PACKAGED SEMICONDUCTOR COMPONENTS HAVING SUBSTANTIALLY RIGID SUPPORT MEMBERS AND METHODS OF PACKAGING SEMICONDUCTOR COMPONENTS
Packaged semiconductor components having substantially rigid support member are disclosed. The packages can include a semiconductor die and a support member proximate to the semiconductor die. The support member is at least substantially rigid. The packages can further include an adhesive between the support member and the semiconductor die and adhesively attaching the support member to the semiconductor die. The packages can also include a substrate carrying the semiconductor die and the support member attached to the semiconductor die.
Latest MICRON TECHNOLOGY, INC. Patents:
- Memory Circuitry Comprising a Vertical String of Memory Cells and a Conductive Via and Method Used in Forming a Vertical String of Memory Cells and a Conductive Via
- MEMORY DEVICES AND METHODS WHICH MAY FACILITATE TENSOR MEMORY ACCESS
- Methods of Forming Integrated Assemblies Having Conductive Material Along Sidewall Surfaces of Semiconductor Pillars
- Assemblies Comprising Memory Cells and Select Gates; and Methods of Forming Assemblies
- Memory Arrays Comprising Vertically-Alternating Tiers Of Insulative Material And Memory Cells And Methods Of Forming A Memory Array Comprising Memory Cells Individually Comprising A Transistor And A Capacitor
This application is a divisional of U.S. application Ser. No. 11/685,502, filed Mar. 13, 2007, which is incorporated herein by reference in its entirety.
TECHNICAL FIELDThe present disclosure is related to packaged semiconductor components and methods for assembling or packaging semiconductor components.
BACKGROUNDSemiconductor devices are typically manufactured on semiconductor wafers or other types of workpieces using sophisticated equipment and processes that enable reliable, high-quality manufacturing. The individual dies (e.g., devices) generally include integrated circuits and a plurality of bond-pads coupled to the integrated circuits. The bond-pads provide external contacts through which supply voltage, electrical signals, and other input/output parameters are transmitted to/from the integrated circuits. The bond-pads are usually very small, and they are typically arranged in dense arrays having a fine pitch between bond-pads. The wafers and dies can also be quite delicate. As a result, the dies are packaged to protect the dies and to connect the bond-pads to arrays of larger terminals that can be soldered to printed circuit boards.
One challenge of manufacturing semiconductor components is cost effectively packaging the dies. Electronic product manufacturers are under continuous pressure to reduce the size of their products. Accordingly, microelectronic die manufacturers seek to reduce the size of the packaged dies incorporated into the electronic products. One approach to reducing the size of packaged dies is to reduce the thickness of the dies. For example, the backside of a wafer is often ground, etched, or otherwise processed to reduce the thickness of the wafer. After being thinned, the wafer is cut to singulate the dies.
Reducing the thickness of the wafer, however, can cause several manufacturing defects. For example, as the thickness of the wafer decreases, the backside of the wafer is more likely to chip during singulation, at least partially because cracks in the wafer can more readily propagate from one surface to another surface of the wafer. Moreover, if the dies include photodiode, photogate, or other types of photo-sensing devices, then infrared radiation used during lithography processes can potentially damage these photo-sensing devices. Accordingly, there is a need to improve the processing of thinned semiconductor workpieces.
Specific details of several embodiments of the disclosure are described below with reference to packaged semiconductor components and methods for manufacturing packaged semiconductor components. The semiconductor components are manufactured on semiconductor wafers that can include substrates upon which and/or in which microelectronic devices, micromechanical devices, data storage elements, optics, read/write components, and other features are fabricated. For example, SRAM, DRAM (e.g., DDR/SDRAM), flash-memory (e.g., NAND flash-memory), processors, imagers, and other types of devices can be constructed on semiconductor wafers. Although many of the embodiments are described below with respect to semiconductor devices that have integrated circuits, other embodiments include other types of devices manufactured on other types of substrate. Moreover, several other embodiments of the invention can have different configurations, components, or procedures than those described in this section. A person of ordinary skill in the art, therefore, will accordingly understand that the invention can have other embodiments with additional elements, or the invention can have other embodiments without several of the features shown and described below with reference to
The semiconductor die 102 can include microelectronic devices, micromechanical devices, data storage elements, optics, read/write components, and other features are fabricated. As described above. For example, SRAM, DRAM (e.g., DDR-SDRAM), flash-memory (e.g., NAND flash-memory), processors, imagers, and other types of devices can be constructed on or in the semiconductor die 102. In the embodiment shown in
The support member 104 is at least substantially rigid and can reinforce the semiconductor die 102. The support member 104 can have a composition that is different from that of the semiconductor die 102. For example, the support member 104 can be a plate constructed from a metal, a metal alloy, ceramics, polymers, glass, or other materials with sufficient mechanical strength. The support member 104 can also incorporate slots, channels, apertures, or other surface patterns. In another example, the support member 104 can be a laminated structure having a plurality of layers of different materials, of which at least one is at least substantially rigid. For example, the support member 104 can include a plurality of heat conducting fins sandwiched between two plates to provide improved heat conductance, as shown in
The support member 104 can have a thickness sufficient to provide enough support to protect the semiconductor die 102 during thinning and subsequent processing but still allows easy cutting during singulation. In one embodiment, the thickness of the support member 104 is about 100 microns to about 3 mm, but in other embodiments, the thickness of the support member 104 can be outside this range.
