This application claims priority to U.S. Provisional Application No. 61/241,778, filed Sep. 11, 2009, U.S. Provisional Application No. 61/367,346 filed Jul. 23, 2010, and to U.S. Provisional Application No. 61/379,340 filed Sep. 1, 2010. Application Nos., Ser. Nos. 61/241,778, 61/367,346 and 61/379,340 are incorporated by reference herein in their entirety for any purpose.
SEQUENCE LISTING The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Apr. 29, 2011, is named LT00059.txt and is 748,407 bytes in size.
FIELD Embodiments of the subject inventions are in the field of the forensic analysis of DNA.
BACKGROUND The use of STR markers has become a standard tool in the analysis of DNA found at crime scenes. In most cases, the use of autosomal STR markers are used because, in part, of the high level of polymorphisms within most populations. For example, the 13 CODIS loci that are the standard for databasing criminal suspect in DNA in the United States are autosomal STR markers. In many cases with mixed stains from male and female contributors, particularly rape cases, forensic investigators must analyze genetic markers found on the Y chromosome to identify the male component usually belonging to the perpetrator of the crime. This is because in such cases, the autosomal STR markers are not informative due to profile overlap between e.g. female victim DNA and male perpetrator DNA. Although there are technical possibilities (i.e. differential lysis) to preferentially access male DNA, such techniques are often not successful. Because female DNA lacks a Y chromosome, the analysis of Y chromosomal markers can be used in samples that contained high levels of female DNA relative to the male DNA in the sample. Analyzing the Y chromosomal DNA hence excludes the complicating artifacts caused by the excess female source DNA.
The non-recombining nature allows the use of Y chromosome markers for male lineage identification, i.e. groups of males that are paternally related and hence share the same Y-STR haplotype i.e. based on currently-used Y-STR markers in forensics. Male lineage identification has become a valuable tool in forensic genetics to exclude males. However, in cases of non-exclusion (i.e. matching Y-STR profiles) no individual-based statement can be made based on the currently-available Y-STR markers because the same probability of having donated the crime scene sample applies to a male suspect and all his male relatives. This clearly is a limitation in forensic application where individual-based conclusions are anticipated. However, mutation events can occur at Y-STR markers. These mutations in the Y-STR marker can in principle enable the investigator to distinguish between closely related male relatives, and also between more distantly related males, provided such mutations occur in high-enough frequencies to be observable in a give pair of male relatives. Mutations in the currently available Y-STR markers are fairly infrequent events, occurring on the order of about 0.1 to 0.4% (1-4 changes per thousand generational events per each Y-STR locus). Thus even when relatively large numbers of Y-STR markers, i.e. those 17 markers applied to forensic applications today, are used the probability of distinguishing between male relatives is still remote. However, if enough Y-STRs markers that mutate more rapidly than the currently-known Y-STRs would be available, it can be expected that closely related males as well as distantly related males become differentiable based on Y-STR mutations towards male individual identification as anticipated in forensic applications.
The inventors have discovered a subset of thirteen Y-STR markers that have a significantly higher mutation rate than most Y-STR markers including those that are in general use. This finding is expected to revolutionize Y chromosomal applications in forensic biology, from previous male lineage differentiation methods. This finding also leads the way for male individual identification. Thus, by using one or more, by using two or more of such rapidly-mutating Y-STR markers (RM Y-STRs), the ability to distinguish between close and distantly related male relatives is significantly increased.
SUMMARY Certain embodiments of the invention include methods of identifying an individual by determining the allele of at least 2 Y-STR markers selected from the group consisting of the rapidly-mutating Y-STR markers: DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627. In some embodiments of the subject methods, the alleles can be identified by PCR. In some embodiments of the subject methods, the alleles can be identified by mass spectroscopy. The PCR can be multiplexed PCR so as to co-amplify the at least 2 of the rapidly-mutating Y-STR markers. Certain embodiments of the invention include set of amplification primer pairs comprising primers for the amplification of at least 2 Y-STR markers selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627. The primers set can co-amplify at least 2-13 of the rapidly-mutating Y-STR markers. In certain embodiments the primer set can co-amplify autosomal STR markers in addition to rapidly-mutating Y-STR markers. In some embodiments, the autosomal STRs can be selected from the group consisting of D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, D16S539, THO1, TPDX, and CSF1PO. In some embodiments the primers can be labeled with a fluorescent dye. Other embodiments provided are allelic ladder size standard for calling one or more alleles of an STR from at least 2 of the Y-STR markers selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627. Other embodiments provided are kits for identifying the allele of at least 2 Y chromosome STRS markers, wherein the markers are selected from the group consisting of DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627, the kit comprising primers for the amplification of at least 2 rapidly-mutating Y-STR markers, and an allelic ladder representative of the selected markers.
BRIEF DESCRIPTION OF THE DRAWINGS AND TABLES FIG. 1. Mutation rates of 186 Y-STR markers established from father-son pair analysis. Distribution of 186 Y-STR markers according to their Bayesian-based mutation rates (with credible intervals) estimated from analyzing up to 1966 DNA confirmed father-son pairs per each marker. The 13 rapidly-mutation (RM) Y-STR markers ascertained for further family/pedigree analysis are highlighted in red, and the commonly-used 17 Yfiler Y-STRs are in green. Multi-copy Y-STRs are noted with a black insert diamond.
FIG. 2. Correlation between the length of the longest homogeneous array, or the total number of repeats within a locus, and the allele-specific mutation rate from 267 Y-STR loci. Although the number of repeats present within a locus” longest homogenous array can be used to predict mutability, the total number of all repeats present within the locus has higher predictive value.
FIG. 3. Relationship between total number of repeats and mutation direction and rate from 267 Y-STR loci. Repeat loss mutations (contractions) displayed an exponential relationship with the total number of repeats, with increasing rates of loss rates at loci with higher numbers of repeats. Repeat gain mutations (expansions) showed a weak quadratic function, with a peak in gain rate at 20 total repeats.
FIG. 4. Male relative differentiation with newly-identified 13 RM Y-STRs and commonly-used 17 Yfiler Y-STRs. Results from differentiating between male relatives from analyzing 103 pairs from 80 male pedigrees, sorted according to the number of generations separating pedigree members, based on 13 RM Y-STRs and 17 Yfiler Y-STRs. Error bars represent 95% binomial confidence intervals. Note that these samples are independent from the father-son pairs initially used to establish the Y-STR mutation rates.
Table 1. Mutation rate estimations from the posterior distributions (medians and 95% credible intervals) of 186 Y-STR markers from analyzing up to 1966 DNA-confirmed father-son pairs. Markers with median mutation rates above 10−2 (the RM Y-STR set) are highlighted. Additionally included are marker repeat structures (SEQ ID NOS 1-187, respectively, in order of appearance), number of gains/losses, total mutations and total number of father-son transmissions observed. PCR primers (Primer 1 sequences disclosed as SEQ ID NOS 188-357 and Primer 2 sequences disclosed as SEQ ID NOS 358-527, respectively, in order of appearance), PCR annealing temperature and locus assignment to the 54 multiplexes and three RM Y-STR multiplexes used for genotyping are included.
Table 2. Details of the 924 mutations observed among 120 Y-STR markers from screening a total of 352,999 meiotic transfers at 186 Y-STR markers. The repeat structure of both the father and son's alleles at the mutated Y-STR are given where possible (SEQ ID NOS 528-2196, respectively, in order of appearance). In the case of multi-copy markers with multiple variable segments within the amplicon, total repeat numbers or amplicon size is given in the absence of sequence information. The age of the father at the time of the son's birth is given, as is an individual pair reference.
Table 3. Comparison of 13 rapidly mutating RM Y-STRs and 17 Yfiler Y-STRs to differentiate between male relatives by one or more mutations from analyzing 103 pairs from 80 male pedigrees according to the number of generations separating members of the same pedigree.
DEFINITIONS A “mutation” in a Y-STR marker is a change in the length of the repeat region of an STR marker or a change in the length (i.e., number) of the bases that are interspersed with the repeat units. For example, the addition of one more repeat unit is mutation resulting in the appearance of a new allele. In another example, the addition of a single base within a single repeat unit is also a mutation resulting in the appearance of a new allele. Such changes can result form the addition or deletion of one or more repeat units (or fractions thereof). Such sequence changes are readily detected by methods of analysis that are capable of detecting variations in nucleic acid sequence length or nucleic acid base order.
The term “rapidly-mutating Y-STR marker” (RM Y-STRs) as used herein refers to the following 11 Y-STR markers: DYF387S1, DYF399S1, DYF404S1, DYS449, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627.
As used herein, the term “allelic ladder” refers to a standard size marker consisting of amplified alleles from a given STR locus or a size standards equivalent in size (or electrophoretic mobility) to the amplified alleles from a given STR locus. An allelic ladder can comprise a size standard for one or more alleles of a given STR marker. An allelic ladder can include alleles from different STR markers. The size standards in an allelic ladder can be labeled with a detectable label, e.g., a fluorescent dye.
The term “Y-STR marker” as used herein refers to an STR marker that is present on the non-recombining part of the human Y chromosome. Over 250 such Y-STR markers exist based on current knowledge. Y-STR markers are well-known to the person ordinary skill in the art. Database of Y-STR marker are publicly available, for example, at web sites, www.usystrdatabase.org and www.yhrd.org
The term “STR” as used herein refers to regions of genomic DNA which contain short, repetitive sequence elements. The sequence elements that are repeated are not limited to but are generally three to seven base pairs in length. Each sequence element is repeated at least once within an STR and is referred to herein as a “repeat unit.” The term STR also encompasses a region of genomic DNA wherein more than a single repeat unit is repeated in tandem or with intervening bases, provided that at least one of the sequences is repeated at least two times in tandem.
The term “Primer” as used herein refers to a single-stranded oligonucleotide or DNA fragment that hybridizes with a DNA strand of a locus in such a manner that the 3′ terminus of the primer can act as a site of polymerization and extension using a DNA polymerase enzyme. Primers can also DNA analogs in additions to or instead of naturally occurring DNA, e.g., LNAs, base analogs, and the like. “Primer pair” refers to two primers comprising a primer 1 that hybridizes to a single strand at one end of the DNA sequence to be amplified, and a primer 2 that hybridizes with the other end on the complementary strand of the DNA sequence to be amplified. “Primer site” refers to the area of the target DNA to which a primer hybridizes
As used herein, the terms “a,” “an,” and “the” and similar referents used herein are to be construed to cover both the singular and the plural unless their usage in context indicates otherwise. Accordingly, the use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims or specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which these inventions belong. All patents, patent applications, published applications, treatises and other publications referred to herein, both supra and infra, are incorporated by reference in their entirety. If a definition and/or description is set forth herein that is contrary to or otherwise inconsistent with any definition set forth in the patents, patent applications, published applications, and other publications that are herein incorporated by reference, the definition and/or description set forth herein prevails over the definition that is incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.
