1994 Hutchinson, Jr.
5364408 November 15, 1994 Gordon
5364410 November 15, 1994 Failla et al.
5366466 November 22, 1994 Christian et al.
5366467 November 22, 1994 Lynch et al.
5368605 November 29, 1994 Miller, Jr.
5368606 November 29, 1994 Marlow et al.
5370647 December 6, 1994 Graber et al.
5370679 December 6, 1994 Atlee, III
5374273 December 20, 1994 Nakao et al.
5374275 December 20, 1994 Bradley et al.
5374277 December 20, 1994 Hassler
5374953 December 20, 1994 Sasaki et al.
5376077 December 27, 1994 Gomringer
5377695 January 3, 1995 An Haack
5378234 January 3, 1995 Hammerslag et al.
5383877 January 24, 1995 Clarke
5383888 January 24, 1995 Zvenyatsky et al.
5386817 February 7, 1995 Jones
5387259 February 7, 1995 Davidson
5391174 February 21, 1995 Weston
5392789 February 28, 1995 Slater et al.
5395367 March 7, 1995 Wilk
5395381 March 7, 1995 Green et al.
5395386 March 7, 1995 Slater
5397332 March 14, 1995 Kammerer et al.
5401248 March 28, 1995 Bencini
5403311 April 4, 1995 Abele et al.
5403326 April 4, 1995 Harrison et al.
5403328 April 4, 1995 Shallman
5403342 April 4, 1995 Tovey et al.
5403348 April 4, 1995 Bonutti
5405073 April 11, 1995 Porter
5405359 April 11, 1995 Pierce
5409478 April 25, 1995 Gerry et al.
5417699 May 23, 1995 Klein et al.
5423821 June 13, 1995 Pasque
5431635 July 11, 1995 Yoon
5433721 July 18, 1995 Hooven et al.
5433735 July 18, 1995 Zanakis et al.
5439471 August 8, 1995 Kerr
5439478 August 8, 1995 Palmer
5441059 August 15, 1995 Dannan
5441494 August 15, 1995 Ortiz
5441498 August 15, 1995 Perkins
5441499 August 15, 1995 Fritzsch
5443463 August 22, 1995 Stern et al.
5445638 August 29, 1995 Rydell et al.
5445648 August 29, 1995 Cook
5449021 September 12, 1995 Chikama
5454827 October 3, 1995 Aust et al.
5456667 October 10, 1995 Ham et al.
5456684 October 10, 1995 Schmidt et al.
5458131 October 17, 1995 Wilk
5458583 October 17, 1995 McNeely et al.
5460168 October 24, 1995 Masubuchi et al.
5460629 October 24, 1995 Shlain et al.
5462561 October 31, 1995 Voda
5465731 November 14, 1995 Bell et al.
5467763 November 21, 1995 McMahon et al.
5468250 November 21, 1995 Paraschac et al.
5470308 November 28, 1995 Edwards et al.
5470320 November 28, 1995 Tiefenbrun et al.
5472441 December 5, 1995 Edwards et al.
5478347 December 26, 1995 Aranyi
5478352 December 26, 1995 Fowler
5480404 January 2, 1996 Kammerer et al.
5482029 January 9, 1996 Sekiguchi et al.
5482054 January 9, 1996 Slater et al.
5484451 January 16, 1996 Akopov et al.
5489256 February 6, 1996 Adair
5496347 March 5, 1996 Hashiguchi et al.
5499990 March 19, 1996 Schülken et al.
5499992 March 19, 1996 Meade et al.
5499997 March 19, 1996 Sharpe et al.
5500012 March 19, 1996 Brucker et al.
5501692 March 26, 1996 Riza
5503616 April 2, 1996 Jones
5505686 April 9, 1996 Willis et al.
5507755 April 16, 1996 Gresl et al.
5511564 April 30, 1996 Wilk
5514157 May 7, 1996 Nicholas et al.
5518501 May 21, 1996 Oneda et al.
5522829 June 4, 1996 Michalos
5522830 June 4, 1996 Aranyi
5527321 June 18, 1996 Hinchliffe
5533418 July 9, 1996 Wu et al.
5536234 July 16, 1996 Newman
5536248 July 16, 1996 Weaver et al.
5538509 July 23, 1996 Dunlap et al.
5540648 July 30, 1996 Yoon
5549637 August 27, 1996 Crainich
5554151 September 10, 1996 Hinchliffe
5555883 September 17, 1996 Avitall
5558133 September 24, 1996 Bortoli et al.
5562693 October 8, 1996 Devlin et al.
5569243 October 29, 1996 Kortenbach et al.
5569298 October 29, 1996 Schnell
5571090 November 5, 1996 Sherts
5573540 November 12, 1996 Yoon
5578030 November 26, 1996 Levin
5582611 December 10, 1996 Tsuruta et al.
5582617 December 10, 1996 Klieman et al.
5584845 December 17, 1996 Hart
5590660 January 7, 1997 MacAulay et al.
5591179 January 7, 1997 Edelstein
5591205 January 7, 1997 Fowler
5593420 January 14, 1997 Eubanks, Jr. et al.
5595562 January 21, 1997 Grier
5597378 January 28, 1997 Jervis
5601573 February 11, 1997 Fogelberg et al.
5601574 February 11, 1997 Stefanchik et al.
5601588 February 11, 1997 Tonomura et al.
5601602 February 11, 1997 Fowler
5604531 February 18, 1997 Iddan et al.
5607386 March 4, 1997 Flam
5607389 March 4, 1997 Edwards et al.
5607406 March 4, 1997 Hernandez et al.
5607450 March 4, 1997 Zvenyatsky et al.
5609601 March 11, 1997 Kolesa et al.
5613975 March 25, 1997 Christy
5613977 March 25, 1997 Weber et al.
5614943 March 25, 1997 Nakamura et al.
5616117 April 1, 1997 Dinkier et al.
5618303 April 8, 1997 Marlow et al.
5620415 April 15, 1997 Lucey et al.
5624399 April 29, 1997 Ackerman
5624431 April 29, 1997 Gerry et al.
5626578 May 6, 1997 Tihon
5626587 May 6, 1997 Bishop et al.
5628732 May 13, 1997 Antoon, Jr. et al.
5630782 May 20, 1997 Adair
5630795 May 20, 1997 Kuramoto et al.
5643283 July 1, 1997 Younker
5643292 July 1, 1997 Hart
5643294 July 1, 1997 Tovey et al.
5644798 July 8, 1997 Shah
5645083 July 8, 1997 Essig et al.
5645519 July 8, 1997 Lee et al.
5645565 July 8, 1997 Rudd et al.
5649372 July 22, 1997 Souza
5653677 August 5, 1997 Okada et al.
5653690 August 5, 1997 Booth et al.
5653722 August 5, 1997 Kieturakis
5657755 August 19, 1997 Desai
5662621 September 2, 1997 Lafontaine
5662663 September 2, 1997 Shallman
5667527 September 16, 1997 Cook
5669875 September 23, 1997 van Eerdenburg
5681276 October 28, 1997 Lundquist
5681279 October 28, 1997 Roper et al.
5681324 October 28, 1997 Kammerer et al.
5681330 October 28, 1997 Hughett et al.
5685820 November 11, 1997 Riek et al.
5690606 November 25, 1997 Slotman
5690656 November 25, 1997 Cope et al.
5690660 November 25, 1997 Kauker et al.
5695448 December 9, 1997 Kimura et al.
5695505 December 9, 1997 Yoon
5695511 December 9, 1997 Cano et al.
5700275 December 23, 1997 Bell et al.
5702438 December 30, 1997 Avitall
5704892 January 6, 1998 Adair
5709708 January 20, 1998 Thal
5711921 January 27, 1998 Langford
5716326 February 10, 1998 Dannan
5716375 February 10, 1998 Fowler
5725542 March 10, 1998 Yoon
5728094 March 17, 1998 Edwards
5730740 March 24, 1998 Wales et al.
5735849 April 7, 1998 Baden et al.
5741234 April 21, 1998 Aboul-Hosn
5741278 April 21, 1998 Stevens
5741285 April 21, 1998 McBrayer et al.
5741429 April 21, 1998 Donadio, III et al.
5743456 April 28, 1998 Jones et al.
5746759 May 5, 1998 Meade et al.
5749826 May 12, 1998 Faulkner
5749881 May 12, 1998 Sackier et al.
5749889 May 12, 1998 Bacich et al.
5752951 May 19, 1998 Yanik
5755731 May 26, 1998 Grinberg