The support member 104 can be a standalone component, or it can be combined with other components of the packaged semiconductor component 100. For example, the support member 104 can be a separate element from the first and/or second adhesives 106, 110 before assembly, or can be preformed into a die attach film 107 with the first and/or second adhesives 106, 110 before assembly. Applying the die attach film 107 can reduce complexity and manufacturing cost by reducing the number of individual processing steps.
The substrate 108 can be a printed circuit board, a silicon wafer, a glass plate, a ceramic unit, or other structure suitable for carrying the semiconductor die 102 and the support member 104. The substrate 108 can have a first surface 109a at which the connection sites 114 are positioned, and a second surface 109b with external terminals to which a plurality of solder balls 120 (six are shown for illustration purposes) are attached. The solder balls 120 are generally arranged in an array that can be surface mounted to an external device (not shown). The substrate 108 also includes internal circuits (not shown) that electrically connect the connection sites 114 at the first surface 109a to the solder balls 120 at the second surface 109b.
The semiconductor wafer 122 and the support structure 117 can then be cut into individual semiconductor subassemblies 115 using a saw blade 130, a laser, or any other suitable cutting techniques. Individual subassemblies 115 can accordingly include the die 102 with the attached support member 104. The support member 104 is a portion of the overall support structure 117. As shown in
Several embodiments of the support structure 117 can reduce chipping on the second wafer surface 126 by reinforcing the semiconductor wafer 122 against bending, twisting, or otherwise flexing during cutting. Without being bound by theory, it is believed that contacting the semiconductor wafer 122 with the saw blade 130 can cause micro-cracks in the semiconductor wafer 122. These micro-cracks can then propagate and join together to form chips along the kerb of the cut. If the semiconductor wafer 122 warps due to its reduced thickness, the warpage can exacerbate the propagation of the micro-cracks and thus cause increased chipping of the semiconductor wafer 122. As a result, reinforcing the semiconductor wafer 122 with the substantially rigid support structure 117 can reduce the amount of warping and chipping during singulation.
Moreover, several embodiments of the support member 104 can at least partially equalize heat dissipation from various regions of the die 102 when the die is operated. During operation, different regions of the die 102 can have different operating temperatures. For example, regions having logic circuits tend to consume more power than regions having memory elements and thus generate more heat to cause higher operating temperatures. Such temperature variations can cause the packaged component 100 to fail due to thermal stresses. Thus, supporting the die 102 with a support member 104 constructed from a metal, a metal alloy, or other material with sufficient heat conductivity can at least partially equalize the temperatures of different regions of the die 102 and thus improve robustness of the packaged component 100.
Further, several embodiments of the support member 104 can improve the durability of the packaged component 100 during thermal cycling. During thermal cycling, the die 102 can flex because the die 102 typically has a different coefficient of thermal expansion than the first and/or second adhesives 106, 110. The flexing of the die 102 can crack the die 102 and/or detach the die 102 from the substrate 108. Thus, the substantially rigid support member 104 can at least reduce such flexing and thus improve durability of the packaged component 100 during thermal cycling.
Even though the illustrated embodiments described above use adhesives to attach the support member 104 to the die 102 and to the substrate 108, in other embodiments, the support member 104, the die 102, and/or the substrate 108 can be bonded using mechanical fasteners, direct solid-solid bonding techniques, or other fastening techniques. In other embodiments, the support member 104 can be a moldable material (e.g., a resin), and the support member 104 can be attached to the die 102 without an adhesive by first disposing a layer of the moldable material in a molten state on the die 102 and subsequently solidifying the moldable material to form a substantially rigid structure. In further embodiments, the moldable material can at least partially encase the die 102.