DESCRIPTION OF CERTAIN SPECIFIC EMBODIMENTS Applicants have identified mutation rates for numerous Y-STRs by examining three areas: i) the lack of knowledge on Y-STR mutability based on a reasonably large number of loci as required for evolutionary and genealogical applications, ii) the limited knowledge on the molecular basis of Y-STR mutability, and iii) the lack of Y-STRs for familial differentiation in forensic, genealogical, and particular population applications.
In ˜2000 DNA-confirmed father-son pairs. Table 1 presents the mutation rates and characteristics for 186 Y-STR markers. Included are mutation rate estimates, most determined for the first time. Also evaluated were the diversity and DNA sequence data generated for all loci to investigate the underlying causes of Y-STR mutability. The suitability of the identified most mutable Y-STRs for male relative differentiation and their implication for Y-chromosome applications in forensic science have been tested and resulted in the identification of 13 rapidly mutating Y-STR (RM-Y-STR) markers.
The 13 Y-STR markers were found to have a mutational rate that is substantially higher than the 173 other Y-STRs tested. These rapidly-mutating markers are DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627. The mutation rates for these 13 RM-Y-STRs are all well above 10−2, whereas all other 173 Y-STRs (94% of the loci tested) have mutation rates well below 10−2 (usually 10−3 and lower) (FIG. 1). In particular, the locus-specific mutation rates of the 13 RM Y-STRs range from 0.0116 to 0.0744. In comparison, the 17 Y-STRs included in the AmpF/STR® YFiler™ PCR Amplification kit (YFiler Kit, sold by Applied Biosystems/Life Technologies, Foster City, Calif. USA, namely DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385 alb*, DYS393, DYS391, DYS439, DYS635, DYS392, Y GATA H4, DYS437, DYS438, DYS448) have locus-specific mutation rates ranging from 0.0002 to 0.0065 as established recently based on a large number of >135,000 meiotic transfers (Goedbloed et al. 2009). Hence, Applicants have surprisingly discovered that the 13 RM-Y-STRs mutate 60-11 time more rapidly than YFiler kit Y-STRs that are most commonly used in forensic applications today. The surprisingly high mutation rate in these RM-Y-STR markers permits the increased likelihood of distinguishing between male members of the same paternal genetic lineage. The likelihood of discrimination between members of the same male lineage is even greater when multiple rapidly-mutating Y-STR markers are employed. Various embodiments of the invention provided herein include methods, reagents, and kits for determining the specific allele of one or more, of two or more, of three or more, of four or more, of five or more, and so on, of the subject rapidly-mutating Y-STR markers in a given sample for analysis.
Provided herein are various methods for determining the specific allele of one or more of the rapidly-mutating Y-STR markers. The specific alleles of the rapidly-mutating Y-STR markers can be determined using essentially the same methods and technologies that are used for the determination of alleles other types of STR markers. Such methods and technologies can readily be adapted by the person skilled in the art so as to be suitable for use in the allele determination of the rapidly-mutating Y-STR markers. Examples of such technology include DNA sequencing and sequence specific amplification techniques such as PCR, used in conjunction with detection technologies such as electrophoresis, mass spectroscopy, and the like. In some embodiments, PCR amplification products may be detected by fluorescent dyes conjugated to the PCR amplification primers, for example as described in PCT patent application WO 2009/059049. PCR amplification products can also be detected by other techniques, including, but not limited to, the staining of amplification products, e.g. silver staining and the like.
The specific allele of a given rapidly-mutating Y-STR marker can also be determined by any of a variety of DNA sequencing techniques that are widely available, e.g., Sanger sequencing, pyrosequencing, Maxim and Gilbert sequencing, and the like. Numerous automated DNA sequencing techniques are commercially available, the applied Biosystems 3130, the applied Biosystems 3100, the Illumina Genome Analyzer, the Applied Biosystems SOLiD system, the Roche Genome Sequencer FIx system and the like.
DNA for analysis using the subject methods and compositions can be obtained from a variety of sources. DNA can be obtained at crime scenes, e.g., semen recovered from a rape victim. Additionally, DNA for analysis can be obtained directly from male subjects for the purpose of generating a database of allelic information (for subsequent analysis) or can be obtained from identified suspects.
DNA for analysis can be quantified prior to allelic analysis, thereby providing for more accurate allele calling. DNA quantity in a sample may be determined by many techniques known to the person skilled in the art, e.g., real time PCR. It is of interest to quantify the Y chromosomal DNA present in a sample for analysis prior to performing allelic analysis for Y-chromosomal STR markers, including rapidly-mutating Y-chromosomal STR markers. Autosomal DNA in the sample may also be quantitated, thereby providing a method for determining the background amount of female DNA present in a mixed sample, such as those samples recovered in rape cases.
A Y chromosomal haplotype can be established by determining the specific alleles present on a plurality of Y-STR markers. In general, the more rapidly a Y-STR marker mutates, the greater the probability of being able to distinguish between male relatives based on Y-chromosomal marker analysis. In some embodiments, the rapidly-mutating Y-STR markers can be analyzed by a method employing multiplex PCR. Multiplex PCR can amplify 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or all 13 of the rapidly-mutating Y-STR markers. In some embodiments, multiplex PCR can co-amplify additional Y-STR markers that are not part of the set of the subject rapidly-mutating Y-STR markers. In some embodiments, a multiplex PCR can provide for the co-amplification of one or more autosomal STR markers, e.g. the CODIS STR markers, D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, D16S539, THO1, TPDX, and CSF1PO. Detailed descriptions for the development of multiplex PCR for STR analysis can be found, among other places in PCT patent application WO 2009/059049 A1. In some embodiments the PCR reactions are not multiplexed. The amplicons that are produced in non-multiplex PCR reactions can be combined prior to the analysis of an instrument, e.g. a fluorescent DNA fragment analyzer (such as an automated DNA sequencer) or a mass spectrometer. Mass spectroscopy of STR markers is described in, among other places, U.S. Pat. No. 6,090,558.
Other embodiments include sets of PCR primers for the co-amplification of at least two rapidly-mutating Y-STR markers. Embodiments include sets of PCR primers for the co-amplification of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or all 13 of the rapidly-mutating Y-STR markers provided herein. In some embodiments, PCR primer sets can comprise primers for the co-amplification of Y-STR markers that are not rapidly-mutating Y-STR markers. In some embodiments, the set of PCR primers can comprise PCR primers for the co-amplification of STR markers present on an autosome.
The embodiments of the invention also include allelic ladders to aid in the identification of alleles of rapidly-mutating Y-STR markers. The allelic ladders can comprise sets of size standards for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or all 13 of the rapidly-mutating Y-STR markers. For each marker present in the allelic ladder, the allelic ladder can comprise standards for one or more alleles. An allelic ladder can comprise size standards for all known alleles of a given rapidly-mutating Y-STR marker, or any subset of known alleles. In some embodiments, the size standards in the allelic ladder can be labeled with one or more fluorescent dyes. In some embodiments an allelic ladder can further comprise size standards for autosomal STR markers. In some embodiments of allelic ladder can further comprise size standards for Y-STR markers that are not rapidly-mutating Y-STR markers.
Other embodiments of the subject invention include kits for the determination of the alleles for two or more rapidly-mutating Y-STR markers. Embodiments of the kits can comprise the subject sets of amplification primers. In some embodiments the kits can comprise one or more reagents used in nucleic amplification reactions. Examples of such reagents include, but are not limited to, DNA polymerases, dNTPs, buffers, nucleic acid purification reagents and the like. In some embodiments, the kits can comprise an allelic ladder designed to act as a size standard for the one or more rapidly-mutating Y-STR marker alleles generated (or potentially generated) by amplification primers present in the kit. Thus, in some embodiments, the kits can comprise allelic ladders specifically adapted to the amplicons generated by the use of the kit primers in an amplification reaction. For example a kit comprising primers for co-amplifying rapidly-mutating Y-STR markers DYF387S1, DYF399S1, and DYF404S1, can also include an allelic ladder having size standards for various alleles of rapidly-mutating Y-STR markers DYF387S1, DYF399S1, and DYF404S1. The kit can contain primers for co-amplifying all 13 RM-Y-STRs as well as an allelic ladder having appropriate size standards as would be known to one of skill in the art. The component size standards of an allelic ladder for given STR marker can be labeled with the same or different detectable labels, e.g., a fluorescent dye, as are the primers used to generate the amplicons of the actual allele in the sample for analysis.
The invention may be better understood by reference to the following examples comprising experimental data. Such information is offered to be examples and is not intended to limit the scope of the claimed invention. Examples and data presented herein were published in K. Ballantyne, et al. “Mutability of Y-Chromosomal Microsatellites: Rates, Characteristics, Molecular Bases and Forensic Implications” Am. J. Hum. Genet. 87:341-353 (Sep. 10, 2010), and published online Sep. 2, 2010, each incorporated by reference herein.
EXAMPLES DNA Samples All father-son pairs used in the mutation rate study were confirmed in their paternity by molecular analyses, utilizing autosomal STRs, Y-STRs, HLA and RFLP genotyping and blood grouping, in addition to familial or governmental documentation. A threshold for paternity probability of 99.9% was set for inclusion in the study. Samples were obtained from the Berlin, Leipzig and Cologne areas of Germany, and the Warsaw and Wroclaw areas of Poland. Whole genome amplification using the GenomiPhi DNA Amplification kit (GE Healthcare, Little Chalfont, UK) was performed on the Leipzig samples due to low DNA quantities. WGA reactions were performed as recommended by the manufacturer, and products were purified using Invisorb 96 Filter Microplates (Invitek GmbH, Berlin, Germany). An additional set of independent samples from male relatives not used in the initial mutability screening from male families or pedigrees, used for verifying the value of identified rapidly mutating Y-STRs, came from the Greifswald, Kiel and Berlin areas of Germany, the Leuven area of Belgium, the Warsaw area of Poland, as well as Canada and Central Germany as described elsewhere 12. All families/pedigrees were confirmed by the same methods as the father-son pairs; pairs with complete genotypes for both the rapidly mutating (RM) Y-STRs and Yfiler Y-STRs were considered for analysis, or in the case of partial genotypes only those that showed a mutation at one or more loci were included. The use of all samples for the purpose of this study was in agreement with the institutional regulations and under informed consent.
