SCANNING PROBE EPITAXY
A dual tip probe for scanning probe epitaxy and a method of forming the dual tip probe are disclosed. The dual tip probe includes first and second tips disposed on a cantilever arm. The first and second tips can be a reader tip and a synthesis tip, respectively. The first tip can remain in contact with a substrate during writing and provide in situ characterization of the substrate and or structures written, while the second tip can perform in non-contact mode to write and synthesis nanostructures. This feature can allow the dual tip probe to detect errors in a printed pattern using the first tip and correct the errors using the second tip.
Latest NORTHWESTERN UNIVERSITY Patents:
- Surface conditioning with cycloalkane carboxylic acids as additives for wear protection
- High temperature, creep-resistant aluminum alloy microalloyed with manganese, molybdenum and tungsten
- Multi-subunit vaccines to elicit both MHC- and CD1-restricted T cell responses
- Automated sample deposition and staining systems and associated methods
- Binary neural network based central processing unit
The benefit under 35 U.S.C. §119 (e) of U.S. Provisional Patent Application No. 61/052,864 filed May 13, 2008, and U.S. Provisional Patent Application No. 61/167,853, filed Apr. 8, 2009, the disclosures of which are incorporated herein by reference, is hereby claimed.
STATEMENT OF GOVERNMENTAL INTERESTThis invention was made with government support under Grant No. N6601-08-1-2044 awarded by the Space and Navel Warfare Systems Center. The government has certain rights in the invention.
BACKGROUND1. Field of the Disclosure
The disclosure generally relates to a probe for scanning probe epitaxy, methods of making the probe, and methods of using the probe to form nanostructures. In particular, the disclosure relates to a probe for scanning probe epitaxy having a dual tip architecture. The disclosure further relates to a method of forming nanostructures using block copolymers that phase separate to form nanostructure templates.
2. Brief Description of Related Technology
There a variety of known tip-based methods of synthesizing nanostructures on a surface. Different capabilities are needed for the synthesis of different nanostructures. For example, for the synthesis of quantum dots, the ability to directly delivery a reactive chemical reagent to a second reagent on a surface in order to make a binary structure is generally needed. The synthesis of quantum dots and nanoparticles can also utilize the application of an electric field that transforms a tip into a nanoevaporator capable of depositing nanoscopic amounts of a high vapor pressure material on a surface. Control of the tip temperature up to hundreds of degrees can be utilized to facilitate the direct catalytic growth of solid state nanostructures like carbon nanotubes and semiconductor nanowires. There are no currently available methods for realizing such capabilities with commercially or even academic laboratory-available scanning probe systems.
SUMMARYIn accordance with an embodiment of the invention, a dual tip micro probe includes a micro cantilever arm comprising first and second arm ends and a major axis disposed along a length of the cantilever arm between the first and second arm ends, a first tip disposed on the arm adjacent to the second arm end, and a second tip disposed on the arm adjacent to and in line with the first tip along the major axis.
In accordance with another embodiment of the invention a dual tip micro probe includes a micro cantilever arm comprising first and second arm ends, a first tip disposed on the arm, adjacent to the second arm end, wherein the first tip is a non-synthesis tip, and a second tip disposed on the arm adjacent to the first tip, wherein the second tip is a synthesis tip.
In accordance with yet another embodiment of the invention, a method of making a dual tip probe includes forming a first opening in a substrate, forming a second opening adjacent to the first opening in the substrate, and forming a first tip layer over the substrate including at least the first opening. The method further includes removing at least a portion of the first tip layer disposed outside the first opening to form the first tip, forming a second tip layer over the substrate including at least the second opening, removing at least a portion of the second tip layer disposed outside the second opening to form the second tip, forming a cantilever arm layer over the substrate and the first and second tips to form the dual tip probe comprising a cantilever arm connected to the first and second tips, and separating the dual tip probe from the substrate.
In accordance with an embodiment of the invention a method of in situ correction of a printed indicia using a dual tip probe includes characterizing a substrate having printed indicia comprising an error, the error comprising a discrepancy between the printed indicia and a predetermined pattern for printed indicia, the discrepancy comprising a printing omission, or an additional feature (e.g., an extra printed feature not corresponding to the predetermined pattern or extraneous feature not corresponding to the predetermined pattern), using a first tip of a dual tip probe comprising first and second tips disposed on a cantilever arm to detect the error in the printed indicia, and correcting the error in the printed indicia using the second tip by printing a correction indicia spatially corresponding to the printing omission or removing the additional feature.
In accordance with an embodiment of the invention, a method of calibrating the force-distance relationship between a synthesis tip and a substrate includes determining a difference between the thicknesses of a reader tip and a synthesis tip of a dual tip probe comprising the reader tip and the synthesis tip disposed on a cantilever arm, contacting the substrate with the reader tip, wherein the synthesis tip does not contact the substrate, applying a force to the cantilever arm to bend the cantilever arm and displace the synthesis tip toward the substrate, determining the amount of bending of the cantilever arm, and calculating the distance between synthesis tip and the substrate using the thickness difference and the amount of cantilever arm bending.
In accordance with yet another embodiment of the invention, a method of adjusting the distance between a synthesis tip of a dual tip probe and a substrate includes contacting a substrate with a non-synthesis tip of a dual tip probe comprising the non-synthesis tip and a synthesis tip disposed on a cantilever arm, the non-synthesis tip and the synthesis tip disposed in line with each other on a major axis of the cantilever arm, and applying a force to the cantilever arm to bend the cantilever arm and displace the synthesis tip toward the substrate.