5759150 June 2, 1998 Konou et al.
5759151 June 2, 1998 Sturges
5762604 June 9, 1998 Kieturakis
5766167 June 16, 1998 Eggers et al.
5766170 June 16, 1998 Eggers
5766205 June 16, 1998 Zvenyatsky et al.
5769849 June 23, 1998 Eggers
5776188 July 7, 1998 Shepherd et al.
5779701 July 14, 1998 McBrayer et al.
5779716 July 14, 1998 Cano et al.
5779720 July 14, 1998 Walder-Utz et al.
5779727 July 14, 1998 Orejola
5782859 July 21, 1998 Nicholas et al.
5782861 July 21, 1998 Cragg et al.
5782866 July 21, 1998 Wenstrom, Jr.
5791022 August 11, 1998 Bohman
5792113 August 11, 1998 Kramer et al.
5792153 August 11, 1998 Swain et al.
5792165 August 11, 1998 Klieman et al.
5797835 August 25, 1998 Green
5797928 August 25, 1998 Kogasaka
5797939 August 25, 1998 Yoon
5797941 August 25, 1998 Schulze et al.
5797959 August 25, 1998 Castro et al.
5797960 August 25, 1998 Stevens et al.
5800449 September 1, 1998 Wales
5800451 September 1, 1998 Buess et al.
5803903 September 8, 1998 Athas et al.
5807395 September 15, 1998 Mulier et al.
5808665 September 15, 1998 Green
5810805 September 22, 1998 Sutcu et al.
5810806 September 22, 1998 Ritchart et al.
5810849 September 22, 1998 Kontos
5810865 September 22, 1998 Koscher et al.
5810876 September 22, 1998 Kelleher
5810877 September 22, 1998 Roth et al.
5813976 September 29, 1998 Filipi et al.
5814026 September 29, 1998 Yoon
5814058 September 29, 1998 Carlson et al.
5817061 October 6, 1998 Goodwin et al.
5817107 October 6, 1998 Schaller
5817119 October 6, 1998 Klieman et al.
5818527 October 6, 1998 Yamaguchi et al.
5819736 October 13, 1998 Avny et al.
5823947 October 20, 1998 Yoon et al.
5824071 October 20, 1998 Nelson et al.
5827190 October 27, 1998 Palcic et al.
5827276 October 27, 1998 LeVeen et al.
5827281 October 27, 1998 Levin
5827299 October 27, 1998 Thomason et al.
5827323 October 27, 1998 Klieman et al.
5830221 November 3, 1998 Stein et al.
5830231 November 3, 1998 Geiges, Jr.
5833603 November 10, 1998 Kovacs et al.
5833700 November 10, 1998 Fogelberg et al.
5833703 November 10, 1998 Manushakian
5833715 November 10, 1998 Vachon et al.
5836960 November 17, 1998 Kolesa et al.
5843017 December 1, 1998 Yoon
5843097 December 1, 1998 Mayenberger et al.
5843121 December 1, 1998 Yoon
5849022 December 15, 1998 Sakashita et al.
5853374 December 29, 1998 Hart et al.
5855569 January 5, 1999 Komi
5855585 January 5, 1999 Kontos
5860913 January 19, 1999 Yamaya et al.
5860995 January 19, 1999 Berkelaar
5868762 February 9, 1999 Cragg et al.
5873849 February 23, 1999 Bernard
5876411 March 2, 1999 Kontos
5882331 March 16, 1999 Sasaki
5882344 March 16, 1999 Stouder, Jr.
5893846 April 13, 1999 Bales et al.
5893874 April 13, 1999 Bourque et al.
5893875 April 13, 1999 O'Connor et al.
5897487 April 27, 1999 Ouchi
5899919 May 4, 1999 Eubanks, Jr. et al.
5902238 May 11, 1999 Golden et al.
5902254 May 11, 1999 Magram
5904702 May 18, 1999 Ek et al.
5906625 May 25, 1999 Bito et al.
5908420 June 1, 1999 Parins et al.
5908429 June 1, 1999 Yoon
5911737 June 15, 1999 Lee et al.
5916146 June 29, 1999 Allotta et al.
5916147 June 29, 1999 Boury
5919207 July 6, 1999 Taheri
5921892 July 13, 1999 Easton
5921993 July 13, 1999 Yoon
5921997 July 13, 1999 Fogelberg et al.
5922008 July 13, 1999 Gimpelson
5925052 July 20, 1999 Simmons
5928255 July 27, 1999 Meade et al.
5928266 July 27, 1999 Kontos
5936536 August 10, 1999 Morris
5938661 August 17, 1999 Hahnen
5941815 August 24, 1999 Chang
5944718 August 31, 1999 Austin et al.
5951547 September 14, 1999 Gough et al.
5951549 September 14, 1999 Richardson et al.
5954720 September 21, 1999 Wilson et al.
5954731 September 21, 1999 Yoon
5957936 September 28, 1999 Yoon et al.
5957943 September 28, 1999 Vaitekunas
5957953 September 28, 1999 DiPoto et al.
5964782 October 12, 1999 Lafontaine et al.
5970581 October 26, 1999 Chadwick et al.
5971995 October 26, 1999 Rousseau
5972002 October 26, 1999 Bark et al.
5976074 November 2, 1999 Moriyama
5976075 November 2, 1999 Beane et al.
5976130 November 2, 1999 McBrayer et al.
5976131 November 2, 1999 Guglielmi et al.
5980539 November 9, 1999 Kontos
5980556 November 9, 1999 Giordano et al.
5984933 November 16, 1999 Yoon
5984938 November 16, 1999 Yoon
5984939 November 16, 1999 Yoon
5984950 November 16, 1999 Cragg et al.
5989182 November 23, 1999 Hori et al.
5993447 November 30, 1999 Blewett et al.
5993474 November 30, 1999 Ouchi
5995875 November 30, 1999 Blewett et al.
5997555 December 7, 1999 Kontos
6001120 December 14, 1999 Levin
6004269 December 21, 1999 Crowley et al.
6004330 December 21, 1999 Middleman et al.
6007566 December 28, 1999 Wenstrom, Jr.
6010515 January 4, 2000 Swain et al.
6012494 January 11, 2000 Balazs
6016452 January 18, 2000 Kasevich
6017356 January 25, 2000 Frederick et al.
6019770 February 1, 2000 Christoudias
6024708 February 15, 2000 Bales et al.
6024747 February 15, 2000 Kontos
6027522 February 22, 2000 Palmer
6030365 February 29, 2000 Laufer
6030384 February 29, 2000 Nezhat
6030634 February 29, 2000 Wu et al.
6033399 March 7, 2000 Gines
6033401 March 7, 2000 Edwards et al.
6036640 March 14, 2000 Corace et al.
6036685 March 14, 2000 Mueller
6050992 April 18, 2000 Nichols
6053927 April 25, 2000 Hamas
6053937 April 25, 2000 Edwards et al.
6059719 May 9, 2000 Yamamoto et al.
6066160 May 23, 2000 Colvin et al.
6068603 May 30, 2000 Suzuki
6068629 May 30, 2000 Haissaguerre et al.
6071233 June 6, 2000 Ishikawa et al.
6074408 June 13, 2000 Freeman
6086530 July 11, 2000 Mack
6086600 July 11, 2000 Kortenbach
6090105 July 18, 2000 Zepeda et al.
6090108 July 18, 2000 McBrayer et al.
6090129 July 18, 2000 Ouchi
6096046 August 1, 2000 Weiss
6102909 August 15, 2000 Chen et al.
6102926 August 15, 2000 Tartaglia et al.
6106473 August 22, 2000 Violante et al.
6106521 August 22, 2000 Blewett et al.
6109852 August 29, 2000 Shahinpoor et al.
6110154 August 29, 2000 Shimomura et al.
6110183 August 29, 2000 Cope
6113593 September 5, 2000 Tu et al.
6117144 September 12, 2000 Nobles et al.
6117158 September 12, 2000 Measamer et al.
6123718 September 26, 2000 Tu et al.
6131790 October 17, 2000 Piraka
6139555 October 31, 2000 Hart et al.
6141037 October 31, 2000 Upton et al.
6146391 November 14, 2000 Cigaina
6148222 November 14, 2000 Ramsey, III
6149653 November 21, 2000 Deslauriers
6149662 November 21, 2000 Pugliesi et al.
6152871 November 28, 2000 Foley et al.