Y-STR Markers and Genotyping Protocols Y-STR markers were mostly selected from a previous study detailing a large number of 167 previously unknown Y-STRs 29, with the additional inclusion of Y-STRs known at the time of project commencement 42. The focus was on single-copy Y-STR markers in order to be able to fully confirm genotype differences by DNA sequence analysis when identifying mutations. However, given our aim to find RM Y-STRs, we included some additional multi-copy Y-STRs, especially those with high diversities (for which mutation confirmation was performed by independent genotyping). A complete list of loci, primer sequences and protocols can be found in the Supplemental Data S1. Seventeen of the 186 Y-STRs were genotyped with a commercially available kit, the AmpF/STR Yfiler PCR Amplification kit (Applied Biosystems), following the manufacturer's instructions. Full descriptions of protocols and markers can be found in (28). The remaining 169 Y-STRs were genotyped using 54 multiplex assays including 1 to 5 markers each. PCRs were performed using three differing protocols, and details are provided in the Supplemental Data S1. In addition, 13 Y-STRs identified during the study as rapidly mutating (RM) Y-STRs were genotyped using three multiplex assays in an independent sample set of male relatives. All PCRs were performed on GeneAmp PCR System 9700 machines (Applied Biosystems) at the Department of Forensic Molecular Biology, Erasmus MC Rotterdam. Fragment length analysis was performed using the 3130x/Genetic Analyzer (Applied Biosystems) at Applied Biosystems, Foster City, USA. Profiles generated were genotyped using GeneMapper software (ID v 3.2, Applied Biosystems). Genotype differences were identified using in-house developed Microsoft Excel 2007 macros. All mutations were confirmed by DNA sequence analysis in Rotterdam of both the father and son at the Y-STR locus, as described in M. Goedbloed, et al. (2009) Int. J. Legal. Med. 123, 471-482. Multi-copy Y-STR loci with three or more alleles were not able to be sequenced, but mutations were confirmed by at least two independent fragment length analysis amplifications.
Statistical Data Analyses Mutation rates for individual markers were estimated using a binomial hierarchical Bayesian model 43 using the Marcov Chain Monte Carlo (MCMC) Gibbs sampling as implemented in WinBUGS, as described in Goedbloed. In brief, it was assumed that each mutation rate could be considered as a realization of the mutation rate underlying any Y-STR. In brief, we assumed that the mutation rate θi of Y-STR i was a sample from a common population distribution defined by hyperparameters φ. In that way, the estimated mutation rate of a Y-STR incorporates the information provided by the observed data on that Y-STR (number of observed mutations over all the observed father-son pair) and the information of the mutation rate of the Y-STR″ as estimated in the hyperparameter from all the Y-STRs. In practice, this implies that Y-STRs for which no mutation was observed are going to show a mutation rate (estimated from the posterior distribution) which is smaller than other Y-STRs where a large number of mutations are observed, but is always different from 0.
The mutation rate of each Y-STR was coded in a logit form, and assumed to follow a normal distribution with parameters μ and σ=1/σ to be estimated, as well as the particular mutation rates of each STR. As only very limited data was available prior to our study for the range of Y-STR mutation rates, we assumed diffuse, non-informative prior distributions for the hyperparameters. A non-informative prior normal distribution (μ=0, τ=1×10−6) was specified for the hyperparameter μ and a prior diffuse gamma distribution with parameters α=1×10−5 and β=1×10−5 for the parameter τ. Three MCMC chains using the Gibbs sampler were generated in parallel when estimating the mutation rate for each locus, with 100,000 runs performed for each chain. Mean, median and 95% credible intervals (CI) were estimated from the three chains after discarding the first 50,000 runs and performing a thinning of 15 in order to reduce the amount of autocorrelation between adjacent simulations. Locus-specific differences in mutation rates between the sampling populations (Cologne, Berlin, Leipzig, Warsaw and Wroclaw) were tested by means of a permutation analysis. The average mutation rate for each locus and each population was compared to a hypothetical permutated population, where each father-son pair had been assigned to a population at random, maintaining the original sample sizes for each locus. The number of times the permutated averaged mutation rate was larger than the observed rate was recorded, and used to obtain the one tail p value over 100,000 iterations. The lack of significant differences between populations allowed pooling of mutation rates across populations.
In order to investigate the mutation rate of the Yfiler and RM Y-STR sets rather than of each marker within the set, the total number of mutations observed between each father-son pair for each set was computed, given the number of Y-STRs analyzed. This parameter was then modeled under the Bayesian paradigm with a Poisson distribution. A prior with a Gamma distribution was used with a diffuse shape of 1 and a scale of 200, implying a mutation rate with a mean of 0.005 and a variance of 40000. The posterior distribution followed a conjugate Gamma distribution with shape of 1+(total number of mutations) and scale of 1/(1/(200+total number of markers used)). In order to estimate the probability of observing at least one mutation in each set, 100000 Monte Carlo replicates were performed with the rgamma function of the R package 45 from the estimated shape and scale of the posterior distribution of each set of Y-STRs.
For the RM Y-STR set a median mutation rate of 0.0197 (95% credible interval 0.018-0.022) was estimated that is about 7-fold higher as revealed for the YFiler set consisting of 17 markers with a median rate of 0.0028 (95% credible interval ranging from 0.0023 to 0.0035). Next, the probability of observing at least one mutation per Y-STR set in a given father-son pair, reflecting the minimal criteria for differentiating male relatives, was estimated as 1 minus the probability of observing 0 mutations, which is directly estimated from a Poisson distribution: The probability of observing at least one mutation (k) within either of the YSTR sets in any given father-son pair was directly estimated from the Poisson distribution:
P(k>0)=1−P(k=0)=1−e−Nm,
with N representing the number of markers and m representing the average mutation rate of the set of markers obtained from the sampling from the posterior distribution. Assuming that all Y-STRs per set have been genotyped successfully, and using the posterior estimates of the mutation rate for each set of markers, the probability of observing at least one mutation with the RM Y-STR set is 0.1952 (95% credible interval of 0.177 to 0.21). This value is more than four times higher than that estimated for the YFiler set with 0.047 (95% credible interval of 0.038 to 0.057), although six more markers are included in the YFiler set relative to the RM Y-STR set. The molecular factors determining mutation rates were modeled using a Poisson regression with in-house developed Matlab scripts (v7.6.0.324, The Mathworks, Inc., Natick, Mass., USA). The mutation rate was modeled as a function dependent on of the repeat length, the sequence motif, the complexity of the locus and the length of the repeat in base pairs (tri-, tetra-, penta- or hexanucleotide), as:
where θ is assumed to be dependent on the factors described above, in the form
θ=eαL+βS+γC+δV+εR+ζN
where L represents the length of the allele (number or repeats, either of the longest homogenous array or the total locus), S represents the sequence motif (comprised of the number of A, T, C or G nucleotides in the repeated sequence motif), C represents the complexity of the locus, either in binary or quantitative form, V is the number of variable motifs present, R is the repeat length, and N is the copy number of the locus. A stepwise regression procedure was used, with probability to enter ≦3.05, probability to remove ≧0.10. For clarity, the methods used for defining and calculating the number of repeats within a locus, and the complexity of that locus, are elucidated below.
Locus designations were modeled after Kayser et al., where at least 3 consecutive repeats of the same motif are required to define a given repeat segment as a locus, and any interruption of more than 1 base, but less than a full unit, is classed as ending the locus. Individual Y-STR loci contained between 1 and 5 repeat blocks, as in, for example, DYS612 with 5 blocks (CCT)5(CTT)1(TCT)4(CCT)1(TCT)19 (SEQ ID NO: 2197). If a locus contained more than one variable segment, and repeat numbers could not be assigned to all individuals at all repeat segments accurately, the locus was removed from the regression analysis. A segment was defined as variable if a variation in repeat number was seen in any individual sequenced, relative to the remainder of the population.
Number of repeats: The number of repeats in the longest homogenous array was directly counted, and the population average calculated for each locus. In addition, any additional repeats around the longest array were added to calculate the total number of repeats for each locus. In the above example for DYS612, the length of the longest array is 19, while the total number of repeats is 30.
Repeat Length: The length in base pairs of the repetitive motif, which ranged from 3 to 6 (included tri-, tetra-, penta-, hexa- and heptanucleotide repeats).
Complexity: Two complexity statistics were calculated per locus. First, a binary classification system was used, where loci with only one repetitive segment (e.g. (GATA)10 (SEQ ID NO: 2198)) were classified as simple, while any locus with two or more repetitive segments consisting of more than three consecutive repeats (e.g. (GATA)10(CATA)3 (SEQ ID NO: 2199)) was complex. Second, more quantitative information was provided by Kayser et al.'s complexity formula:
where n is the total number of repeats in the locus, s, is the number of repeats of the ith sequence motif, and bi is the number of repeats in the ith block. Correlation and log linear regression analyses were carried out in SPSS v15.0 (SPSS Inc.), as were all mean comparison tests (utilizing ANOVA, Mann-Whitney U and Kruskal Wallis).
Repeat Length: The length in base pairs of the repetitive motif, which ranged from 3 to 6 (included tri-, tetra-, penta-, hexa- and heptanucleotide repeats).
Mutation Rates of Y-STR Markers In order to define the expectation for a given RM Y-STR set to differentiate between male relatives, and to compare such potential with that of the commonly-used YFiler set, an average mutation rate for each of the two Y-STR sets applying a Bayesian approach was obtained. The number of mutations observed in one father-son pair for a set of STRs was modeled by means of a Poisson distribution. A prior conjugate Gamma distribution with a diffuse shape of 1 and a scale of 1/0.005 was used. The posterior distribution followed a Gamma distribution with shape of 1+total number of mutations and scale of 1/(1/0.005+total number of markers used) was obtained and 100000 Monte Carlo replicates were performed.