In accordance with an embodiment of the invention a method of forming a nanostructure, the method includes: patterning a block copolymer on a substrate, wherein the block copolymer phase separates to form a nanostructure template, loading the nanostructure template with a nanostructure precursor material, and removing the polymer to form the nanostructure.
Scanning Probe Epitaxy (SPE) is the atom by atom growth of nanostructures from a surface through the controlled delivery of chemical reagents to that surface under environmental control. SPE can enable the tip-based synthesis of carbon nanotubes, semiconductor nanowires, nanoparticles, quantum dots, and other printed indicia or patterns with control over the architecture (e.g., length, diameter, and composition) of each nanostructure or pattern and control over the orientation and spacing of the nanostructures on a surface. Tip-based synthesis reactions can occur, for example, on a substrate where the tip delivers the chemical reagents to the substrate. Alternatively, the reaction can occur at the tip surface where reagents in the gas phase are delivered to the tip and a controlled pulse of energy can release the nanostructure from the tip to a surface site or substrate of interest.
Dual Tip Probe StructureReferring to
The inclusion of both a reader tip and a synthesis tip on a single cantilever arm can allow for the simultaneous or substantially simultaneous (a) measurement of the topology of a surface and (b) synthesis of nanostructures or printing of indicia on the substrate. This can allow for in situ correction of an error. For example, the dual tip probe can be used to detect, with the first or reader tip, an error in a printed indicia. The error can be, for example, an omission in the printed indicia. The error can also be, for example, an additional printed feature, such as an extra printed feature or an extraneous feature not introduced via printing (e.g., a flaw in the substrate, or other extraneously introduced material). The second tip can then be used to correct the error either by printing a correction indicia spatially corresponding to the printing omission or by removing the additional feature. An extra printed feature can be removed, for example, by etching the extra printed feature, for example, by depositing an etchant with the second tip onto the extra printed feature. Where the printed indicia is a circuit, for example, the error can be a gap in the circuit. For example, where the printed indicia is a circuit and the error is a gap in the circuit, the second tip can be used to print or form a conducting nanowire in the gap to reconnect the circuit. The error in a circuit can also be, for example, an extra conductive wire or dot that erroneously couples portions of the circuit. This error can be corrected, for example, by depositing with the second tip an etchant or other material to remove the extra wire or dot from the circuit pattern. Any known tip based printing and removal methods can be used for correction of a detected error in a printed indicia. For example, it is well known that certain metal salts (e.g., metal halides) are more volatile than the parent metal. Thus, extra printed metal or extraneous metal can be removed by depositing a suitable material that reacts with the metal to form a volatile species that evaporates from the substrate.
The dual tip probe can also be used, for example, for in situ correction of a printed indicia while printing the indicia using the second tip. A printed indicia can be printed using the second tip and simultaneously or substantially simultaneously characterized using the first tip to detect errors in the printed indicia. The writing of the printed indicia and the detection of errors using the synthesis and reader tips, respectively, can also occur, for example, sequentially. Then, as described above, the error can be corrected by reprinting with the second tip.
The dual tip structure can also allow for simultaneously working in both contact and non-contact mode. For example, the synthesis tip can operate in a non-contact mode, while the reader tip can be in contact with the surface and operate in contact mode. This can aid in preventing synthesis tip wear due to contact with the substrate. This can be especially useful with sharp synthesis tips that are more susceptible to wear when operated in contact mode.
Referring back to
The cantilever arm has first and second ends, with the first and second tips disposed adjacent the second end. The cantilever arm can have any suitable length, for example, in a range of 100 to 500 μm. Other suitable lengths include, for example, ranges of 100 μm to 400 μm, 150 μm to 350 μm, 100 μm to 300 μm, 200 μm to 500 μm, 200 μm to 400 μm, and 200 μm to 300 μm. The length can be for example, about 100, 150, 200, 250, 300, 350, 400, 450, or 500 μm. The cantilever arm can have any suitable thickness, for example, in a range of 1 μm to 100 μm. Other suitable thickness include ranges of 10 μm to 80 μm, 20 μm to 60 μm, and 30 μm to 50 μm. The thickness can be for example, about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 μm.
Referring to
With reference to
The second tip 32 is disposed on the cantilever arm 26 adjacent to the first tip 30. The second tip 32 can be adjacent the first tip 30 and in line with the major axis of the cantilever arm 26. In the alternative, the second tip 32 can be offset from the first tip 30 toward the first end 24 of the cantilever arm 26 by a distance x, as illustrated in
The second tip can be designed as a synthesis tip for additive fabrication, such as synthesizing nanostructures and/or printing (e.g. depositing) indicia or patterns. The second tip can also be designed as a tip for subtractive fabrication to remove features from a substrate. For example, the second tip can be used to deposit an etchant to remove a portion or a feature of a substrate. The tip can also be used, for example, to deposit a material that reacts with a metal feature on a substrate that reacts with the metal to form a volatile species, such as a metal salt, for example, a metal halide, that evaporates from the substrate. As used herein, “synthesis tip” refers to a tip with either additive fabrication capabilities (forming structures onto a substrate), subtractive fabrication capabilities (i.e. removing structures from a substrate), or alteration capabilities (e.g., reaction, phase change, magnetic properties).