6152920 November 28, 2000 Thompson et al.
6156006 December 5, 2000 Brosens et al.
6159200 December 12, 2000 Verdura et al.
6165175 December 26, 2000 Wampler et al.
6165184 December 26, 2000 Verdura et al.
6168570 January 2, 2001 Ferrera
6168605 January 2, 2001 Measamer et al.
6169269 January 2, 2001 Maynard
6170130 January 9, 2001 Hamilton et al.
6173872 January 16, 2001 Cohen
6179776 January 30, 2001 Adams et al.
6179832 January 30, 2001 Jones et al.
6179837 January 30, 2001 Hooven
6183420 February 6, 2001 Douk et al.
6190353 February 20, 2001 Makower et al.
6190383 February 20, 2001 Schmaltz et al.
6190384 February 20, 2001 Ouchi
6190399 February 20, 2001 Palmer et al.
6203533 March 20, 2001 Ouchi
6206872 March 27, 2001 Lafond et al.
6206877 March 27, 2001 Kese et al.
6206904 March 27, 2001 Ouchi
6210409 April 3, 2001 Ellman et al.
6214007 April 10, 2001 Anderson
6214028 April 10, 2001 Yoon et al.
6216043 April 10, 2001 Swanson et al.
6228096 May 8, 2001 Marchand
6231506 May 15, 2001 Hu et al.
6234958 May 22, 2001 Snoke et al.
6240312 May 29, 2001 Alfano et al.
6245079 June 12, 2001 Nobles et al.
6246914 June 12, 2001 de la Rama et al.
6248124 June 19, 2001 Pedros et al.
6258064 July 10, 2001 Smith et al.
6261242 July 17, 2001 Roberts et al.
6264664 July 24, 2001 Avellanet
6270497 August 7, 2001 Sekino et al.
6270505 August 7, 2001 Yoshida et al.
6277136 August 21, 2001 Bonutti
6283963 September 4, 2001 Regula
6287304 September 11, 2001 Eggers et al.
6293909 September 25, 2001 Chu et al.
6293952 September 25, 2001 Brosens et al.
6296630 October 2, 2001 Altman et al.
6314963 November 13, 2001 Vaska et al.
6322578 November 27, 2001 Houle et al.
6325534 December 4, 2001 Hawley et al.
6326177 December 4, 2001 Schoenbach et al.
6328730 December 11, 2001 Harkrider, Jr.
6350267 February 26, 2002 Stefanchik
6350269 February 26, 2002 Shipp et al.
6350278 February 26, 2002 Lenker et al.
6352503 March 5, 2002 Matsui et al.
6352541 March 5, 2002 Kienzle et al.
6352543 March 5, 2002 Cole
6355013 March 12, 2002 van Muiden
6355035 March 12, 2002 Manushakian
6361534 March 26, 2002 Chen et al.
6364879 April 2, 2002 Chen et al.
6368340 April 9, 2002 Malecki et al.
6371956 April 16, 2002 Wilson et al.
6379366 April 30, 2002 Fleischman et al.
6383195 May 7, 2002 Richard
6383197 May 7, 2002 Conlon et al.
6387671 May 14, 2002 Rubinsky et al.
6391029 May 21, 2002 Hooven et al.
6398708 June 4, 2002 Hastings et al.
6402735 June 11, 2002 Langevin
6402746 June 11, 2002 Whayne et al.
6406440 June 18, 2002 Stefanchik
6409727 June 25, 2002 Bales et al.
6409733 June 25, 2002 Conlon et al.
6419639 July 16, 2002 Walther et al.
6419641 July 16, 2002 Mark et al.
6427089 July 30, 2002 Knowlton
6431500 August 13, 2002 Jacobs et al.
6436107 August 20, 2002 Wang et al.
6443970 September 3, 2002 Schulze et al.
6443988 September 3, 2002 Felt et al.
6447444 September 10, 2002 Avni et al.
6447511 September 10, 2002 Slater
6447523 September 10, 2002 Middleman et al.
6454783 September 24, 2002 Piskun
6454785 September 24, 2002 De Hoyos Garza
6458074 October 1, 2002 Matsui et al.
6458076 October 1, 2002 Pruitt
6464701 October 15, 2002 Hooven et al.
6464702 October 15, 2002 Schulze et al.
6470218 October 22, 2002 Behl
6475104 November 5, 2002 Lutz et al.
6485411 November 26, 2002 Konstorum et al.
6489745 December 3, 2002 Koreis
6491626 December 10, 2002 Stone et al.
6491627 December 10, 2002 Komi
6491691 December 10, 2002 Morley et al.
6493590 December 10, 2002 Wessman et al.
6494893 December 17, 2002 Dubrul et al.
6500176 December 31, 2002 Truckai et al.
6503192 January 7, 2003 Ouchi
6506190 January 14, 2003 Walshe
6508827 January 21, 2003 Manhes
6514239 February 4, 2003 Shimmura et al.
6517534 February 11, 2003 McGovern et al.
6520954 February 18, 2003 Ouchi
6526320 February 25, 2003 Mitchell
6527753 March 4, 2003 Sekine et al.
6527782 March 4, 2003 Hogg et al.
6530880 March 11, 2003 Pagliuca
6530922 March 11, 2003 Cosman et al.
6535764 March 18, 2003 Imran et al.
6537200 March 25, 2003 Leysieffer et al.
6543456 April 8, 2003 Freeman
6551270 April 22, 2003 Bimbo et al.
6551356 April 22, 2003 Rousseau
6554766 April 29, 2003 Maeda et al.
6554823 April 29, 2003 Palmer et al.
6554829 April 29, 2003 Schulze et al.
6558384 May 6, 2003 Mayenberger
6562034 May 13, 2003 Edwards et al.
6562035 May 13, 2003 Levin
6562052 May 13, 2003 Nobles et al.
6569120 May 27, 2003 Green et al.
6569159 May 27, 2003 Edwards et al.
6572629 June 3, 2003 Kalloo et al.
6572635 June 3, 2003 Bonutti
6575988 June 10, 2003 Rousseau
6579311 June 17, 2003 Makower
6581889 June 24, 2003 Carpenter et al.
6585642 July 1, 2003 Christopher
6585717 July 1, 2003 Wittenberger et al.
6587750 July 1, 2003 Gerbi et al.
6592559 July 15, 2003 Pakter et al.
6592603 July 15, 2003 Lasner
6594971 July 22, 2003 Addy et al.
6602262 August 5, 2003 Griego et al.
6605105 August 12, 2003 Cuschieri et al.
6610072 August 26, 2003 Christy et al.
6610074 August 26, 2003 Santilli
6613038 September 2, 2003 Bonutti et al.
6613068 September 2, 2003 Ouchi
6616632 September 9, 2003 Sharp et al.
6620193 September 16, 2003 Lau et al.
6623448 September 23, 2003 Slater
6626919 September 30, 2003 Swanstrom
6632171 October 14, 2003 Iddan et al.
6632229 October 14, 2003 Yamanouchi
6632234 October 14, 2003 Kieturakis et al.
6638275 October 28, 2003 McGaffigan et al.
6638286 October 28, 2003 Burbank et al.
6645225 November 11, 2003 Atkinson
6652518 November 25, 2003 Wellman et al.
6652521 November 25, 2003 Schulze
6652545 November 25, 2003 Shipp et al.
6652551 November 25, 2003 Heiss
6656194 December 2, 2003 Gannoe et al.
6663641 December 16, 2003 Kovac et al.
6663655 December 16, 2003 Ginn et al.
6666854 December 23, 2003 Lange
6672338 January 6, 2004 Esashi et al.
6673058 January 6, 2004 Snow
6673070 January 6, 2004 Edwards et al.
6673087 January 6, 2004 Chang et al.
6673092 January 6, 2004 Bacher
6676685 January 13, 2004 Pedros et al.
6679882 January 20, 2004 Kornerup
6684938 February 3, 2004 Tsujita et al.
6685628 February 3, 2004 Vu
6685724 February 3, 2004 Haluck
6692445 February 17, 2004 Roberts et al.
6692462 February 17, 2004 Mackenzie et al.
6692493 February 17, 2004 McGovern et al.
6695867 February 24, 2004 Ginn et al.
6699180 March 2, 2004 Kobayashi
6699256 March 2, 2004 Logan et al.
6699263 March 2, 2004 Cope
6706018 March 16, 2004 Westlund et al.