Furthermore, to test in independent samples whether the new RM Y-STR set is practical and useful for differentiating male relatives, genotyping was performed on both marker sets in 107 pairs from 80 male pedigrees who were related by between 1 and 20 generations within their pedigrees and compared the findings with those from YFiler also generated. Pedigrees came from the Greifswald and Kiel (N. von Wurmb-Schwark, V. Mályusz, E. Simeoni, E. Lignitz, M. Poetsch, For. Sci. Int 159, 92-97 (2006)), as well as Berlin (new to this study) areas of Germany, the Leuven area of Belgium (new to this study), the Warsaw area of Poland (new to this study), as well as from Canada C. Moreau, H. Vezina, V. Yotova, R. Hamon, P. de Kniff et al., Am. J. Phys. Anthropol. 139, 512-522 (2009), M. Vermeulen, A. Wollstein, K. van der Gaag, O. Lao, Y. Xue et al., For. Sci. Int. Genet., 3, 205-213 (2009) and Central Germany M. Kayser, M. Vermeulen, H. Knoblauch, H. Schuster, M. Krawczak, L. Roewer, For. Sci. Int. Genet. 1, 125-128 (2007)), as described elsewhere. All pedigrees were confirmed by DNA data (including autosomal STR, HLA and RFLP typing, Y-STR and Y-SNP typing, and mtDNA sequencing amongst various pedigrees), as well as additionally by familial or governmental documentation records. Only pairs which had complete genotypes for both sets, or in the case of partial genotypes, showed a mutation at one or more loci, were included in the calculations. Results are provided in FIG. 2. The RM Y-STR set distinguished over 65% of pairs by at least 1 mutation, reflecting a 5-fold increase in the level of male relative differentiation compared to the YFiler set with only 13%, similar to our statistical expectations from the initial father-son pair analyses. Within the pedigrees, the RM Y-STR set distinguished 60% of father-son pairs, 54% of brothers, and 87% of second cousins. If relatives were separated by more than 11 meioses, 100% of individuals were separated by 1 or more mutations using the RM Y-STR set. In contrast, the Y-filer set distinguished in this dataset no father son pairs, no second cousins, and only 6% of brothers in this dataset.
186 tri-, tetra- penta- and hexanucleotide Y-STR markers were screened for mutations in up to 1966 DNA-confirmed father-son pairs per marker by multiplex fluorescence-based fragment length analysis, giving direct observation of 352,999 meiotic transfers (for technical details see Table 1). To confirm mutations, all Y-STR genotype differences observed between fathers and their sons were confirmed by DNA sequence analysis for single copy and duplicated markers, or by duplicate fragment length genotyping analysis for multi-copy Y-STRs with more than 2 copies (where sequence analysis was not informative). Overall, we identified 924 confirmed mutations at 120 (64.5%) of the 186 Y-STR markers studied (details of each mutation observed can be found in Supplemental Data S2). For 66 Y-STR markers, the up to 1966 father-son pairs analyzed did not allow us to detect mutations due to a very low underlying mutation rate. The large number of Y-STR markers employed identified the range of Bayesian-based mutation rates estimated from the median of the posterior distribution to be between 3.81×10−4 (95% CI 1.38×10−6 to 2.02×10−3) and 7.73×10−2 (6.51×10−2 to 9.09×10−2) per marker, per generation (FIG. 1, Table 1). Ninety-one Y-STR markers (48.9%) had mutation rates in the order of 10−3, a further 82 markers (44%) in the order of 10−4, and 13 (6.9%) in the order of 10−2. Across all 186 Y-STR markers, the average mutation rate was 3.35×10−3 (95% CI 1.79×10−3 to 6.38×10−3) with an average rate of 4.26×10−3 (95% CI 2.38×10−3 to 7.60×10−3) for the 122 tetranucleotide repeats as the largest repeat-length subgroup of Y-STR markers included here. Notably, the 13 Y-STR markers with mutation rates above 1×10−2 representing only 7% of the markers studied, which we termed “Rapidly mutating Y-STRs” (RM Y-STRs), covered a large number of 462 of the 924 (50%) mutations observed in the study.
Number of Repeats.
Two estimates of the average number of repeats were calculated for each Y-STR locus i) the average repeat number in the longest homogenous array; and ii) the repeat number of the longest homogeneous array plus any non-variable repeats immediately adjacent (in accordance with previously defined rules for motif structure 29). Our regression analysis showed that while the number of repeats in the longest homogenous array did influence the mutation rate significantly, with higher numbers of repeats increasing the mutation rate (Wald χ2=2.41×106, p<0.0001), including the number of non-variable repeats surrounding the array provided slightly more accurate information to the model (Wald χ2=3.03×106, p<0.0001, FIG. 2). The effect size within the model was estimated with a partial η2 of 0.798, indicating that the variance in the total number of repeats between loci accounts for ˜78% of the overall (effect+error) variation in Y-STR mutation rates observed. In addition, a statistically significant exponential relationship was observed between the total number of repeats and the allele-specific mutation rate (R2=0.707, p=6.84×10−9). In addition, there was a strong relationship between the total number of repeats and the direction of mutation (FIG. 3). Longer alleles displayed an exponential and statistically significant tendency towards repeat losses (contractions) (R2=0.585, p=8.27×10−7), while shorter alleles gained repeats (expansion) significantly more frequently (R2=0.238, p=0.011). The expansion mutation rate had a quadratic distribution, with a vertex around 19 repeats.
Male Relative Differentiation by RM Y-STRs We identified 13 rapidly-mutating (RM) Y-STR markers (all with mutation rates >1×10−2); DYF387S1, DYF399S1, DYF403S1, DYF404S1, DYS449, DYS518, DYS526, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627 (FIG. 1, Table 1). Four of these 13 RM Y-STR markers are multi-copy systems (DYF387S1 with two, DYF399S1 with three, DYF403S1 with four, DYF404S1 with two and DYS526 with two copies), whereas nine were single-copy Y-STR markers (although six of these markers contained multiple Y-STR loci within the single amplicon, and only two, DYS570 and DYS576, were simple repeats with only one Y-STR locus respectively). The 13 RM Y-STRs were combined into a set under the hypothesis that closely related males (even father-son or brother pairs) may be differentiable by Y-STR mutations if RM Y-STRs are combined. In principle, one mutation at one of the 13 RM Y-STRs would be enough for individual differentiation.
In order to define a statistical expectation for the RM Y-STR set to differentiate between male relatives, and to compare their potential with that of the commonly used Yfiler set, we first computed the mutation rate observed for each of the two Y-STR sets by means of a Bayesian approach. The number of mutations observed in each father-son pair for each set of Y-STRs was modeled by means of a Poisson distribution. For the RM Y-STRs a median mutation rate of 1.97×10−2 (95% CI 1.8×10−2-2.2×10−2) of the posterior distribution was estimated, which was 6.5-fold higher than that estimated for Yfiler Y-STRs with a median rate of 3.0×10−3 (95% CI ranging from 2.39×10−3 to 3.72×10−3). Next, the probability of observing at least one mutation in each of the two Y-STR sets for a given father-son pair was estimated, reflecting the minimal criteria for differentiating male relatives. Assuming that all Y-STRs per set were genotyped successfully, and using the posterior estimates of the mutation rate for each set of Y-STR markers, the probability of observing at least one mutation with the RM Y-STR set was 0.1952 (95% CI of 0.177 to 0.21). This value was surprisingly more than four times higher than that estimated for the Yfiler set with 0.047 (95% CI of 0.038 to 0.057). The probability of observing at least one mutation with the RM Y-STR set was statistically significantly higher than for the Yfiler set (p<5.0×10−07). Finally, samples were empirically tested independent of those samples used for mutation rate establishment whether the new RM Y-STR set is practically useful for differentiating male relatives. For this, 103 male relative pairs from 80 male pedigrees who were related by between 1 and 20 generations within their pedigrees were genotyped and compared with the findings with those obtained from Yfiler kit in the same samples. Overall, the RM Y-STR set distinguished 70.9% pairs of male relatives by at least 1 mutation, reflecting a 5-fold increase in the level of male relative differentiation compared to the Yfiler kit set with only 13%; notably, the significant difference (t=6.389, p<0.0001) is similar to statistical expectations from the initial father-son pair analyses (FIG. 4 and Table 3). Within the pedigrees, the RM Y-STR set distinguished 70% of father-son pairs, 56% of brothers, and 67% of cousins (FIG. 4 and Table 3). In contrast, the Yfiler set was not able to differentiate any of the father-son pairs nor cousins, and only 6% of the brothers in this dataset (FIG. 4 and Table 3). Furthermore, all relatives separated by more than 11 generations were differentiable by 1 or more mutations using the RM Y-STR set, but only 33% with the Yfiler set.
All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention may have been described in terms of specific examples or preferred embodiments, these examples and embodiments are in no way intended to limit the scope of the claims, and it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
TABLE 1
Bayesian median mutation rates, mutation summaries and repeat structures of 186 Y-STRs from analysing
DNA-confirmed father-son pairs. Loci with median mutation rates above 10−2 (the RM Y-STR set)
are highlighted in red. Additionally included are PCR primers, PCR annealing temperature and locus
assignment to the 54 multiplexes used for genotyping.