The second tip can operate in either contact mode, in which the second tip is in contact with a substrate, or preferably in non-contact mode, in which the second tip is disposed above the substrate. The second tip can be formed, for example, from a conductive material such as, for example, doped polysilicon, doped diamond, a metal, a hard metal, or a metal oxide. Suitable metals include Au, Al, Ni, Fe, Pt, Os, Ru, Ir, In, W, Ag, and Cr. Suitable hard metals include TiN, TiC, WC, and TaN. Suitable metal oxides can be, for example, InO and IrO2. The second tip can have a thickness in a range of 1 μm to 20 μm, for example. Other suitable thickness include, for example, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 μm. The first and second tips can have the same thickness or can have different thicknesses. For example, the first tip can be thicker than the second tip (see, for example,
Referring to
In addition to the second tip architectures described above, the synthesis tip can be any known or suitable synthesis or writing tip, such as those used with dip pen nanolithography and atomic force microscopy. For example, the synthesis tip can be a high temperature tip (as illustrated in
Alternatively, a substrate mold created during the mold and transfer process for fabricating the dual tip probes (as is described in detail herein) can be used as ink wells for loading the dual tip probe for writing, such as for DPN. As a result of the fabrication process, the openings of the substrate mold are inherently aligned with the first and second tips (e.g., in relative location, shape, dimension, etc.). This relationship can be particularly advantageous when loading an array of dual tip probes formed from a substrate mold. One of both of the openings can be filled with an ink, depending whether one or both of the first and second tips are to be loaded with ink. The first and second tips can be aligned with the openings and then the probe can be lowered toward the substrate mold such that the first and second tips are at least partially disposed within the first and second openings to contact an ink contained within at least one of the openings. This method can be particularly useful for loading only a single tip of the dual tip probe with the ink, as the mold inherently separates the tips into the two openings, isolating the non-synthesis tip from the ink.
Referring to
The distance between the apex of the second tip and the substrate can be controlled using the dual tip design. For example, the relationship between the applied force on the cantilever arm and the distance between the second tip and the substrate of a dual tip probe can be calibrated using a force-distance curve as shown in
wherein Δh2, Δz, L1, and L2 are defined as illustrated in
With reference to
Once the force-distance relationship is known, the distance or gap between the second tip and the substrate can be modulated, e.g. during a writing process, by varying the applied force. The distance between the second tip and the substrate can affect the writing method and can be used to vary dimensions of the nanostructure synthesized. For example, when a second tip is a thermal tip or an electric field controlled tip, the distance between the second tip and the substrate can affect the thermal or electric field gradient between the substrate and the second tip. Changes in the gradient can be, for example, used to alter dimensions of the synthesized nano structures.
Referring to
Referring to
The dual tip probe can further include means for adjusting the stiffness of the probe. Referring to
Referring to
The dual tip probe can be designed to synthesize a variety of nanostructures and patterns. Synthesis of various nanostructures using the dual tip probe can be done using synthesis conditions as are well-known in the art. For example, quantum dots, such as CdS and CdSe quantum dots are typically synthesized at a temperature in excess of about 200° C. using, for example, organometallic precursors in, for example, an inert atmosphere. Quantum dots can also be synthesized using, for example, an ambient atmosphere. Carbon nanotubes are typically synthesized at a temperature in excess of about 550° C., using for example, catalytic nanoparticles. The catalytic nanoparticles can include, for example, Fe, Ni, and Co nanoparticles. The carbon nanotubes can be synthesized in a hydrocarbon environment, such as, for example, CH4, C2H2, or C2H5OH, using a carrier gas, such as, for example, Ar. Silicon semiconducting nanowires are typically synthesized at a temperature in excess of 400° C., using a catalytic nanoparticle, such as, for example, Au. The silicon semiconducting nanowires can be synthesized in a SiH4 and H2 environment. InP semiconducting nanowires are typically synthesized at a temperature in a range of 240° C. to 300° C. Catalytic nanoparticles, such as Bi, can be used for synthesis of the nanowires, in an environment, for example, of polydecene solutions of In(myristate) and P(SiMe3). The synthesis tip of the dual tip probe can be adapted to use the above-described processing conditions for the formation of various nanostructures.
Evaporator Synthesis TipReferring to
The evaporator synthesis tip can be used, for example, for direct metal deposition onto a substrate. Direct metal deposition can be useful for formation of nanowires and carbon nanotube catalysis, plasmonic structures, and in circuitry repair. Field-induced deposition from an electric field controlled synthesis tip enables control of the feature size by varying pulse width and pulse bias voltage. Metal evaporation can occur, for example, under negative bias, with voltages, for example, in a range of −8 V to −100 V. Other suitable voltages include, for example, −10 V to −90 V, −20 V to −80 V, −30 V to −70 V, and −40 V to −60V, The voltage can be for example, about −8, −9, −10, −15, −20, −25, −30, −35, −40, −45, −50, −55, −60, −65, −70, −75, −80, −85, −90, −95, and −100 V.
The evaporator tip can also be used, for example, to synthesize semiconducting nanowires and carbon nanotubes (CNT). Metallic precursor for nanowire and CNT growth can be delivered to a surface using field induced evaporation from the evaporator tip. The as-deposited precursor can then be exposed to a gaseous environment and heated to induce growth the nanowires and/or carbon nanotubes.