6708066 March 16, 2004 Herbst et al.
6709188 March 23, 2004 Ushimaru
6709445 March 23, 2004 Boebel et al.
6716226 April 6, 2004 Sixto, Jr. et al.
6731875 May 4, 2004 Kartalopoulos
6736822 May 18, 2004 McClellan et al.
6740030 May 25, 2004 Martone et al.
6740082 May 25, 2004 Shadduck
6743166 June 1, 2004 Berci et al.
6743226 June 1, 2004 Cosman et al.
6743239 June 1, 2004 Kuehn et al.
6743240 June 1, 2004 Smith et al.
6749560 June 15, 2004 Konstorum et al.
6749609 June 15, 2004 Lunsford et al.
6752768 June 22, 2004 Burdorff et al.
6752811 June 22, 2004 Chu et al.
6752822 June 22, 2004 Jespersen
6758857 July 6, 2004 Cioanta et al.
6761685 July 13, 2004 Adams et al.
6761718 July 13, 2004 Madsen
6761722 July 13, 2004 Cole et al.
6767356 July 27, 2004 Kanner et al.
6773434 August 10, 2004 Ciarrocca
6776165 August 17, 2004 Jin
6776787 August 17, 2004 Phung et al.
6780151 August 24, 2004 Grabover et al.
6780352 August 24, 2004 Jacobson
6783491 August 31, 2004 Saadat et al.
6786382 September 7, 2004 Hoffman
6786864 September 7, 2004 Matsuura et al.
6786905 September 7, 2004 Swanson et al.
6788977 September 7, 2004 Fenn et al.
6790173 September 14, 2004 Saadat et al.
6790217 September 14, 2004 Schulze et al.
6795728 September 21, 2004 Chornenky et al.
6800056 October 5, 2004 Tartaglia et al.
6808491 October 26, 2004 Kortenbach et al.
6817974 November 16, 2004 Cooper et al.
6818007 November 16, 2004 Dampney et al.
6821285 November 23, 2004 Laufer et al.
6824548 November 30, 2004 Smith et al.
6830545 December 14, 2004 Bendall
6835200 December 28, 2004 Laufer et al.
6836688 December 28, 2004 Ingle et al.
6837847 January 4, 2005 Ewers et al.
6840246 January 11, 2005 Downing
6840938 January 11, 2005 Morley et al.
6843794 January 18, 2005 Sixto, Jr. et al.
6861250 March 1, 2005 Cole et al.
6866627 March 15, 2005 Nozue
6866628 March 15, 2005 Goodman et al.
6869394 March 22, 2005 Ishibiki
6878106 April 12, 2005 Herrmann
6878110 April 12, 2005 Yang et al.
6881213 April 19, 2005 Ryan et al.
6881216 April 19, 2005 Di Caprio et al.
6884213 April 26, 2005 Raz et al.
6887255 May 3, 2005 Shimm
6889089 May 3, 2005 Behl et al.
6890295 May 10, 2005 Michels et al.
6896683 May 24, 2005 Gadberry et al.
6896692 May 24, 2005 Ginn et al.
6899710 May 31, 2005 Hooven
6908427 June 21, 2005 Fleener et al.
6908476 June 21, 2005 Jud et al.
6913613 July 5, 2005 Schwarz et al.
6916284 July 12, 2005 Moriyama
6918871 July 19, 2005 Schulze
6918906 July 19, 2005 Long
6918908 July 19, 2005 Bonner et al.
6926723 August 9, 2005 Mulhauser et al.
6926725 August 9, 2005 Cooke et al.
6932810 August 23, 2005 Ryan
6932824 August 23, 2005 Roop et al.
6932827 August 23, 2005 Cole
6932834 August 23, 2005 Lizardi et al.
6936003 August 30, 2005 Iddan
6939290 September 6, 2005 Iddan
6939292 September 6, 2005 Mizuno
6939327 September 6, 2005 Hall et al.
6939347 September 6, 2005 Thompson
6942613 September 13, 2005 Ewers et al.
6944490 September 13, 2005 Chow
6945472 September 20, 2005 Wuttke et al.
6945979 September 20, 2005 Kortenbach et al.
6949096 September 27, 2005 Davison et al.
6955641 October 18, 2005 Lubock
6955683 October 18, 2005 Bonutti
6958035 October 25, 2005 Friedman et al.
6960162 November 1, 2005 Saadat et al.
6960163 November 1, 2005 Ewers et al.
6960183 November 1, 2005 Nicolette
6962587 November 8, 2005 Johnson et al.
6964662 November 15, 2005 Kidooka
6966909 November 22, 2005 Marshall et al.
6966919 November 22, 2005 Sixto, Jr. et al.
6967462 November 22, 2005 Landis
6971988 December 6, 2005 Orban, III
6972017 December 6, 2005 Smith et al.
6974411 December 13, 2005 Belson
6976992 December 20, 2005 Sachatello et al.
6984203 January 10, 2006 Tartaglia et al.
6984205 January 10, 2006 Gazdzinski
6986738 January 17, 2006 Glukhovsky et al.
6986774 January 17, 2006 Middleman et al.
6988987 January 24, 2006 Ishikawa et al.
6989028 January 24, 2006 Lashinski et al.
6991602 January 31, 2006 Nakazawa et al.
6991627 January 31, 2006 Madhani et al.
6991631 January 31, 2006 Woloszko et al.
6994706 February 7, 2006 Chornenky et al.
6994708 February 7, 2006 Manzo
6997870 February 14, 2006 Couvillon, Jr.
6997931 February 14, 2006 Sauer et al.
7000818 February 21, 2006 Shelton, IV et al.
7001329 February 21, 2006 Kobayashi et al.
7001341 February 21, 2006 Gellman et al.
7008375 March 7, 2006 Weisel
7008419 March 7, 2006 Shadduck
7009634 March 7, 2006 Iddan et al.
7010340 March 7, 2006 Scarantino et al.
7011669 March 14, 2006 Kimblad
7018373 March 28, 2006 Suzuki
7020531 March 28, 2006 Colliou et al.
7025580 April 11, 2006 Heagy et al.
7025721 April 11, 2006 Cohen et al.
7029435 April 18, 2006 Nakao
7029438 April 18, 2006 Morin et al.
7029450 April 18, 2006 Gellman
7032600 April 25, 2006 Fukuda et al.
7035680 April 25, 2006 Partridge et al.
7037290 May 2, 2006 Gardeski et al.
7041052 May 9, 2006 Saadat et al.
7052454 May 30, 2006 Taylor
7052489 May 30, 2006 Griego et al.
7056330 June 6, 2006 Gayton
7060024 June 13, 2006 Long et al.
7060025 June 13, 2006 Long et al.
7063697 June 20, 2006 Slater
7063715 June 20, 2006 Onuki et al.
7066879 June 27, 2006 Fowler et al.
7066936 June 27, 2006 Ryan
7070559 July 4, 2006 Adams et al.
7070602 July 4, 2006 Smith et al.
7076305 July 11, 2006 Imran et al.
7083618 August 1, 2006 Couture et al.
7083620 August 1, 2006 Jahns et al.
7083629 August 1, 2006 Weller et al.
7083635 August 1, 2006 Ginn
7087010 August 8, 2006 Ootawara et al.
7087071 August 8, 2006 Nicholas et al.
7088923 August 8, 2006 Haruyama
7090673 August 15, 2006 Dycus et al.
7090683 August 15, 2006 Brock et al.
7090685 August 15, 2006 Kortenbach et al.
7093518 August 22, 2006 Gmeilbauer
7101371 September 5, 2006 Dycus et al.
7101372 September 5, 2006 Dycus et al.
7101373 September 5, 2006 Dycus et al.
7105000 September 12, 2006 McBrayer
7105005 September 12, 2006 Blake
7108696 September 19, 2006 Daniel et al.
7108703 September 19, 2006 Danitz et al.
7112208 September 26, 2006 Morris et al.
7115092 October 3, 2006 Park et al.
7115124 October 3, 2006 Xiao
7115785 October 3, 2006 Guggenheim et al.
7117703 October 10, 2006 Kato et al.
7118531 October 10, 2006 Krill
7118578 October 10, 2006 West, Jr. et al.
7118587 October 10, 2006 Dycus et al.
7122605 October 17, 2006 Ohrbom et al.
7128708 October 31, 2006 Saadat et al.
7130697 October 31, 2006 Chornenky et al.
RE39415 November 28, 2006 Bales et al.