Bayesian Bayesian
median 95% Primer 1 Primer 2
Repeat Structure (as defined in Methods mutation credible Gains/ Total Total Sequence Sequence Ta in Multi-
GBD ID and Materials) rate interval Losses Mutations Meioses 5′-3′ 5′-3′ ° C. plex Ref
DYF380S1 (AAT)8-11 3.84 × 10−4 1.42 × 10−5-2.06 × 0/0 0 1790 AGCCATGTGGAT GACAAACCCATCC TD 28 [29]
10−3 TCACCACT TGTCTCC 70-50
DYF381S1 (TTG)7-8 3.95 × 10−4 1.43 × 10−5-2.07 × 0/0 0 1774 TCCATCCATCAA CAACCCAAACACT TD 45 [29]
10−3 TCCATCAA TGCAGAA 60-50
DYF381S2 (AAC)7-8 3.91 × 10−4 1.44 × 10−5-2.11 × 0/0 0 1756 CAACCCAAACA TCCATCCATCAAT TD 20 [29]
10−3 CTTGCAGAA CCATCAA 60-50
DYF382S1 (GGAT)9-16(AGAT)1(GGAT)3N8(GGAC)3 1.05 × 10−3 1.52 × 10−4-3.47 × 1/0 1 1609 TTGTAAAATGGG CCCAAAGTGCTAC TD 54 [29]
10−3 CATGTGGA CCACCTA 70-50
DYF386S1 (AAT)7-16 6.02 × 10−3 3.10 × 10−3-1.04 × 3/7 10 1772 GACTGCTCAACT CCAATGTTACTCA TD 29 [29]
10−2 GCACTCCA CTATGCTGCTT 70-50
DYF387S1 (AAAG)3(GTAG)1(GAAG)4N16(GAAG)9 1.59 × 10−2 1.08 × 10−2-2.24 × 15/13 28 1804 GCCTGGGTGAC GCCACAGTGTGAG TD 49 [29]
(AAAG)13 10−2 AGAGCTAGA AAGTGTGA 70-50
DYF388S1 (CTTC)6(CTTT)5-19N18(CTTC)3(TTTC)1 6.85 × 10−3 3.64 × 10−3-1.15 × 5/6 11 1702 TTCTAGGAAGAT CCCAGACAACAG TD 52 [29]
(CTTC)3N8(CTTC)3N32(CTTC)3 10−2 TAGCCACAACA AGCAAAAC 65-50
DYF390S1 (TTTA)9-14 9.95 × 10−4 1.42 × 10−4-3.34 × 0/1 1 1680 AGCATTCCCTTT TGACGAGTTAGTG TD 12 [29]
10−3 CTCATTGC GGTGCAG 70-50
DYF393S1 (AAG)4(AA)1(AAG)16-30(CAG)1-2 8.57 × 10−3 4.91 × 10−3-1.37 × 9/5 14 1712 GCAACCAAAAG GTGGAGCCTGCTT TD 31 [29]
10−2 GTTTGGAGA AAAGGAA 70-50
DYF394S1 (ATT)3(GTT)1(ATT)6-9 3.91 × 10−4 1.40 × 10−5-2.09 × 0/0 0 1768 GCCCTGAACAA GCAGTGAGCTGAG TD 24 [29]
10−3 AATCTGGAG ATGGTGA 70-50
DYF396S1 (TCT)6-9 3.86 × 10−4 1.37 × 10−5-2.06 × 0/0 0 1785 TGCACGTCTTCA TTGAATGCCAAGT TD 36 [29]
10−3 TACATAGAGC TATGTAGCA 70-50
DYF399S1 (GAAA)3N7-8(GAAA)10-23 7.73 × 10−2 6.51 × 10−2-9.09 × 55/84 139 1794 GGGTTTTCACCA CCATGTTTTGGGA TD 49 [29]
10−2 GTTTGCAT CATTCCT 70-50
DYF401S1 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3 6.50 × 10−3 3.08 × 10−3-1.18 × 3/5 8 1333 TCGCAAACATA TTCTAGGAAGATT TD 48 [29]
N8(AAGG)3(AAAG)1(AAGG)3N13 10−2 GCACTTCAG AGCCACAACA 70-50
(AAAG)8-23G(AAGG)6
DYF403S1a (TTCT)10-17N2-3(TTCT)3-17 3.10 × 10−2 2.30 × 10−2-4.07 × 29/17 46 1504 CAAAATTCATGT ACAGAGCAGGATT TD 54 [29]
10−2 GGATAATGAG CCATCTA 70-50
DYF403S1b (TTCT)12N2(TTCT)8(TTCC)9(TTCT)14 1.19 × 10−2 7.05 × 10−3-1.86 × 5/11 16 1402 CAAAATTCATGT ACAGAGCAGGATT TD 54 [29]
N2(TTCT)3 10−2 GGATAATGAG CCATCTA 70-50
DYF404S1 (TTTC)10-20N42(TTTC)3 1.25 × 10−2 7.92 × 10−3-1.84 × 14/7 21 1739 GGCTTAAGAAA CCATGATGGAACA TD 38 [29]
10−2 TTTCAACGCATA ATTGCAG 70-50
DYF405S1 (GGAA)4-14N115(GGAA)3 1.52 × 10−3 3.54 × 10−4-4.13 × 1/1 2 1756 CCGTGGTGTCTG CACATCAAGTTGC TD 26 [29]
(GAAA)1(GGAA)3 10−3 AAGCATAG CTGTTTCA 70-50
DYF406S1 (TATC)8-14 3.82 × 10−3 1.61 × 10−3-7.48 × 3/3 6 1744 CCTGGGTGACA TCCACCAAAATTC TD 28 [29]
10−3 CAGTGAGACT CATGACA 70-50
DYF410S1 (AAAT)7-13 2.04 × 10−3 4.82 × 10−4-5.52 × 2/0 2 1309 TGACGAGTTAGT GCGGCTAGGGTAG TD 48 [29]
10−3 GGGTGCAG AATCCAT 70-50
DYS19/ (TAGA)3(TAGG)1(TAGA)6-16 4.37 × 10−3 1.98 × 10−3-8.23 × 4/3 7 1756 Yfiler Yfiler Yfiler Yfiler [29]
DYS394 10−3
DYS385a (AAGG)4N14(AAAG)3N12(AAAG)3N29 2.08 × 10−3 6.24 × 10−4-5.06 × 2/1 3 1762 Yfiler Yfiler Yfiler Yfiler [29]
(AAGG)6-7(GAAA)7-23 10−3
DYS385b (AAGG)4N14(AAAG)3N12(AAAG)3N29 4.14 × 10−3 1.75 × 10−3-8.09 × 6/0 6 1615 Yfiler Yfiler Yfiler Yfiler [29]
(AAGG)6-7(GAAA)7-23 10−3
DYS388 (ATT)9-18 4.25 × 10−4 1.51 × 10−5-2.26 × 0/0 0 1635 GTGAGTTAGCCG CAGATCGCAACCA TD 50 [29]
10−3 TTTAGCGA CTGCG 60-50
DYS389I (TCTG)3(TCTA)6-14 5.51 × 10−3 2.72 × 10−3-9.74 × 4/5 9 1751 Yfiler Yfiler Yfiler Yfiler [29]
10−3
DYS389II (TCTG)4-5(TCTA)10-14N28(TCTG)3 3.83 × 10−3 1.61 × 10−3-7.49 × 2/4 6 1743 Yfiler Yfiler Yfiler Yfiler [29]
(TCTA)6-14 10−3
DYS390 (TCTG)8(TCTA)9-14(TCTG)1(TCTG)4 1.52 × 10−3 3.52 × 10−4-4.09 × 0/2 2 1758 Yfiler Yfiler Yfiler Yfiler [29]
10−3
DYS391 (TCTG)3(TCTA)6-15 3.23 × 10−3 1.26 × 10−3-6.65 × 3/2 5 1759 Yfiler Yfiler Yfiler Yfiler [29]
10−3
DYS392 (TAT)4-20 9.70 × 10−4 1.43 × 10−4-3.23 × 1/0 1 1728 Yfiler Yfiler Yfiler Yfiler [29]
10−3
DYS393/ (AGAT)7-18 2.11 × 10−3 6.21 × 10−4-5.00 × 2/1 3 1750 Yfiler Yfiler Yfiler Yfiler [29]
DYS395 10−3
DYS425/ (TGT)8-14 1.51 × 10−3 3.48 × 10−4-4.08 × 1/1 2 1778 TGGAGAGAAGA AGTAATTCTGGAG TD 20 [29]
DYF371 10−3 AGAGAGAAAT GTAAAATGG 60-50
DYS426 (GTT)9-12 3.98 × 10−4 1.49 × 10−5-2.11 × 0/0 0 1735 CTCAAAGTATGA GGTGACAAGACG TD 38 [29]
10−3 AAGCATGACCA AGACTTTGTG 70-50
DYS434 (ATCT)9-12 4.04 × 10−4 1.47 × 10−5-2.14 × 0/0 0 1715 CACTCCCTGAGT GGAGATGAATGA TD 40 [29]
10−3 GCTGGATT ATGGATGGA 60-50
DYS435 (TGGA)10-12 1.00 × 10−3 1.47 × 10−4-3.33 × 0/1 1 1676 AGCATCTCCACA TTCTCTCTCCCCCT TD 41 [29]
10−3 CAGCACAC CCTCTC 60-50
DYS436 (GTT)11-13 3.84 × 10−4 1.38 × 10−5-2.05 × 0/0 0 1798 CCAGGAGAGCA GCAATCCAACTTC TD 18 [29]
10−3 CACACAAAA AGCCAAT 60-50
DYS437 (TCTA)4-12(TCTG)2(TCTA)4 1.53 × 10−3 3.54 × 10−4-4.10 × 2/0 2 1760 Yfiler Yfiler Yfiler Yfiler [29]
10−3
DYS438 (TTTTC)7-16 9.56 × 10−4 1.37 × 10−4-3.18 × 0/1 1 1751 Yfiler Yfiler Yfiler Yfiler [29]
10−3
DYS439 (GATA)3N32(GATA)5-19 3.84 × 10−3 1.63 × 10−3-7.54 × 2/4 6 1736 Yfiler Yfiler Yfiler Yfiler [29]
10−3
DYS441 (TTCC)12-21.2 1.18 × 10−3 1.66 × 10−4-3.93 × 1/0 1 1419 ATGTACCTGTAG AAGTTGCAGTGAG TD 27 [45]
10−3 CCCCAGTGAAC CGAAGATTG 70-50
DYS442 (GATA)9-16(GACA)3 9.78 × 10−3 5.59 × 10−3-1.57 × 2/12 14 1497 AAACGCCCATC CCCCAAGTCCCCA TD 16 [45]
10−2 AATCAATGAGTG AAGTGTGT 70-50
DYS443 (TTCC)11-17(CTT)3 2.10 × 10−3 6.24 × 10−4-5.01 × 2/1 3 1745 GAGTTCATGCTG TCATTGGCCACCT TD 29 [29]