For example, gold nanoparticles can be used as a catalyst for epitaxial growth of semiconducting silicon nanowires. Gold nanoparticles can be deposited onto the synthesis tip and then transferred to the substrate using field induced evaporation. A Cr layer can be first deposited onto the synthesis tip as an adhesion layer. The Cr layer can have a thickness, for example, in a range of 5 nm to 50 nm. Other suitable thickness include, for example from 10 nm to 40 nm, 15 nm to 35 nm, 20 nm to 30 nm. The Cr layer thickness can be, for example, about 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nm. The gold layer can have a thickness, for example, in a range of 50 nm to 500 nm. Other suitable thicknesses include, for example, from 60 nm to 400 nm, 70 nm to 300 nm, 80 nm to 200 nm, and 100 nm to 200 nm. The gold layer can have a thickness, for example, of about 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, or 500 nm. The gold nanoparticles can be deposited onto the substrate using the dual tip probe. Gold nanoparticles can be deposited, for example, by applying a bias to the tip. The bias can be in a range, for example, of 8 V to 100 V. Other suitable voltages include, for example, 10 V to 90 V, 20 V to 80 V, 30 V to 70 V, and 40 V to 60V, The voltage can be for example, about 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100 V. The bias can also be applied in short pulses to the tip. For example, pulses in a range of 1 to 100 ms can be used. Other suitable pulse times include, for example, 5 ms to 80 ms, 10 ms 70 ms, 20 ms to 60 ms, and 30 ms to 50 ms. The pulse time can be for example, about 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 ms. The pulses can be controlled using, for example LABVIEW software (National Instruments, Austin, Tex.) that operates a pulse generator through a GPIB interface. Upon introduction of a gas, such as silane gas, for example, formation of the nanowires can proceed through the vapor-liquid-solid mechanism. The diameter of the nanowire can depend upon the size of the gold nanoparticle precursor.
Referring to
The dual tip design allows for the synthesis through pulsed evaporation in a non-contact mode. The first tip can operate in contact mode to provide in situ characterization of the surface and/or the structures formed, while the evaporator synthesis tip (i.e. the second tip) remains disposed above the substrate. As one advantage, this architecture decreases or avoids the consumption, wear, and change in morphology or dimension of the synthesis tip, which can have one or more benefits such as improving resolution, feature size control, and reproducibility. This architecture can also allow for the extension of pulsed scanning evaporation deposition of non-conducting precursors that have lower vapor pressure than that of the tip metal, such as, for example, stoichiometric solid precursors including bulk CdSe and CdS solids, and decomposable precursors including CoCl2, FeCl2, and NiCl2.
Thermal Catalyst-Tipped Synthesis TipReferring to
The resistive heater can be formed by patterning metal wires onto the second probe, which can be for example a silicon nitride probe. The metal wires can include, for example, a primary conductor, such as Au wires, a diffusion barrier, such Pt wires, and an adhesive, such as Cr. The resistive heater can be wire bonded onto the tip. The temperature of the tip can be determined using the following relationship by applying a bias across the restive heater:
R(T)=R0(1+αT)
wherein R(T) is the resistant at temperature T, R0 is the resistance at a reference temperature (i.e. room temperature), and α is the temperature coefficient of the resistance. The resistance increases as the applied power increases. Preferably, the tips can be heated to a temperature in a range of 100° C. to 700° C.
Referring to
Referring to
Referring to
First and second cavities are formed in the substrate. The cavities can be formed, for example, by anisotropically etching the substrate. The substrate can be etched using a mask patterned with two openings defining the first and second cavities. The mask can be formed, for example, by depositing a mask layer onto the substrate and patterning the mask to form the two openings. The mask layer can be, for example, a silicon oxide layer. The mask layer can have a thickness in a range of 1000 Å to 10000 Å. Other suitable thicknesses include, for example 1100 Å to 9000 Å, 1200 Å to 8000 Å, 1400 Å to 7000 Å, 1600 Å to 6000 Å, 1800 Å to 8000 Å, 2000 Å to 6000 Å, and 4000 Å to 5000 Å. The mask layer can have a thickness for example, of about 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, and 10000 Å. The mask layer can be, for example, thermally grown on the substrate. For example, a 5000 Å silicon oxide layer can be thermally grown on a silicon wafer at 1110° C. for about 13 hours to form the mask layer. The openings can be formed, for example, using electron-beam lithography or can be etched using, for example, wet chemical etching. The wet chemical etching can use HF as the etching solution. The size of the openings can be correlated to the depth of the subsequently formed cavities. For example, if the first opening is formed larger than the second opening, a first cavity that is deeper than the second cavity will be subsequently formed. This can be further correlated to the thickness (height, as measured from the base connected to the cantilever arm) of the subsequently formed tips. Accordingly, the thickness difference between the first and second tips can be controlled by controlling dimensions of the openings formed in the mask.
The cavities can then be etched into the substrate, for example, by a wet chemical etching process, using, for example KOH. The cavities have a shape corresponding to the desired tip shape. For example, the cavities can have a pyramidal shape where it is desired to form pyramidal tips. The mask can then be removed, using for example, BOE. The cavities can also be formed, for example, by first patterning square openings onto a substrate, for example an oxidized <100> silicon wafer, and then immersing the substrate can then be immersed in an etch solution, such as KOH, to anisotropically etch pyramidal pits into the substrate. Etching is generally terminated at <111> for a <100> silicon wafer, which can prevent over-etching of the substrate.
A sacrificial layer can then be formed on the substrate including the cavities. The sacrificial layer can be for formed, for example, by oxidation, chemical vapor deposition, low pressure chemical vapor deposition, or physical vapor deposition. The sacrificial layer can be formed, for example, from metals such as, copper, permalloy, tungsten, titanium, aluminum, silver, gold, oxides, such as silicon oxide, silicon dioxide, silicon oxynitride, and zinc oxide, nitrides, such as silicon nitride and titanium nitride, polymers, such as poly(dimethylsiloxane) (PDMS), polyimide, parylene, elastomers, such as silicone and rubber, and photoresists such as SU-8. The sacrificial layer can have a thickness, for example, in a range of 500 Å to 5000 Å. Other suitable thicknesses include, for example, 600 Å to 4000 Å, 700 Å to 3000 Å, 800 Å to 2000 Å, and 900 Å to 1000 Å. The sacrificial layer can have a thickness, for example, of about 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, or 5000 Å.