7131978 November 7, 2006 Sancoff et al.
7131979 November 7, 2006 DiCarlo et al.
7131980 November 7, 2006 Field et al.
7137980 November 21, 2006 Buysse et al.
7137981 November 21, 2006 Long
7146984 December 12, 2006 Stack et al.
7147650 December 12, 2006 Lee
7150097 December 19, 2006 Sremcich et al.
7150655 December 19, 2006 Mastrototaro et al.
7150750 December 19, 2006 Damarati
7152488 December 26, 2006 Hedrich et al.
7153321 December 26, 2006 Andrews
7156845 January 2, 2007 Mulier et al.
7160296 January 9, 2007 Pearson et al.
7163525 January 16, 2007 Franer
7169104 January 30, 2007 Ueda et al.
7172714 February 6, 2007 Jacobson
7175591 February 13, 2007 Kaladelfos
7179254 February 20, 2007 Pendekanti et al.
7186265 March 6, 2007 Sharkawy et al.
7188627 March 13, 2007 Nelson et al.
7195612 March 27, 2007 Van Sloten et al.
7195631 March 27, 2007 Dumbauld
7204820 April 17, 2007 Akahoshi
7204840 April 17, 2007 Skakoon et al.
7207997 April 24, 2007 Shipp et al.
7208005 April 24, 2007 Frecker et al.
7211089 May 1, 2007 Kear et al.
7211092 May 1, 2007 Hughett
7220227 May 22, 2007 Sasaki et al.
7223271 May 29, 2007 Muramatsu et al.
7223272 May 29, 2007 Francere et al.
7226458 June 5, 2007 Kaplan et al.
7229438 June 12, 2007 Young
7232414 June 19, 2007 Gonzalez
7232445 June 19, 2007 Kortenbach et al.
7235084 June 26, 2007 Skakoon et al.
7235089 June 26, 2007 McGuckin, Jr.
7241290 July 10, 2007 Doyle et al.
7241295 July 10, 2007 Maguire
7244228 July 17, 2007 Lubowski
7250027 July 31, 2007 Barry
7252660 August 7, 2007 Kunz
7255675 August 14, 2007 Gertner et al.
7261725 August 28, 2007 Binmoeller
7270663 September 18, 2007 Nakao
7288075 October 30, 2007 Parihar et al.
7290615 November 6, 2007 Christanti et al.
7291127 November 6, 2007 Eidenschink
7294139 November 13, 2007 Gengler
7301250 November 27, 2007 Cassel
7306597 December 11, 2007 Manzo
7308828 December 18, 2007 Hashimoto
7311107 December 25, 2007 Harel et al.
7318802 January 15, 2008 Suzuki et al.
7320695 January 22, 2008 Carroll
7322934 January 29, 2008 Miyake et al.
7323006 January 29, 2008 Andreas et al.
7329256 February 12, 2008 Johnson et al.
7329257 February 12, 2008 Kanehira et al.
7329383 February 12, 2008 Stinson
7335220 February 26, 2008 Khosravi et al.
7341554 March 11, 2008 Sekine et al.
7344536 March 18, 2008 Lunsford et al.
7349223 March 25, 2008 Haemer et al.
7352387 April 1, 2008 Yamamoto
7364582 April 29, 2008 Lee
7371215 May 13, 2008 Colliou et al.
7381216 June 3, 2008 Buzzard et al.
7390324 June 24, 2008 Whalen et al.
7393322 July 1, 2008 Wenchell
7402162 July 22, 2008 Ouchi
7404791 July 29, 2008 Linares et al.
7410483 August 12, 2008 Danitz et al.
7413563 August 19, 2008 Corcoran et al.
7416554 August 26, 2008 Lam et al.
7422590 September 9, 2008 Kupferschmid et al.
7435229 October 14, 2008 Wolf
7435257 October 14, 2008 Lashinski et al.
7441507 October 28, 2008 Teraura et al.
7442166 October 28, 2008 Huang et al.
7452327 November 18, 2008 Durgin et al.
7455208 November 25, 2008 Wales et al.
7455675 November 25, 2008 Schur et al.
7468066 December 23, 2008 Vargas et al.
7476237 January 13, 2009 Taniguchi et al.
7479104 January 20, 2009 Lau et al.
7485093 February 3, 2009 Glukhovsky
7488295 February 10, 2009 Burbank et al.
7494499 February 24, 2009 Nagase et al.
7497867 March 3, 2009 Lasner et al.
7498950 March 3, 2009 Ertas et al.
7507200 March 24, 2009 Okada
7507239 March 24, 2009 Shadduck
7510107 March 31, 2009 Timm et al.
7511733 March 31, 2009 Takizawa et al.
7514568 April 7, 2009 Freeman
7515953 April 7, 2009 Madar et al.
7520876 April 21, 2009 Ressemann et al.
7524281 April 28, 2009 Chu et al.
7524302 April 28, 2009 Tower
7534228 May 19, 2009 Williams
7535570 May 19, 2009 Muraishi
7540872 June 2, 2009 Schechter et al.
7542807 June 2, 2009 Bertolero et al.
7544203 June 9, 2009 Chin et al.
7548040 June 16, 2009 Lee et al.
7549564 June 23, 2009 Boudreaux
7549991 June 23, 2009 Lu et al.
7549998 June 23, 2009 Braun
7553278 June 30, 2009 Kucklick
7553298 June 30, 2009 Hunt et al.
7559452 July 14, 2009 Wales et al.
7559887 July 14, 2009 Dannan
7559916 July 14, 2009 Smith et al.
7560006 July 14, 2009 Rakos et al.
7561907 July 14, 2009 Fuimaono et al.
7561916 July 14, 2009 Hunt et al.
7565201 July 21, 2009 Blackmore et al.
7566334 July 28, 2009 Christian et al.
7575144 August 18, 2009 Ortiz et al.
7575548 August 18, 2009 Takemoto et al.
7579005 August 25, 2009 Keeler et al.
7579550 August 25, 2009 Dayton et al.
7582096 September 1, 2009 Gellman et al.
7588177 September 15, 2009 Racenet
7588557 September 15, 2009 Nakao
7591781 September 22, 2009 Hirata
7597229 October 6, 2009 Boudreaux et al.
7604150 October 20, 2009 Boudreaux
7608083 October 27, 2009 Lee et al.
7611479 November 3, 2009 Cragg et al.
7612084 November 3, 2009 James et al.
7615002 November 10, 2009 Rothweiler et al.
7615005 November 10, 2009 Stefanchik et al.
7618398 November 17, 2009 Holman et al.
7621936 November 24, 2009 Cragg et al.
7632250 December 15, 2009 Smith et al.
7635373 December 22, 2009 Ortiz
7637903 December 29, 2009 Lentz et al.