10−3 ATGACAAGC GACATTA 70-50
DYS444 (TAGA)9-16 5.45 × 10−3 2.68 × 10−3-9.65 × 3/6 9 1775 TGTGAACCATTT TCACGTTGTTCAA TD 45 [29]
10−3 GGCATGTT GGGTCAA 60-50
DYS445 (TTTA)6-14 2.16 × 10−3 6.38 × 10−4-5.15 × 2/1 3 1704 GAGCTGAGATT AGTTAAGAGCCCC TD 32 [45]
10−3 ATGCCACCAAAA ACCTTCCTG 70-50
DYS446 (TCTCT)8-21 2.67 × 10−3 9.38 × 10−4-5.87 × 2/2 4 1747 TATTTTCAGTCT AAATGTATGGCCA TD 30 [45]
10−3 TGTCCTGTC ACATAGCAAAACC 70-50
DYS447 (TTATA)6-7(TTATT)1(TTATA)8-13 2.12 × 10−3 6.28 × 10−4-5.11 × 1/2 3 1722 GGGCTTGCTTTG GGTCACAGCATGG TD 27 [45]
(TTATT)1(TTATA)5-9 10−3 CGTTATCT CTTGGTT 70-50
DYS448 (AGAGAT)11-13N42(AGAGAT)8-9 3.94 × 10−4 1.41 × 10−5-2.11 × 0/0 0 1747 Yfiler Yfiler Yfiler Yfiler [45]
10−3
DYS449 (TTCT)13-19N22(TTCT)3N12(TTCT)13-19 1.22 × 10−2 7.54 × 10−3-1.85 × 14/5 19 1617 TGGAGTCTCTCA CCATTGCACTCTA TD 46 [29]
10−2 AGCCTGTTC GGTTGGAC 60-50
DYS450 (TTTTA)7-11N12(TTTTA)3 1.04 × 10−3 1.54 × 10−4-3.50 × 0/1 1 1598 GCCTTTCCAATT TGGAATATGATGC TD 39 [45]
10−3 TCAATTTCTGA AGCTGTTTGT 70-50
DYS452 (TATAC)5-14[(CATAC)1(TATAC)1]2-4 4.02 × 10−3 1.56 × 10−3-8.28 × 2/3 5 1411 TTTATTATACTC GTGGTGTTCTGAT TD 16 [45]
N20(TATAC)3(CATAC)1(TATAC)3 10−3 AGCTAATTAATT GAGGATAAT 70-50
GGTT
DYS453 (AAAT)9-15 3.89 × 10−4 1.43 × 10−5-2.08 × 0/0 0 1782 GGGTAACAGAA CTAAAAGTATGGA TD 45 [45]
10−3 CAAGACAGT TATTCTTCG 60-50
DYS454 (AAAT)7-13 4.75 × 10−4 1.71 × 10−5-2.55 × 0/0 0 1458 TCACAATGACCC GTTCTTTGGCCCT TD 46 [29]
10−3 TTTTGTGC GCATTTA 60-50
DYS455 (ATTT)6.2-11 4.26 × 10−4 1.59 × 10−5-2.28 × 0/0 0 1618 ATCTGAGCCGA GGGGTGGAAACG TD 39 [45]
10−3 GAGAATGATA AGTGTT 70-50
DYS456 (AGAT)11-23 4.94 × 10−3 2.35 × 10−3-8.97 × 6/2 8 1757 Yfiler Yfiler Yfiler Yfiler [45]
10−3
DYS458 (GAAA)11-24 8.36 × 10−3 4.80 × 10−3-1.34 × 7/7 14 1756 Yfiler Yfiler Yfiler Yfiler [45]
10−2
DYS459 (ATTT)6-11 2.67 × 10−3 9.36 × 10−4-5.86 × 2/2 4 1741 CAGGTGAACTG TTGAGCAACAGAG TD 27 [45]
10−3 GGGTAAATAAT CAAGACTTA 70-50
DYS460 (TAGA)8-13 6.22 × 10−3 3.19 × 10−3-1.07 × 2/8 10 1717 GCCAAACTCTTT TCTATCCTCTGCC TD 20 [29]
10−2 CCAAGAAG TATCATTTATTA 60-50
DYS461 (TAGA)8-13 9.89 × 10−4 1.40 × 10−4-3.29 × 0/1 1 1695 AGGCAGAGGAT TTCAGGTAAATCT TD 19 [29]
10−3 AGATGATATGG GTCCAGTAGTGA 60-50
AT
DYS462 (CATA)9-14 2.65 × 10−3 9.20 × 10−4-5.80 × 1/3 4 1771 TGTGCTGTACCA CCAGCCTGAGCAA TD 30 [45]
10−3 GTTGCCTA GAGAGTA 70-50
DYS463 (AAAGG)6-7(AAGGG)9-19 1.51 × 10−3 3.49 × 10−4-4.07 × 2/0 2 1776 AATTCTAGGTTT ATGAGGTTGTGTG TD 33 [45]
10−3 GAGCAAAGACA ACTTGACTG 70-50
DYS464 (CCTT)9-20N46(CCTT)3N8(CCTT)4 7.27 × 10−3 3.96 × 10−3-1.20 × 5/7 12 1745 TTACGAGCTTTG CCTGGGTAACAGA TD 31 [45]
10−2 GGCTATG GAGACTCTT 70-50
DYS468 (CTG)4N44(CCT)3N40(CTT)3N35(CCT)4N8 1.74 × 10−3 4.03 × 10−4-4.69 × 1/1 2 1535 GGGAGTTCCAA GGGGGAAGATGA TD 37 [29]
(CTC)4(CTT)7-9(ATTCAT)8-10 10−3 ACTTTTTCACA CAATGATG 70-50
DYS469 (CTT)3N39(CTT)4(GTT)1(CTT)10-30T 2.99 × 10−3 1.04 × 10−3-6.54 × 3/1 4 1555 TTTGGGGACTGA CCCCAGCTGGTAA TD 41 [29]
(CTT)3N17(CTT)5N37(CTT)3N12(CTT)4 10−3 ATTCAAAA AATGAGT 60-50
N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3
(CCT)3
DYS470 (GTT)8-12N33(GTT)3 4.20 × 10−4 1.51 × 10−5-2.23 × 0/0 0 1651 GGTCCTTCAGGA TGGCTGTAAAACA TD 44 [29]
10−3 ACCAGTTG AATATCAGCA 60-50
DYS472 (AAT)7-9 4.46 × 10−4 1.62 × 10−5-2.37 × 0/0 0 1549 AGATTGTCCCAC GAGGCACTGTGTT TD 1 [29]
10−3 CTGCACTC CAGCAAA 70-50
DYS473 (AAT)8N12(AAT)9-13 4.13 × 10−4 1.47 × 10−5-2.21 × 0/0 0 1676 CAGCCTGGATA CCTCTTTTCTTTGC TD 44 [29]
10−3 GCAGAGTGA TGGTTCCTT 60-50
DYS474 (AAC)9-10 3.92 × 10−4 1.41 × 10−5-2.08 × 0/0 0 1766 CCCCTGAACTTA GGCATCTAGGTTT TD 22 [29]
10−3 AAAGGTGGA ACTGTGAGGA 60-50
DYS475 (TAA)7-9(CAA)1(TAA)3 4.14 × 10−4 1.54 × 10−5-2.21 × 0/0 0 1681 CCCACCAAGGG CCCACAGAAAGAT TD 23 [29]
10−3 TTTTCAGA GTTGAGG 60-50
DYS476 (TGA)7-13 9.40 × 10−4 1.35 × 10−4-3.12 × 1/0 1 1779 CGACTATGATTT AGCTGGGAAGTAC TD 7 [29]
10−3 GGGCTGTG TCAATGCTC 70-50
DYS477 (TTG)8-9 3.91 × 10−4 1.37 × 10−5-2.07 × 0/0 0 1765 TAACTTACAGAA AAGTGAATCGAGT TD 42 [29]
10−3 AAGCTCAGGG GCCTAGC 60-50
DYS478 (CAG)4(CAA)1(CAG)8 4.04 × 10−4 1.46 × 10−5-2.17 × 0/0 0 1718 ACAGGCAACAA TCAGGATAAGCTA TD 20 [29]
10−3 ATTGGGTA GCAGTCTATG 60-50
DYS480 (TTA)6-10 3.91 × 10−4 1.44 × 10−5-2.09 × 0/0 0 1783 CCAGCACCTAG CAGCACTCCAAAA TD 9 [29]
10−3 GTTGAGGTA TGACAGA 70-50
DYS481 (CTT)22-32 4.97 × 10−3 2.36 × 10−3-9.03 × 3/5 8 1744 AGGAATGTGGC ACAGCTCACCAGA TD 12 [29]
10−3 TAACGCTGT AGGTTGC 70-50
DYS484 (AAT)10-16N12(AAT)3(TAT)3 2.61 × 10−3 9.09 × 10−4-5.73 × 2/2 4 1792 CCTATCATCCGC CCTGGTTGACAAA TD 21 [29]
10−3 ATGGACTT GCCAGAT 60-50
DYS485 (TTT)0-1(TTA)11-21 4.04 × 10−4 1.53 × 10−5-2.13 × 0/0 0 1730 AAAGCAGACTT AAAAATTAGCTGG TD 9 [29]
10−3 CGCCACTACA GCCTGGT 70-50
DYS487 (AAT)10-16 1.77 × 10−3 4.08 × 10−4-4.78 × 1/1 2 1511 TGTGGGAGGCCT CCTGGGCAACAGA TD 1 [29]
10−3 TAAGAAAA GAAAGAC 70-50
DYS488 (ATA)10-16 4.40 × 10−4 1.60 × 10−5-2.32 × 0/0 0 1576 GGGGAGGGATA TACCCTGGTCCAC TD 3 [29]
10−3 GCATTAGGA TTCAACC 70-50
DYS489 (TTA)10-15 4.48 × 10−4 1.66 × 10−5-2.38 × 0/0 0 1552 ACCCAAAGATTT AAAATTAGCCGAG TD 37 [29]
10−3 GTCGGCTA CATGGTG 70-50
DYS490 (TTA)8-16 3.95 × 10−4 1.48 × 10−5-2.10 × 0/0 0 1759 CCTGGCAGGAA GCAGAGCTTGCAC TD 10 [29]
10−3 TTATCCAGA TGAGCT 70-50
DYS491 (ATA)8-14 4.09 × 10−4 1.45 × 10−5-2.17 × 0/0 0 1706 GGAATGGGGAG GGAGAAAATTCA TD 15 [29]
10−3 GGATAACAT ATGCAGATACC 70-50
DYS492 (ATA)9-15 3.92 × 10−4 1.45 × 10−5-2.09 × 0/0 0 1770 AGATGAGCCAG AGTAGGGGTCAG TD 7 [29]
10−3 GCTTCAGAC GCACAATG 70-50
DYS493 (AAC)8-11 3.86 × 10−4 1.45 × 10−5-2.06 × 0/0 0 1800 ACTCCAGTCTGG CCCTGGGATTATA TD 36 [29]
10−3 GTGGACAG GGCATGA 70-50
DYS494 (TA)4-6(TAA)7-11 3.89 × 10−4 1.43 × 10−5-2.07 × 0/0 0 1783 TTGCAACACTGT AACAAACCTGCAT TD 11 [29]