A first tip layer for forming the first tip can then be deposited onto the sacrificial layer. The first tip layer is then patterned to remove at least a portion of the first tip layer disposed outside the first cavity. The first tip layer can also be patterned such that only a portion of the first tip layer disposed in the first cavity remains to form the first tip. The first tip layer can, for example, be photolithographically patterned and chemically etched to form the first tip. If the first tip is an imaging tip, then the first tip layer preferably includes, for example, a dielectric layer, such as a silicon nitride layer or a silicon dioxide layer, which can electrically isolate the tip from the substrate during imaging. Other suitable materials for imaging tips are known in the art and are described elsewhere herein. The first tip layer can be etched, for example, using a plasma etching.
A second tip layer for forming the second tip can be deposited onto the sacrificial layer. The second tip layer can be deposited, for example, by low pressure chemical vapor deposition The second tip layer can then be patterned to remove at least a portion of the second tip layer disposed outside the second cavity. The second tip layer can also be patterned such that only a portion of the second tip layer disposed in the second cavity remains to form the second tip. The second tip layer can, for example, be photolithographically patterned and chemically etched to form the second tip. If the second tip is a writing tip, then the second tip layer can be, for example, a conductor, such as a doped polysilicon layer or a metal layer, such as gold or aluminum. Other suitable materials for the writing and synthesis tips are known in the art and are described elsewhere herein.
A cantilever arm layer can be deposited on the sacrificial layer including the first and second layers. The cantilever arm layer can be optionally patterned to remove at least a portion of the cantilever arm layer disposed on the patterned first and second tip layers. Alternatively, the first and/or second tip layers can be patterned such that one or both of the first and/or second tip layers extend outside of the first and/or second cavities to form the cantilever arm. The tip layers and the cantilever arm layer can be deposited so that at least a portion of the layers overlap. A handle wafer can then be attached to the cantilever arm layer. The sacrificial layer can then be selectively etched to remove the dual tip probe from the substrate.
Where a thermal or electric field controlled dual tip probe is desired, a conductive material can be deposited in or around the second tip. For example, an electrical biasing layer, an electrical insulating layer, and an electrical conductor or heater can be sequentially deposited on top of the second tip layer. One or more of the electrical biasing layer, the electrical insulating layer, and the electrical conductor layer can optionally be formed to extend within at least a portion of the second tip opening. These layers can be used, for example, to form the cantilever arm. A handle can be attached to the cantilever arm and wires can be attached to the handle, for example, to provide an electrical feed through. A thermal tip can also be formed by attaching a resistive heater as described above to the one or both of the first and second tips, using for example, a wire bonding method.
Referring to
The mold and transfer method can provide one or more advantages, including, for example, tip uniformity within an array of tips, a variety of tip and cantilever material combinations can be used, various tip and cantilever materials can be integrated into the same array, providing multiplexed functions, uniform tip sharpness, a master substrate that can be reused thereby reducing cost of fabrication over time, a master substrate that can be used as ink wells for loading one or more tips with an ink or other material, and high fabrication yield and uniformity. The shape and dimensions of the tip can be controlled and pre-determined in the mold and transfer process by photolithography and self-limiting etching process. The sharpness of the tip can be controlled and determined by the etched cavities in the substrate and the subsequently deposited tip layers. The conventional mold and transfer process has been used to realize a million pen probe array (single tipped probes) with 100% yield.
Software Platform for Pulsed Evaporation SynthesisA manual application of voltage pulses to the evaporator synthesis tip and human-assisted repetition of experiments can introduce error and become prone to human errors. A software platform can be used to automate and enable precise experiments of evaporation from an electric-field controlled tip using voltage pulses. The software can enable high-precision control of the movement of the evaporator synthesis tip and application of voltage pulses on the evaporator synthesis tip. The software can also enable the monitoring of the current flowing through the tip/surface interface.
Referring to
The software can include a set of two processes running in two different physical locations. Process 1 is a program. The program source code can be programmed into, for example, Labview (National Instruments), a graphical interface programming language. The Process 2 can be run, for example, over an AFM control software, and the source code can be programmed, for example, using Nanoscript functions provided by the AFM manufacturer and general C programming language. The two processes wait and exchange signals with the other process for timing and scheduling the whole progress of hardware (HW) control.
Process 1 controls the data acquisition board (DAQ) to acquire the READY signal (voltage pulse) from the AFM controller. Process 1 further controls the data acquisition board (DAQ) to send out an OK signal to the AFM controller, so the AFM controller stops waiting and proceeds with the next instructions. Process 1 also controls the function generator, and sets the amplitude, pulse width, pulse period, pulse number, and pulse shooting.
Process 2 controls the vertical and lateral transitional movements of the probe. Process 2 control can be designed, for example, to control the vertical and lateral transitional movements of a dual tip probe having first and second tips as described above. Process 2 control can further control the amount of cantilever bending to operate the first tip in contact mode while simultaneous operating the second tip in non-contact mode and modulating the distance between the second tip and the substrate. Process 2 also controls a Signal Access Module (SAM) to send out the READY signal to Process 1. Process 2 controls the SAM to read in the OK signal from Process 1 to stop waiting and proceed with the next instructions.
The following exemplary flow description describes the role and the signaling sequence between different units of the system during two succeeding “feedback on” events. The probe controlled in the flow description can be any known probe, for example, an AFM probe or the above-described dual tip probe. The two separate process (Process 1 and 2) can run on different computers (PC1 and PC2), and can exchange signals to schedule the events.