7648519 January 19, 2010 Lee et al.
7650742 January 26, 2010 Ushijima
7651483 January 26, 2010 Byrum et al.
7651509 January 26, 2010 Bojarski et al.
7653438 January 26, 2010 Deem et al.
7654431 February 2, 2010 Hueil et al.
7655004 February 2, 2010 Long
7662089 February 16, 2010 Okada et al.
7666180 February 23, 2010 Holsten et al.
7666203 February 23, 2010 Chanduszko et al.
7670282 March 2, 2010 Mathis
7670336 March 2, 2010 Young et al.
7674259 March 9, 2010 Shadduck
7678043 March 16, 2010 Gilad
7680543 March 16, 2010 Azure
7684599 March 23, 2010 Horn et al.
7684851 March 23, 2010 Miyake et al.
7686826 March 30, 2010 Lee et al.
7697970 April 13, 2010 Uchiyama et al.
7699835 April 20, 2010 Lee et al.
7699864 April 20, 2010 Kick et al.
7710563 May 4, 2010 Betzig et al.
7713189 May 11, 2010 Hanke
7713270 May 11, 2010 Suzuki
7721742 May 25, 2010 Kalloo et al.
7722631 May 25, 2010 Mikkaichi et al.
7736374 June 15, 2010 Vaughan et al.
7744613 June 29, 2010 Ewers et al.
7744615 June 29, 2010 Couture
7749161 July 6, 2010 Beckman et al.
7751866 July 6, 2010 Aoki et al.
7753901 July 13, 2010 Piskun et al.
7753933 July 13, 2010 Ginn et al.
7758577 July 20, 2010 Nobis et al.
7762949 July 27, 2010 Nakao
7762998 July 27, 2010 Birk et al.
7763012 July 27, 2010 Petrick et al.
7765010 July 27, 2010 Chornenky et al.
7766896 August 3, 2010 Kornkven Volk et al.
7770584 August 10, 2010 Danek et al.
7771416 August 10, 2010 Spivey et al.
7771437 August 10, 2010 Hogg et al.
7776035 August 17, 2010 Rick et al.
7780683 August 24, 2010 Roue et al.
7780691 August 24, 2010 Stefanchik
7784663 August 31, 2010 Shelton, IV
7794409 September 14, 2010 Damarati
7794447 September 14, 2010 Dann et al.
7794458 September 14, 2010 McIntyre et al.
7794475 September 14, 2010 Hess et al.
7798386 September 21, 2010 Schall et al.
7798750 September 21, 2010 Clark
7815565 October 19, 2010 Stefanchik et al.
7815566 October 19, 2010 Stefanchik et al.
7815651 October 19, 2010 Skakoon et al.
7815659 October 19, 2010 Conlon et al.
7815662 October 19, 2010 Spivey et al.
7819836 October 26, 2010 Levine et al.
7828186 November 9, 2010 Wales
7828809 November 9, 2010 Skakoon et al.
7833156 November 16, 2010 Williams et al.
7833231 November 16, 2010 Skakoon et al.
7833238 November 16, 2010 Nakao
7837615 November 23, 2010 Le et al.
7842028 November 30, 2010 Lee
7842068 November 30, 2010 Ginn
7846171 December 7, 2010 Kullas et al.
7850660 December 14, 2010 Uth et al.
7857183 December 28, 2010 Shelton, IV
7857820 December 28, 2010 Skakoon et al.
7862546 January 4, 2011 Conlon et al.
7862553 January 4, 2011 Ewaschuk
7867216 January 11, 2011 Wahr et al.
7871371 January 18, 2011 Komiya et al.
7879004 February 1, 2011 Seibel et al.
7883458 February 8, 2011 Hamel
7887530 February 15, 2011 Zemlok et al.
7887558 February 15, 2011 Lin et al.
7892200 February 22, 2011 Birk et al.
7892220 February 22, 2011 Faller et al.
7896804 March 1, 2011 Uchimura et al.
7896887 March 1, 2011 Rimbaugh et al.
7905828 March 15, 2011 Brock et al.
7909809 March 22, 2011 Scopton et al.
7914513 March 29, 2011 Voorhees, Jr.
7916809 March 29, 2011 Tsushima
7918785 April 5, 2011 Okada et al.
7918869 April 5, 2011 Saadat et al.
7922743 April 12, 2011 Heinrich et al.
7927271 April 19, 2011 Dimitriou et al.
7931624 April 26, 2011 Smith et al.
7937143 May 3, 2011 Demarais et al.
7945332 May 17, 2011 Schechter
7947000 May 24, 2011 Vargas et al.
7953326 May 31, 2011 Farr et al.
7955298 June 7, 2011 Carroll et al.
7959627 June 14, 2011 Utley et al.
7959629 June 14, 2011 Young et al.
7963975 June 21, 2011 Criscuolo
7965180 June 21, 2011 Koyama
7967808 June 28, 2011 Fitzgerald et al.
7969473 June 28, 2011 Kotoda
7972330 July 5, 2011 Alejandro et al.
7976458 July 12, 2011 Stefanchik et al.
7976552 July 12, 2011 Suzuki
7985239 July 26, 2011 Suzuki
7985830 July 26, 2011 Mance et al.
7988618 August 2, 2011 Mikkaichi et al.
7988685 August 2, 2011 Ziaie et al.
8007495 August 30, 2011 McDaniel et al.
8021362 September 20, 2011 Deem et al.
8029504 October 4, 2011 Long
8034046 October 11, 2011 Eidenschink
8037591 October 18, 2011 Spivey et al.
8043289 October 25, 2011 Behl et al.
8048067 November 1, 2011 Davalos et al.
8048108 November 1, 2011 Sibbitt et al.
8052699 November 8, 2011 Sherwinter
8057510 November 15, 2011 Ginn et al.
8062306 November 22, 2011 Nobis et al.
8062311 November 22, 2011 Litscher et al.
8066632 November 29, 2011 Dario et al.
8066702 November 29, 2011 Rittman, III et al.
8070759 December 6, 2011 Stefanchik et al.
8070804 December 6, 2011 Hyde et al.
8075572 December 13, 2011 Stefanchik et al.
8075587 December 13, 2011 Ginn
8083787 December 27, 2011 Korb et al.
8088062 January 3, 2012 Zwolinski
8096459 January 17, 2012 Ortiz et al.
8096941 January 17, 2012 Fowler et al.
8100922 January 24, 2012 Griffith
8105342 January 31, 2012 Onuki et al.
8109872 February 7, 2012 Kennedy, II et al.
8114072 February 14, 2012 Long et al.
8114119 February 14, 2012 Spivey et al.
8115447 February 14, 2012 Toya et al.
8118821 February 21, 2012 Mouw