10−3 TCATTTGGA GTTCTTCAA 70-50
DYS495 (AAT)12-19 2.09 × 10−3 6.19 × 10−4-4.97 × 2/1 3 1755 CCCAGCTATTCA GCCAGAAAGTGTG TD 10 [29]
10−3 GGAGGTTG AGTCATCC 70-50
DYS497 (TTA)9-16 1.49 × 10−3 3.46 × 10−4-4.05 × 1/1 2 1786 AACATGTGCGTT GCATGTTGTGCAC TD 13 [29]
10−3 TTCAACCA ATGTAACC 70-50
DYS499 (TTG)8 3.93 × 10−4 1.40 × 10−5-2.09 × 0/0 0 1771 TGGGTCAGAGA GGAGGAAGAGGT TD 47 [29]
10−3 AAGGATTGC TGCAATGA 70-50
DYS502 (AAT)4(TGC)1(CAT)6-9 3.85 × 10−4 1.43 × 10−5-2.05 × 0/0 0 1792 CAGCAAGCCAC TGTGCTTTTGGAG TD 34 [29]
10−3 CATACCATA TTTGGAG 70-50
DYS504 (CCTT)10-20N7(CCCT)3 3.24 × 10−3 1.26 × 10−3-6.62 × 1/4 5 1746 TCTACACCACTG GGCAACAGAGCA TD 8 [29]
10−3 TGCCAAGC ACCCTCT 70-50
DYS505 (TCCT)9-15 1.51 × 10−3 3.50 × 10−4-4.07 × 1/1 2 1760 TCTGGCGAAGTA TCGAGTCAGTTCA TD 6 [29]
10−3 ACCCAAAC CCAGAAGG 70-50
DYS508 (TATC)8-15 3.03 × 10−3 1.05 × 10−3-6.63 × 2/2 4 1544 ACAATGGCAAT GAACAAATAAGG TD 1 [29]
10−3 CCCAAATTC TGGGATGGAT 70-50
DYS509 (AAAT)7-11(AATAA)1(AAAT)3 1.06 × 10−3 1.55 × 10−4-3.53 × 0/1 1 1590 AACATGGTGAA TGTCCCCAGGGCT TD 37 [29]
10−3 TCCCTGTCTCT TTTTAAT 70-50
DYS510 (GATA)3N12(GATA)9-15N13(GGAT)4 5.99 × 10−3 3.09 × 10−3-1.03 × 4/6 10 1779 TTTTTCCTCCCTT TCTGGAGAAGACA TD 34 [29]
N9(GATA)3 10−2 ACCACAGA GAACTTGTCA 70-50
DYS511 (GATA)9-14 1.52 × 10−3 3.51 × 10−4-4.11 × 1/1 2 1760 GATAGGATGGG TGTGAATTCCCCT TD 13 [29]
10−3 GTGGATGTG TCTACATCTC 70-50
DYS512 (AGAT)7-13 3.96 × 10−4 1.44 × 10−5-2.11 × 0/0 0 1738 CACGCCCAGCT GGGAGGAATAAA TD 26 [29]
10−3 AATTTTTGT GGAAGGTTG 70-50
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1 6.09 × 10−3 3.14 × 10−3-1.05 × 6/4 10 1751 ATTGATCCATCC GTTGGATGAAGGG TD 32 [29]
(TCTA)9-15 10−2 GTCTGTCC AGAGCAG 70-50
DYS516 (TTCT)4N30(TTCT)9-18 6.66 × 10−3 3.55 × 10−3-1.12 × 7/4 11 1753 TTTCCAATGACC CGAACCTGCAAAT TD 22 [29]
10−2 AAGACGTG TGTTCAC 60-50
DYS517 (AAAG)10-18N8(AAAG)3 3.21 × 10−3 1.25 × 10−3-6.62 × 3/2 5 1766 TAATCGTCCCAT TGCAATCCCAAAC TD 22 [29]
10−3 TTTGAGCA TCAGAAA 60-50
DYS518 (AAAG)3(GAAG)1(AAAG)14-22(GGAG)1 1.84 × 10−2 1.25 × 10−2-2.60 × 8/20 28 1556 GGCAACACAAG TCAGCTCTTACCA TD 54 [29]
(AAAG)4N6(AAAG)11-19N27(AAGG)4 10−2 TGAAACTGC TGGGTGAT 70-50
DYS520 (GATA)10-13(CATA)10−11 2.66 × 10−3 9.22 × 10−4-5.80 × 2/2 4 1760 AACAGCCTGCC ACCATCATGCCCT TD 24 [29]
10−3 CAACATAGT GCAATA 70-50
DYS521 (CTTT)5(TCTT)3(TTTT)1(CTTT)5T 9.54 × 10−4 1.37 × 10−4-3.18 × 0/1 1 1751 GCCACAGCACC GCTGGGAGTGAG TD 24 [29]
(CTTT)4-14 10−3 TGTTCAGTA ACCCTGTA 70-50
DYS522 (ATAG)8-15 1.04 × 10−3 1.53 × 10−4-3.44 × 1/0 1 1620 CCTTTGAAATCA TCATAAACAGAGG TD 4 [29]
10−3 TTCATAATGC GTTCTGG 70-50
DYS525 (AGAT)8-13 9.78 × 10−4 1.42 × 10−4-3.26 × 0/1 1 1712 ATTCACACCATT CCATCTGTTTATC TD 2 [29]
10−3 GCACTCCA TTCCCATCA 70-50
DYS526a (CCTT)10-17 2.72 × 10−3 9.52 × 10−4-5.97 × 2/2 4 1716 TCTGGTGAACTG GGGTTACTTCGCC TD 51 [29]
10−3 ATCCAAACC AGAAGGT 65-50
DYS526b (CCCT)3N20(CTTT)11-17(CCTT)6-10N113 1.25 × 10−2 7.88 × 10−3-1.87 × 9/11 20 1651 TCTGGTGAACTG GGGTTACTTCGCC TD 51 [29]
(CCTT)10-17 10−2 ATCCAAACC AGAAGGT 65-50
DYS530 (AAAC)8-11 3.94 × 10−4 1.45 × 10−5-2.10 × 0/0 0 1760 CAGGGTCAAAA CTGCGGGACAATG TD 15 [29]
10−3 TCACCTTCC AAACAC 70-50
DYS531 (AAAT)9-13 1.00 × 10−3 1.45 × 10−4-3.50 × 0/1 1 1682 GACCCACTGGC TGCTCCCTTTCTTT TD 3 [29]
10−3 ATTCAAATC GTAGACG 70-50
DYS532 (TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1 3.24 × 10−3 1.13 × 10−3-7.10 × 3/1 4 1441 TTGGTTTTATGC TAGGTGACAGAGC TD 39 [29]
(TTCT)6-17N17(TTCT)3N13(TTCC)4N70 10−3 CTTTCACT AGGATTC 70-50
(TTCT)3N6(TTCT)3
DYS533 (TATC)9-14 5.01 × 10−3 2.39 × 10−3-9.11 × 4/4 8 1730 CATCTAACATCT TGATCAGTTCTTA TD 5 [29]
10−3 TTGTCATCTACC ACTCAACCA 70-50
DYS534 (CTTT)3N8(CTTT)9-20N9(CTTT)3 6.51 × 10−3 3.44 × 10−3-1.10 × 9/2 11 1794 CATCTACCCAAC GACAAAGATGTTA TD 18 [29]
10−2 ATCCATCTA GATGAATAGACA 60-50
DYS536 (TCCT)7-19N8(TTCT)4 1.15 × 10−3 1.66 × 10−4-3.83 × 1/0 1 1453 TTGCTTTTCTGC ATCGCATTCCCCT 52 53 [29]
10−3 TTCCCTTC CTCCTAC
DYS537 (TCTA)8-13 2.38 × 10−3 7.12 × 10−4-5.70 × 2/1 3 1539 GGTCTCCAATTC TGGAACATGCCCA TD 3 [29]
10−3 CATCCAGA TTAATCA 70-50
DYS538 (GATA)9-13 3.94 × 10−4 1.47 × 10−5-2.10 × 0/0 0 1765 CCCCTGAATCAC AACCAGCCCAAAT TD 31 [29]
10−3 CAGAGTTC ACCCATC 70-50
DYS539 (TAGA)8-14 1.00 × 10−3 1.46 × 10−4-3.32 × 0/1 1 1676 GTTGAAGCCCTC GGTGCAGATCTCC TD 19 [29]
10−3 AATCTGGT CAAATTC 60-50
DYS540 (TTAT)9-14 3.30 × 10−3 1.28 × 10−3-6.79 × 2/3 5 1718 GACCGTGTACTC CAGGAGGCTAGCT TD 7 [29]
10−3 TGGCCAAT CAGGAGA 70-50
DYS541 (TATC)10-15(TTC)1(TATC)3 3.92 × 10−3 1.65 × 10−3-7.68 × 2/4 6 1700 TTCTATCTGTTC ACCTTTAAGAAGC TD 20 [29]
10−3 ATCCATCTAGG CTTCACC 60-50
DYS543 (AGAT)3(GATA)7.2-16N42(ATGT)3-4 7.10 × 10−3 3.77 × 10−3-3.53 × 4/7 11 1645 CAAGGGCCAAT TGATCTTCCTGGT TD 23 [29]
(ATGG)2-3N35(GAAA)3 10−3 TATGTATGT CACTTTT 60-50
DYS544 (TAGA)3N15(TAGA)3(TGGA)1(TAGA)6-12 3.96 × 10−4 1.44 × 10−5-1.20 × 0/0 0 1748 CTGGGCAACAG AATGCTGGCCAAA TD 32 [29]
10−2 AGCAAGATT ACAAAGT 70-50
DYS545 (TGTT)8-11 3.90 × 10−4 1.39 × 10−5-2.09 × 0/0 0 1779 GAGGGGAGTGT GATCCAAGATGGT TD 30 [29]
10−3 AGAAAGAATGC GCCATTG 70-50
DYS546 (TTCC)3N23(TTCT)3N33(TTCC)3N16 4.35 × 10−3 1.85 × 10−3-8.56 × 2/4 6 1531 CCTGAGCTATTT TGCAGTACATCCT TD 35 [29]
(TTCT)9-19 10−3 TCCCTTTGC GGGGAAT 70-50
DYS547 (CCTT)9-13T(CTTC)4-5N56(TTTC)10-22 2.36 × 10−2 1.70 × 10−2-3.18 × 22/17 39 1679 TCCATGTTACTG TGACAGAGCATAA TD 17 [29]
N10(CCTT)4(TCTC)1(TTTC)9-16N14 10−2 CAAAATACAC ACGTGTC 60-50
(TTTC)3
DYS549 (GATA)9-15 4.55 × 10−3 2.05 × 10−3-8.58 × 1/6 7 1684 AACCAAATTCA GTCCCCTTTTCCA TD 15 [29]
10−3 GGGATGTACTGA TTTGTGA 70-50
DYS550 (AAGG)4N16(AAGG)4(AAAG)1 3.87 × 10−4 1.41 × 10−5-2.06 × 0/0 0 1794 GCCTGGGTAAC AGCTGAAAACTGT TD 34 [29]
(AAGG)6-11 10−3 AGGAGTGAA GCTGCTG 70-50