Flow Description (Between Two Successive Feedback-Ons)
Referring to
The following examples are provided for illustration and are not intended to limit the scope of the invention.
Example 1 Method of Forming a Dual Tip ProbeReferring to
A 500 nm Au layer was lifted off as the seed layer for the dual-tip cantilever and holder. A 10 μm thick AZ4260 layer was patterned as the mold and 1 μm NiFe was electroplated inside the cantilever and probe holder area following 100 nm Au deposition as the adhesion layer inside the probe holder area. The 500 μm thick SU8 holder was spun on the wafer at 500 rpm for 30 s. The thickness of the spun SU-8 2075 was about 500 μm. The coated wafer was prebaked; the hotplate was ramped up from room temperature to 105° C. using 150° C./hr ramp and soaked for 15 hr. Following the prebake, the SU8 coated wafer was exposed for 2880 mJ. Then, the wafer was post-exposure baked by ramping the temperature from room temperature to 105° C. using 150° C./hr. The wafer was soaked at 105° C. for 0.5 hr, and then the temperature was ramped down at 15° C./hr to room temperature. Finally, the SU8 coated wafer was developed for 1 hour to complete the fabrication process. The dual-tip probes were released by immersing the wafers in an aqueous acetic acid/peroxide solution (Acetic Acid:H2O2:H2O=1:1:10) for 4 hours.
Referring to
The above-described mold and transfer method was used to make a dual tip probe, with two modifications to the method: (1) A Cu sacrificial layer is chosen as the electroplating seed layer so that the metal cantilever has only a single NiFe layer, and (2) the second metal probe was protected using a photoresist during the NiFe electroplating so that the thickness of the second metal probe was precisely controlled by the thermal evaporation. Referring to
Table 1 illustrates the dimensions of various dual tip probes formed in accordance with the above-described method.
Referring to
Referring to
The spring constants for the silicon nitride dual tip probes tested was assumed for all measurements to be 0.200 N/m with a sensitivity of 3.506 mV/nm. This estimated spring constant value was used because the silicon nitride dual tip probes were formed from masks used for the commercially available NanoInk Active Pen arrays. For the Active Pen arrays, the reported spring constant of silicon nitride tips which were 30 μm wide and 150 μm long is 0.180 N/m; these geometric parameters most closely resemble the dual tip probes tested, which have a maximum width of 40 μm and maximum length of 164 μm.
For the dual tip probes with a reflective back layer, a photodiode was able to detect and measure a sufficient laser signal. Thus, it was possible to make force-distance measurements and detect distinct points of contact for both the first and second tip. The contact of the second tip is indicated by a second knee in the force distance curve with a concomitant increase in the force required to further extend the z-piezo. Though in the single tip force-distance curve there was a flat line for the points where there was no tip-substrate contact, the dual tip probe does not generate a straight line when not in contact. Without intending to be bound by theory, it is believed that this anomalous behavior is the result of the dual tip cantilever bending beyond the range of the z-piezo (13 μm). For bending that exceeds this amount, there may be a laser signal detected that is not real and not representative of tip-substrate contact.
Referring to
In another dual tip design comparison, the effect of ribs disposed between the first and second tips was examined by comparing Design 110 and 213. Again, it was difficult to observe distinct contact points for Design 213 that distinguish the first tip from the second tip, and only one stiffness value was measured, −752 nN/μm (
Imaging capabilities of the dual-tip probes were demonstrated in both contact mode and non-contact mode using a calibration grid. Images were obtained on a 9.9×9.9×0.175 μm calibration grid using the dual tip probe (
Gold was evaporated using electric field induced evaporation of gold from a conductive synthesis tip onto a silicon dioxide surface. Low-resistivity AFM tips were used as the synthesis tip and were coated with a 5 nm Cr adhesion layer followed by the thermal deposition of a 100 nm gold layer. Patterns of gold on the surface were generated by electric-field induced migration of the gold from the probe tip to the surface. A custom-built platform was used to induce the deposition of gold onto the surface. Short electrical pulses (1-100 ms) of 20 V bias were applied to the tip. The pulses were controlled with custom LABVIEW software (National Instruments, Austin, Tx) that operated a pulse generator through a GPIB interface. The probe was mounted onto a Multimode III AFM platform (Digital Instruments) with a MMTR-TUNA-CH cantilever holder that isolates the piezo from the electric fields applied to the probe. Evaporation was induced in contact mode, and pulses were monitored in real-time with an oscilloscope.
The resulting patterns of gold nanoparticles were observed by both AFM topological imaging (
Referring to
Referring to
Referring to
Following a one minute plasma clean, nanostructure precursor materials (e.g., silver nitrate, sodium citrate, and sodium hydroxide) were dropcast onto the wells. These precursors were exposed to UV light for about 30 minutes form nanoparticles. Nanoparticles, however, did not form inside the wells. Without intending to be bound by theory, it is believed that this is most likely because of the high surface tension of water. By creating nanowells using several different approaches, nanoarchitectures with different size, shape and surface chemistry can be created.
While the present invention has now been described and exemplified with some specificity, those skilled in the art will appreciate the various modifications, including variations, additions, and omissions that may be made in what has been described. As one example, while various embodiments have been described as including a cantilever with two tips, other embodiments are contemplated to have more than two tips, e.g., three, four, or five tips, without limit. Accordingly, it is intended that these modifications also be encompassed by the present invention and that the scope of the present invention be limited solely by the broadest interpretation that lawfully can be accorded the appended claims.
All patents, publications and references cited herein are hereby fully incorporated by reference. In case of conflict between the present disclosure and incorporated patents, publications and references, the present disclosure should control.