In one embodiment, the support member 104 is a metal (or metal alloy) spacer having a thickness sufficient to allow the bond pads 112 of the first and second dies 102a-b to be wirebonded to the connection sites 114. The metal spacer can reduce manufacturing costs for packaging semiconductor dies compared to conventional silicon spacers that are typically used to provide clearance between the first and second dies 102a-b. More specifically, the silicon spacers can be relatively expensive to manufacture and are relatively brittle. Thus, replacing the silicon spacer with a metal spacer can reduce the unit cost of the packaged semiconductor component 400 and provide a more robust package. Further, the metal spacer can improve heat dissipation of the first and/or second semiconductor dies 102a-b because the metal spacer typically has a higher heat conductance than a silicon spacer.
Any one of the semiconductor components described above with reference to FIGS. 1 and 3-5 can be incorporated into any of a myriad of larger and/or more complex systems, a representative example of which is system 800 shown schematically in
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications can be made without deviating from the inventions. For example, the packaged semiconductor component 100 in
Claims
1. A method for processing semiconductor wafer, comprising:
- forming integrated circuits on a semiconductor wafer;
- removing material from a surface of the semiconductor wafer;
- attaching a support structure to the semiconductor wafer, the support structure being at least substantially rigid;
- cutting the semiconductor wafer and the support structure into individual dies with support members attached to the dies after the support structure is attached to the semiconductor wafer, individual support members being a portion of the semiconductor structure; and
- packaging individual dies and the attached support member into a semiconductor component.
2. The method of claim 1, further comprising pre-forming the support structure and at least one adhesive into a die attach film, and wherein attaching a support structure includes attaching the die attach film with the at least one adhesive facing the semiconductor wafer.
3. The method of claim 1 wherein attaching a support structure includes attaching a metal or metal alloy plate to the semiconductor wafer.
4. The method of claim 1 wherein attaching a support structure includes attaching a laminated structure to the semiconductor wafer, the laminated structure having at least one substantially rigid layer.
5. The method of claim 1 wherein cutting the semiconductor wafer includes cutting the semiconductor wafer and the support structure into subassemblies, individual subassemblies having a die and a support member that is a portion of the support structure.
6. The method of claim 1 wherein cutting the semiconductor wafer includes imparting rigidity to the semiconductor wafer with the attached support structure during cutting.
7. The method of claim 1 wherein cutting the semiconductor wafer includes reducing flexing of the semiconductor wafer during cutting with the attached support structure.
8. A method for assembling a packaged semiconductor component, comprising:
- attaching a semiconductor die and a support member to a substrate, the support member being at least substantially rigid and having a composition different from a composition of the semiconductor die;
- electrically connecting individual bond pads at the semiconductor die to individual connection sites at the substrate; and
- encasing the semiconductor die and the support member in an encapsulant.
9. The method of claim 8 wherein attaching a semiconductor die and a support member includes attaching a semiconductor die, a support member, and an adhesive to a substrate, the adhesive attaching the support member to the semiconductor die.
10. The method of claim 8 wherein attaching a semiconductor die and a support member includes attaching a semiconductor die having a first surface and a second surface opposite the first surface, a support member, and an adhesive attaching the support member to the second surface of the semiconductor die to a substrate, the semiconductor die having a plurality of bond pads at the first surface of the semiconductor die.
11. The method of claim 8 wherein attaching a semiconductor die and a support member includes attaching a semiconductor die having a first surface and a second surface opposite the first surface and a support member to a substrate, the semiconductor die having a plurality of bond pads at the first surface of the semiconductor die and the support member having an opening generally corresponding to the plurality of bond pads.
12. The method of claim 8 wherein attaching a semiconductor die and a support member includes attaching a semiconductor die having a first surface and a second surface opposite the first surface and a support member to a substrate, and wherein the method further includes disposing a plurality of solder balls between the first surface of the semiconductor die and the substrate.
13. The method of claim 8 wherein the semiconductor die is a first semiconductor die, and wherein the method further includes:
- disposing a second semiconductor die on the substrate; and
- separating the first and second semiconductor dies with the support member.
14. The method of claim 13 wherein individual first and second semiconductor dies include a plurality of bond pads at or near a surface of the first and second dies, and wherein the method further includes allowing the bond pads of the first and second dies to be wirebonded to connection sites at the substrate.
Type: Application
Filed: Jun 16, 2010
Publication Date: Oct 7, 2010
Applicant: MICRON TECHNOLOGY, INC. (Boise, ID)
Inventors: Matt E. Schwab (Boise, ID), J. Michael Brooks (Caldwell, ID), David J. Corisis (Nampa, ID)
Application Number: 12/816,480
International Classification: H01L 21/60 (20060101); H01L 21/78 (20060101); H01L 21/56 (20060101);