8118834 February 21, 2012 Goraltchouk et al.
8131371 March 6, 2012 Demarals et al.
8147424 April 3, 2012 Kassab et al.
8157813 April 17, 2012 Ko et al.
8157834 April 17, 2012 Conlon
8172772 May 8, 2012 Zwolinski et al.
8182414 May 22, 2012 Handa et al.
8187166 May 29, 2012 Kuth et al.
8200334 June 12, 2012 Min et al.
8206295 June 26, 2012 Kaul
8211125 July 3, 2012 Spivey
8216224 July 10, 2012 Morris et al.
8221310 July 17, 2012 Saadat et al.
8221411 July 17, 2012 Francischelli et al.
8222385 July 17, 2012 Yoshizaki et al.
8241204 August 14, 2012 Spivey
8251068 August 28, 2012 Schnell
8252057 August 28, 2012 Fox
8262563 September 11, 2012 Bakos et al.
8262655 September 11, 2012 Ghabrial et al.
8262680 September 11, 2012 Swain et al.
8267854 September 18, 2012 Asada et al.
8303581 November 6, 2012 Arts et al.
8308738 November 13, 2012 Nobis et al.
8317806 November 27, 2012 Coe et al.
8317814 November 27, 2012 Karasawa et al.
8328836 December 11, 2012 Conlon et al.
8337394 December 25, 2012 Vakharia
8337492 December 25, 2012 Kunis et al.
8343041 January 1, 2013 Byers et al.
8353487 January 15, 2013 Trusty et al.
8357170 January 22, 2013 Stefanchik
8359093 January 22, 2013 Wariar
8361066 January 29, 2013 Long et al.
8361112 January 29, 2013 Carroll, II et al.
8366733 February 5, 2013 Gabel et al.
8377057 February 19, 2013 Rick et al.
8403926 March 26, 2013 Nobis et al.
8409200 April 2, 2013 Holcomb et al.
8425505 April 23, 2013 Long
8430811 April 30, 2013 Hess et al.
8449452 May 28, 2013 Iddan et al.
8449538 May 28, 2013 Long
8454594 June 4, 2013 Demarais
8475359 July 2, 2013 Asada et al.
8475452 July 2, 2013 Van Wyk et al.
8480657 July 9, 2013 Bakos
8480689 July 9, 2013 Spivey et al.
8485968 July 16, 2013 Weimer et al.
8496574 July 30, 2013 Trusty et al.
8500697 August 6, 2013 Kurth et al.
8506564 August 13, 2013 Long et al.
8512335 August 20, 2013 Cheng et al.
8523884 September 3, 2013 Stam et al.
8523939 September 3, 2013 Hausen
8529563 September 10, 2013 Long et al.
8545396 October 1, 2013 Cover et al.
8568410 October 29, 2013 Vakharia et al.
8579897 November 12, 2013 Vakharia et al.
8608652 December 17, 2013 Voegele et al.
8623011 January 7, 2014 Spivey
8636648 January 28, 2014 Gazdzinski
8636730 January 28, 2014 Keppel
8640940 February 4, 2014 Ohdaira
8652150 February 18, 2014 Swain et al.
8668686 March 11, 2014 Govari et al.
8679003 March 25, 2014 Spivey
8685058 April 1, 2014 Wilk
8727967 May 20, 2014 Weitzner
8747401 June 10, 2014 Gonzalez et al.
8753335 June 17, 2014 Moshe et al.
8771173 July 8, 2014 Fonger et al.
8771260 July 8, 2014 Conlon et al.
8828031 September 9, 2014 Fox et al.
8845656 September 30, 2014 Skakoon et al.
8858590 October 14, 2014 Shelton, IV et al.
8880185 November 4, 2014 Hastings et al.
8882786 November 11, 2014 Bearinger et al.
8888792 November 18, 2014 Harris et al.
8906035 December 9, 2014 Zwolinski et al.
8911452 December 16, 2014 Skakoon et al.
8939897 January 27, 2015 Nobis
8956352 February 17, 2015 Mauch
8974374 March 10, 2015 Schostek et al.
8986199 March 24, 2015 Weisenburgh, II et al.
9005198 April 14, 2015 Long et al.
9011431 April 21, 2015 Long et al.
9028483 May 12, 2015 Long et al.
9036015 May 19, 2015 Verburgh et al.
9049987 June 9, 2015 Conlon et al.
9078662 July 14, 2015 Bakos et al.
9186203 November 17, 2015 Spivey et al.
9248278 February 2, 2016 Crosby et al.
9271796 March 1, 2016 Buysse et al.
9295485 March 29, 2016 Conlon et al.
9339328 May 17, 2016 Ortiz et al.
9427255 August 30, 2016 Griffith et al.
9668725 June 6, 2017 Beaven
9788885 October 17, 2017 Long et al.
9788888 October 17, 2017 Bakos et al.
9861272 January 9, 2018 Pell et al.
9883910 February 6, 2018 Conlon et al.
10004558 June 26, 2018 Long et al.
20010023333 September 20, 2001 Wise et al.
20020022771 February 21, 2002 Diokno et al.
20020022857 February 21, 2002 Goldsteen et al.
20020023353 February 28, 2002 Ting-Kung
20020029055 March 7, 2002 Bonutti
20020042562 April 11, 2002 Meron et al.
20020049439 April 25, 2002 Muller et al.
20020068945 June 6, 2002 Sixto, Jr. et al.
20020078967 June 27, 2002 Sixto, Jr. et al.
20020082516 June 27, 2002 Stefanchik
20020082551 June 27, 2002 Yachia et al.
20020095164 July 18, 2002 Andreas et al.
20020107530 August 8, 2002 Sauer et al.
20020133115 September 19, 2002 Gordon et al.
20020138086 September 26, 2002 Sixto, Jr. et al.
20020147456 October 10, 2002 Diduch et al.
20020165592 November 7, 2002 Glukhovsky et al.
20020173805 November 21, 2002 Matsuno et al.
20020183591 December 5, 2002 Matsuura et al.
20030014090 January 16, 2003 Abrahamson
20030018373 January 23, 2003 Eckhardt et al.
20030023255 January 30, 2003 Miles et al.
20030036679 February 20, 2003 Kortenbach et al.
20030069602 April 10, 2003 Jacobs et al.
20030078471 April 24, 2003 Foley et al.
20030083681 May 1, 2003 Moutafis et al.
20030114731 June 19, 2003 Cadeddu et al.
20030114732 June 19, 2003 Webler et al.
20030120257 June 26, 2003 Houston et al.
20030124009 July 3, 2003 Ravi et al.
20030125770 July 3, 2003 Fuimaono
20030130564 July 10, 2003 Martone et al.