Claims
1. A dual tip micro probe, comprising:
- a micro cantilever arm comprising first and second arm ends and a major axis disposed along a length of the cantilever arm between the first and second arm ends;
- a first tip disposed on the arm adjacent to the second arm end; and
- a second tip disposed on the arm adjacent to and in line with the first tip along the major axis.
2. The dual tip probe of claim 1, wherein the arm comprises first and second arm sections disposed between the first and second arm ends, the first arm section having a width greater than the second arm section, and the first and second tips being disposed on the second arm section.
3. The dual tip probe of claim 1, wherein the first and second tips are inverted pyramids comprising a base and an apex, wherein the base is operatively coupled to the arm.
4. The dual tip probe of claim 3, wherein the second tip further comprises an aperture formed at the apex.
5. The dual tip probe of claim 4, wherein the aperture has a diameter in a range of about 5 nm to about 200 nm.
6. The dual tip probe of claim 1, wherein the second tip is a hollow tip.
7. The dual tip probe of claim 1, wherein the first tip and the second tip have the same thickness.
8. The dual tip probe of claim 1, wherein the first tip has a first thickness and the second tip has a second thickness different from the first thickness.
9. The dual tip probe of claim 1, wherein the first tip is a non-synthesis tip and the second tip is a synthesis tip for forming nanostructures on or in a substrate.
10. The dual tip probe of claim 9, wherein the first tip is a surface topology measurement tip.
11. The dual tip probe of claim 1, wherein the second tip is a synthesis tip selected from the group consisting of an aperture probe synthesis tip, a catalyst tipped synthesis tip, a resistively heated high temperature synthesis tip, an elastomer gel synthesis tip, a polymer synthesis tip, and an electric field control synthesis tip.
12. The dual tip probe of claim 11, wherein the synthesis tip is a high temperature synthesis tip and the high temperature synthesis tip comprises a resistive heater disposed on the tip.
13. The dual tip probe of claim 1, wherein the first tip is formed from a material selected from the group consisting of silicon, silicon oxide, silicon nitride, gold, silver, copper, and tungsten.
14. The dual tip probe of claim 1, wherein the second tip is formed of a material selected from the group consisting of doped polysilicon, a metal, a hard metal, and a metal oxide.
15. The dual tip probe of claim 14, wherein the metal is selected from the group consisting of Au, Ag, Al, Ni, Fe, Pt, Os, Ru, Ir, In, W, and Cr.
16. The dual tip probe of claim 14, wherein the hard metal is selected from the group consisting of TiN, TiC, WC, and TaN.
17. The dual tip probe of claim 14, wherein the metal oxide is selected from the group consisting of IrO2 and InO.
18. The dual tip probe of claim 1, wherein the arm is formed from a material selected from the group consisting of silicon, silicon nitride, silicon oxide, silver, gold, aluminum, tungsten, and copper.
19. The dual tip probe of claim 1, wherein the first and second tips are separated by a distance in a range of 1 μm to 50 μm, measured as the distance from the apex of the first tip to the apex of the second tip.
20. A dual tip micro probe, comprising:
- a micro cantilever arm comprising first and second arm ends;
- a first tip disposed on the arm, adjacent to the second arm end, wherein the first tip is a non-synthesis tip; and
- a second tip disposed on the arm adjacent to the first tip, wherein the second tip is a synthesis tip.
21. The dual tip micro probe of claim 20, wherein the cantilever arm is adapted to bend such that the first tip will contact a substrate while the second tip will remain disposed above the substrate.
22. The dual tip probe of claim 20, wherein the arm comprising first and second arm sections disposed between the first and second arm ends, the first arm section having a width greater than the width of the second arm section, and the first and second tips being disposed on the second arm section.
23. The dual tip probe of claim 20, wherein the first and second tips are inverted pyramids comprising a base and an apex, wherein the base is operatively coupled to the arm.
24. The dual tip probe of claim 23, wherein the second tip further comprises an aperture formed at the apex.
25. The dual tip probe of claim 24, wherein the aperture has a diameter in a range of about 5 nm to about 200 nm.
26. The dual tip probe of claim 20, wherein the second tip is a hollow tip.
27. The dual tip probe of claim 20, wherein the first tip and the second tip have the same thickness.
28. The dual tip probe of claim 20, wherein the first tip has a first thickness and the second tip has a second thickness different from the first thickness.
29. The dual tip probe of claim 20, wherein the second tip is a synthesis tip selected from the group consisting of an aperture probe synthesis tip, a catalyst tipped synthesis tip, a resistively heated high temperature synthesis tip, an elastomer gel synthesis tip, a polymer synthesis tip, and an electric field control synthesis tip.
30. The dual tip probe of claim 29, wherein the synthesis tip is a high temperature synthesis tip and the high temperature synthesis tip comprises a resistive heater disposed on the tip.
31. The dual tip probe of claim 20, wherein the first tip is formed from a material selected from the group consisting of silicon, silicon oxide, silicon nitride, gold, silver, copper and tungsten.
32. The dual tip probe of claim 20, wherein the second tip is formed of a material selected from the group consisting of doped polysilicon, doped diamond, a metal, a hard metal, and a metal oxide.
33. The dual tip probe of claim 32, wherein the metal is selected from the group consisting of Au, Al, Ag, Ni, Fe, Pt, Os, Ru, In, Ir, W and Cr.
34. The dual tip probe of claim 32, wherein the hard metal is selected from the group consisting of TiN, TiC, WC, and TaN.