20030130656 July 10, 2003 Levin
20030139646 July 24, 2003 Sharrow et al.
20030158521 August 21, 2003 Ameri
20030167062 September 4, 2003 Gambale et al.
20030171651 September 11, 2003 Page et al.
20030176880 September 18, 2003 Long et al.
20030187351 October 2, 2003 Franck et al.
20030216611 November 20, 2003 Vu
20030216615 November 20, 2003 Ouchi
20030220545 November 27, 2003 Ouchi
20030225312 December 4, 2003 Suzuki et al.
20030225332 December 4, 2003 Okada et al.
20030229269 December 11, 2003 Humphrey
20030229371 December 11, 2003 Whitworth
20030236549 December 25, 2003 Bonadio et al.
20040002683 January 1, 2004 Nicholson et al.
20040024414 February 5, 2004 Downing
20040034369 February 19, 2004 Sauer et al.
20040054322 March 18, 2004 Vargas
20040098007 May 20, 2004 Heiss
20040101456 May 27, 2004 Kuroshima et al.
20040104999 June 3, 2004 Okada
20040116948 June 17, 2004 Sixto, Jr. et al.
20040127940 July 1, 2004 Ginn et al.
20040133077 July 8, 2004 Obenchain et al.
20040133089 July 8, 2004 Kilcoyne et al.
20040136779 July 15, 2004 Bhaskar
20040138525 July 15, 2004 Saadat et al.
20040138529 July 15, 2004 Wiltshire et al.
20040138587 July 15, 2004 Lyons, IV
20040138747 July 15, 2004 Kaladelfos
20040161451 August 19, 2004 Pierce et al.
20040167545 August 26, 2004 Sadler et al.
20040176699 September 9, 2004 Walker et al.
20040186350 September 23, 2004 Brenneman et al.
20040193009 September 30, 2004 Jaffe et al.
20040193146 September 30, 2004 Lee et al.
20040193186 September 30, 2004 Kortenbach et al.
20040193188 September 30, 2004 Francese
20040193189 September 30, 2004 Kortenbach et al.
20040193200 September 30, 2004 Dworschak et al.
20040199052 October 7, 2004 Banik et al.
20040199159 October 7, 2004 Lee et al.
20040206859 October 21, 2004 Chong et al.
20040210245 October 21, 2004 Erickson et al.
20040215058 October 28, 2004 Zirps et al.
20040225183 November 11, 2004 Michlitsch et al.
20040225186 November 11, 2004 Horne, Jr. et al.
20040225323 November 11, 2004 Nagase et al.
20040230095 November 18, 2004 Stefanchik et al.
20040230096 November 18, 2004 Stefanchik et al.
20040230161 November 18, 2004 Zeiner
20040243108 December 2, 2004 Suzuki
20040249246 December 9, 2004 Campos
20040249367 December 9, 2004 Saadat et al.
20040249394 December 9, 2004 Morris et al.
20040249443 December 9, 2004 Shanley et al.
20040254572 December 16, 2004 McIntyre et al.
20040260198 December 23, 2004 Rothberg et al.
20040260315 December 23, 2004 Dell et al.
20040260337 December 23, 2004 Freed
20050004515 January 6, 2005 Hart et al.
20050033265 February 10, 2005 Engel et al.
20050033277 February 10, 2005 Clague et al.
20050033319 February 10, 2005 Gambale et al.
20050033333 February 10, 2005 Smith et al.
20050043690 February 24, 2005 Todd
20050049616 March 3, 2005 Rivera et al.
20050059963 March 17, 2005 Phan et al.
20050059964 March 17, 2005 Fitz
20050065397 March 24, 2005 Saadat et al.
20050065509 March 24, 2005 Coldwell et al.
20050065517 March 24, 2005 Chin
20050070754 March 31, 2005 Nobis et al.
20050070763 March 31, 2005 Nobis et al.
20050070764 March 31, 2005 Nobis et al.
20050070947 March 31, 2005 Franer et al.
20050080413 April 14, 2005 Canady
20050080435 April 14, 2005 Smith et al.
20050085693 April 21, 2005 Belson et al.
20050085832 April 21, 2005 Sancoff et al.
20050090837 April 28, 2005 Sixto, Jr. et al.
20050090838 April 28, 2005 Sixto, Jr. et al.
20050096502 May 5, 2005 Khalili
20050101837 May 12, 2005 Kalloo et al.
20050101838 May 12, 2005 Camillocci et al.
20050101984 May 12, 2005 Chanduszko et al.
20050107663 May 19, 2005 Saadat et al.
20050107664 May 19, 2005 Kalloo et al.
20050110881 May 26, 2005 Glukhovsky et al.
20050113847 May 26, 2005 Gadberry et al.
20050119613 June 2, 2005 Moenning et al.
20050124855 June 9, 2005 Jaffe et al.
20050125010 June 9, 2005 Smith et al.
20050131279 June 16, 2005 Boulais et al.
20050131457 June 16, 2005 Douglas et al.
20050137454 June 23, 2005 Saadat et al.
20050143647 June 30, 2005 Minai et al.
20050143690 June 30, 2005 High
20050143774 June 30, 2005 Polo
20050143803 June 30, 2005 Watson et al.
20050149087 July 7, 2005 Ahlberg et al.
20050149096 July 7, 2005 Hilal et al.
20050159648 July 21, 2005 Freed
20050165272 July 28, 2005 Okada et al.
20050165378 July 28, 2005 Heinrich et al.
20050165411 July 28, 2005 Orban, III
20050165429 July 28, 2005 Douglas et al.
20050182429 August 18, 2005 Yamanouchi
20050192478 September 1, 2005 Williams et al.
20050192598 September 1, 2005 Johnson et al.
20050192602 September 1, 2005 Manzo
20050192654 September 1, 2005 Chanduszko et al.
20050209624 September 22, 2005 Vijay
20050215858 September 29, 2005 Vail, III
20050216036 September 29, 2005 Nakao
20050216050 September 29, 2005 Sepetka et al.
20050228224 October 13, 2005 Okada et al.
20050228406 October 13, 2005 Bose
20050234297 October 20, 2005 Devierre et al.
20050240249 October 27, 2005 Tu et al.
20050250983 November 10, 2005 Tremaglio et al.
20050250987 November 10, 2005 Ewers et al.
20050250990 November 10, 2005 Le et al.
20050250993 November 10, 2005