35. The dual tip probe of claim 32, wherein the metal oxide is selected from the group consisting of InO and IrO2.
36. The dual tip probe of claim 20, wherein the arm is formed from a material selected from the group consisting of silicon, silicon nitride, silicon oxide, silver, gold, aluminum, tungsten, and copper.
37. The dual tip probe of claim 20, wherein the first and second tips are separated by a distance in a range of 1 μm to 50 μm, measured as the distance from the apex of the first tip to the apex of the second tip.
38. A method of making a dual tip probe, comprising:
- forming a first opening in a substrate;
- forming a second opening adjacent to the first opening in the substrate;
- forming a first tip layer over the substrate including at least the first opening;
- removing at least a portion of the first tip layer disposed outside the first opening, to form the first tip;
- forming a second tip layer over the substrate including at least the second opening;
- removing at least a portion of the second tip layer disposed outside the second opening, to form the second tip;
- forming a cantilever arm layer over the substrate and the first and second tips, to form the dual tip probe comprising a cantilever arm connected to the first and second tips; and
- separating the dual tip probe from the substrate.
39. The method of claim 38, comprising forming the first and second openings as pyramidal openings.
40. The method of claim 38, comprising etching the substrate to form the first and second openings.
41. The method of claim 38, comprising forming the first tip layer from a material selected from the group consisting of silicon, silicon oxide, silicon nitride, gold, silver, copper, and tungsten.
42. The method of claim 38, comprising forming the second tip layer from a material selected from the group consisting of doped polysilicon, doped diamond, a metal, hard metal, or metal oxide.
43. The method of claim 38, wherein the metal is selected from the group consisting of Au, Al, Ag, Ni, Fe, Pt, Os, Ru, In, W, Ir, and Cr.
44. The method of claim 38, comprising forming the cantilever arm layer from a material selected from the group consisting of silicon, silicon nitride, silicon oxide, silver, gold, aluminum, tungsten, and copper.
45. The method of claim 38, further comprising removing at least a portion of the cantilever arm layer disposed in the first and second openings.
46. The method of claim 38, further comprising forming a sacrificial layer over the substrate including the first and second openings before forming the first and second tip layers, and further comprising etching the sacrificial layer to separate the dual tip probe from the substrate.
47. The method of claim 38, comprising forming the arm layer by sequentially depositing an electrical biasing layer, an insulating layer, and conductive layer onto the substrate including the first and second tips.
48. The method of claim 38, further comprising wire bonding a resistive heater on the second tip by wire bonding.
49. A method of in situ correction of a printed indicia using a dual tip probe, the method comprising:
- characterizing a substrate having printed indicia comprising an error, the error comprising a discrepancy between the printed indicia and a predetermined pattern for printed indicia, the discrepancy comprising a printing omission or an additional feature, using a first tip of a dual tip probe comprising first and second tips disposed on a cantilever arm to detect the error in the printed indicia; and
- correcting the error in the printed indicia using the second tip by printing a correction indicia spatially corresponding to the printing omission or removing the additional feature.
50. The method of claim 49, further comprising using the second tip to print the printed indicia before characterizing the substrate using the first tip.
51. The method of a claim 49, wherein one or both of the printed indicia and the predetermined pattern comprises a circuit.
52. The method of claim 51, comprising characterizing the circuit using the first tip, wherein the error is a gap in the circuit; and correcting the error by forming a conductive structure in the gap using the second tip to close the gap.
53. A method of calibrating a relationship between applied force and distance between a synthesis tip and a substrate, the method comprising:
- determining a difference between the thicknesses of a reader tip and a synthesis tip of a dual tip probe comprising the reader tip and the synthesis tip disposed on a cantilever arm;
- contacting the substrate with the reader tip, wherein the synthesis tip does not contact the substrate;
- applying a force to the cantilever arm to bend the cantilever arm and displace the synthesis tip toward the substrate;
- determining the amount of bending of the cantilever arm; and
- calculating the distance between synthesis tip and the substrate using the thickness difference and the amount of cantilever arm bending.
54. A method of adjusting the distance between a synthesis tip of a dual tip probe and a substrate, the method comprising:
- contacting a substrate with a non-synthesis tip of a dual tip probe comprising the non-synthesis tip and a synthesis tip disposed on a cantilever arm, the non-synthesis tip and the synthesis tip disposed in line with each other on a major axis of the cantilever arm; and
- applying a force to the cantilever arm to bend the cantilever arm and displace the synthesis tip toward the substrate.
55. The method of claim 54, further comprising adjusting the amount of force applied to the cantilever arm to adjust the distance between the synthesis tip and the substrate based on a predetermined relationship between the amount of force applied to the cantilever arm after contacting the substrate with the non-synthesis tip and the distance between the synthesis tip and the substrate.
56. The method of claim 55, wherein determining the predetermined relationship between the amount of force applied to the cantilever arm after contacting the substrate with the non-synthesis tip and the distance between the synthesis tip and the substrate is comprises calculating the distance between the synthesis tip and the substrate using the amount of cantilever arm bending and a difference in thickness of the synthesis and non-synthesis tip.
Type: Application
Filed: May 13, 2009
Publication Date: May 6, 2010
Applicant: NORTHWESTERN UNIVERSITY (Evanston, IL)
Inventors: Chad A. Mirkin (Wilmette, IL), Chang Liu (Winnetka, IL), Yuhuang Wang (Silver Spring, MD), Adam B. Braunschweig (Evanston, IL), Xing Liao (Evanston, IL), Louise R. Giam (Chicago, IL), Byung Y. Lee (Seoul), Shifeng Li (Carlsbad, CA)
Application Number: 12/465,615
International Classification: G01Q 60/24 (20100101);