DYS551 (AGAT)10-16N8(AGAC)3(AGGT)1(AGAT)4 3.26 × 10−3 1.26 × 10−3-6.72 × 1/4 5 1737 CCAGCCTGGGT AAAGTTCCTCCCA TD 38 [29]
10−3 GACAAAGTA GTTGCAC 70-50
DYS552 (TCTA)3(TCTG)1(TCTA)7-12N40 2.69 × 10−3 9.21 × 10−4-5.87 × 3/1 4 1742 CCATAGTGCCG AACACCTGATGCC TD 38 [29]
(TCTA)11-16 10−3 AGGTCAAGT TGGTTG 70-50
DYS554 (TAAA)8-11 9.41 × 10−4 1.36 × 10−4-3.15 × 1/0 1 1777 CTGGGCCACAG GGGCCAGTCTTTG TD 13 [29]
10−3 AGTGAGAC CAATATC 70-50
DYS556 (AAAT)8-12 1.59 × 10−3 3.70 × 10−4-4.30 × 1/1 2 1683 TGCTGTCACATC TTTGGTTGCTGAA TD 14 [29]
10−3 ACCAATGA GCATTGA 70-50
DYS557 (TTTC)4(TTCTC)1(TTTC)4(TTC)1 3.80 × 10−3 1.60 × 10−3-7.45 × 3/3 6 1758 TTTTCTGTGCCA TCTAATGCACCTT TD 21 [29]
(TTTC)12-21 10−3 AGCCTACA GAGGGATG 60-50
DYS558 (TTTG)3(TTTA)5-10 3.98 × 10−4 1.42 × 10−5-2.13 × 0/0 0 1741 GGTGGTCAGAA GCAGGCCAATATT TD 26 [29]
10−3 AATCCCTCA CACCATT 70-50
DYS559 (TAAA)7-9 9.63 × 10−4 1.40 × 10−4-3.19 × 1/0 1 1750 AGCCAAGGTCA TCGGTGAAGGCAC TD 25 [29]
10−3 TACCACTGC CAATAAT 70-50
DYS561 (GATA)9-13(GACA)4 9.41 × 10−4 1.36 × 10−4-3.11 × 0/1 1 1783 GCCTGATGCCAT TGATCCCAACAAC TD 17 [29]
10−3 CTGAAAAT TGCACTC 60-50
DYS565 (ATAA)9-14 2.09 × 10−3 6.20 × 10−4-4.95 × 1/2 3 1757 AAACCCAGGAA CCTGGCTCAGCAC TD 11 [29]
10−3 GCAGTGTTG ATGAATA 70-50
DYS567 (ATAA)7-13 4.08 × 10−4 1.48 × 10−5-2.14 × 0/0 0 1713 GGAAGCTGAGG TTATGACCGGGAT TD 10 [29]
10−3 AAGGAGGAG CAAGTGC 70-50
DYS568 (AAAT)9-13 1.08 × 10−3 1.56 × 10−4-3.60 × 0/1 1 1547 GTGGCAGACAA TTGAAAAGGGATG TD 3 [29]
10−3 AACCCAGTT GGACTCA 70-50
DYS569 (ATTT)8.2-13 1.58 × 10−3 3.66 × 10−4-4.24 × 0/2 2 1696 TCCATGGGATAT GGCAGCCTGTAGG TD 12 [29]
10−3 GATGAGCA ACAGAGA 70-50
DYS570 (TTTC)14-24 1.24 × 10−2 7.52 × 10−3-1.91 × 8/9 17 1426 GAACTGTCTACA TCAGCATAGTCAA TD 1 [29]
10−2 ATGGCTCACG GAAACCAGACA 70-50
DYS571 (TTTTC)4N7(TTTA)9-12 4.13 × 10−4 1.51 × 10−5-2.20 × 0/0 0 1682 AGCCTTCAGCG AGCTGAGATCATC TD 47 [29]
10−3 ACTGCTTTA CCATTGC 70-50
DYS572 (AAAT)8-13 2.07 × 10−3 6.17 × 10−4-4.96 × 0/3 3 1770 CTAAGGACGCC CTCATTCCCTATG TD 9 [29]
10−3 TCCCATACA GTTTGCAC 70-50
DYS573 (TTTA)8-13 4.10 × 10−4 1.51 × 10−5-2.17 × 0/0 0 1698 GGGGGAGAAAA AAAAATGGGGAG TD 14 [29]
10−3 AGTTTGGTG GTGGAAAT 70-50
DYS574 (TTAT)8-12 9.77 × 10−4 1.43 × 10−4-3.25 × 0/1 1 1721 GGTGGGGCTTCC AATGTAGACGACG TD 43 [29]
10−3 ATATTTTT GGTTGATG 60-50
DYS575 (AAAT)8-11 3.91 × 10−4 1.47 × 10−5-2.09 × 0/0 0 1764 GGTGGTGGACA AGTAATGGGATGC TD 11 [29]
10−3 TCCGTAATC TGGGTCA 70-50
DYS576 (AAAG)13-22 1.43 × 10−2 9.41 × 10−3-2.07 × 12/12 24 1727 TTGGGCTGAGG GGCAGTCTCATTT TD 12 [29]
10−2 AGTTCAATC CCTGGAG 70-50
DYS577 (ATTC)6-10 4.11 × 10−4 1.51 × 10−5-2.19 × 0/0 0 1691 TCAATGCATGTT GGAGGATGGTTTG TD 40 [29]
10−3 TTTCTACGTG AACCTGA 60-50
DYS578 (AAAT)7-10 9.95 × 10−4 1.43 × 10−4-3.30 × 1/0 1 1686 GAGGCGGAACT GCTTCAACAACCC TD 4 [29]
10−3 TTCAGTGAG TGGACAT 70-50
DYS579 (TATT)7-10 3.94 × 10−4 1.40 × 10−5-2.10 × 0/0 0 1755 GCCAGCAGTAG AGGCAGAGGTTGC TD 2 [29]
10−3 ACCCAGACT AGTGAGT 70-50
DYS580 (AATA)8-10 4.05 × 10−4 1.47 × 10−5-2.13 × 0/0 0 1725 GCAGTGAGCCG GGAGCAAACACT TD 4 [29]
10−3 AGATCAGG GCAATTTCC 70-50
DYS581 (TAGG)7-9 3.84 × 10−4 1.43 × 10−5-2.04 × 0/0 0 1807 GTAGGGTCTTGA CGAGCCAAGCTGC TD 36 [29]
10−3 ACAGCATACG TGTTAT 70-50
DYS583 (AAAC)7-9 3.99 × 10−4 1.44 × 10−5-2.12 × 0/0 0 1730 GCAGGAAAATT CCTCATCCAATAG TD 2 [29]
10−3 GCTTGAACC CTCTTCCT 70-50
DYS584 (CAAT)7-8 3.90 × 10−4 1.43 × 10−5-2.10 × 0/0 0 1777 TGCAGAATGTAT CTGCCAGTCTATT TD 45 [29]
10−3 GGTCTTTTTGA GCCCTTC 60-50
DYS585 (TTATG)8-12 2.12 × 10−3 6.33 × 10−4-5.06 × 2/1 3 1734 TGGAAGTATTCC CTCAAGTGGGGAA TD 42 [29]
10−3 ACTCACTTGCT GTCAAGG 60-50
DYS587 (CAATA)8-16[(CAGTA)1(CAATA)1]3 2.62 × 10−3 9.16 × 10−4-5.75 × 2/2 4 1782 CCTAAAGCGAA TGAAGGCCAAAG TD 18 [29]
10−3 GAGACCATGA AGTGAAAGA 60-50
DYS588 (GCATT)9-16 3.92 × 10−4 1.47 × 10−5-2.10 × 0/0 0 1747 GAATGCAGAAC AGCCTGGGTGACA TD 42 [29]
10−3 CCTCAAGGA GAAACAC 60-50
DYS590 (TTTTG)5-9 3.91 × 10−4 1.45 × 10−5-2.06 × 0/0 0 1780 GGGAACATAGT GGGTGACAGAGC TD 5 [29]
10−3 CGGGCTGTA AAGAATCC 70-50
DYS593 (AAAAC)4(AAAAT)7-10 1.51 × 10−3 3.47 × 10−4-4.06 × 1/1 2 1775 CTTGAACCCAG TTATGCCCAAGTG TD 29 [29]
10−3 GAAGCAGAC ACACTGC 70-50
DYS594 (AAATA)8-13 1.03 × 10−3 1.46 × 10−4-3.41 × 1/0 1 1635 GATGTGCCTAAT CCCTGGTGTTAAT TD 5 [29]
10−3 GCCACAGA CGTGTCC 70-50
DYS595 (ATTTA)6-9 3.96 × 10−4 1.46 × 10−5-2.10 × 0/0 0 1750 TGTTTTCGGTTC AGGGGAACAACA TD 28 [29]
10−3 CTCTGTCC CACACTGG 70-50
DYS596 (GGA)5(GTA)1(GGA)3(GAA)3 4.24 × 10−4 1.52 × 10−5-2.28 × 0/0 0 1630 ATAACCGTGCCC TTTTGACAAGCCC TD 44 [29]
[(GGA)1(GAA)1]8-10 10−3 TTTACTGC AAAGTTCT 60-50
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5 8.89 × 10−3 4.86 × 10−3-1.47 × 3/9 12 1426 TACAGGTGTGCA CTTGGCAACATAG TD 35 [29]
(CTC)1(TTC)3N15(TTC)4(CT)1(TTC)3 10−2 CCATGAGG CAGATCC 70-50
(CTC)1(TTC)3 N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)7-21N23
(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)19-31 1.45 × 10−2 9.61 × 10−3-2.09 × 11/14 25 1767 CCCCCATGCCAG TGAGGGAAGGCA TD 42 [29]
10−2 TAAGAATA AAAGAAAA 60-50
DYS613 (ATG)8(ATA)1(ATG)8-9 4.35 × 10−4 1.60 × 10−5-2.32 × 0/0 0 1588 ATAGAAGGCAA AAAGTTAATGACG TD 23 [29]
10−3 ATTCTTTATCAA CCTTGTC 60-50
DYS614 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1 4.32 × 10−3 1.94 × 10−3-8.14 × 2/5 7 1776 GTGGCGATGTTG GCCACCAAAAGGT TD 33 [29]
(CTT)3N18(CCT)3(CTT)5N20 10−3 TGAGTGTT TTTCAGA 70-50
[(CTT)1(CTG)1]3 (CT)1(CTT)12-22N8
(CTT)4[(CTC)1(CTT)1]3
[(CTC)1(TTT)1](CTT)5
DYS615 (TTG)7-8 3.91 × 10−4 1.43 × 10−5-2.09 × 0/0 0 1766 GGTCGAAGAAG TGATTCTGCTAAT TD 25 [29]
10−3 GTGTCACAGA TCCCATGC 70-50
DYS616 (TAT)8-16(CAT)1(TAT)3 1.72 × 10−3 4.03 × 10−4-4.64 × 1/1 2 1564 GGCAAACAGAT TTGTTCTGCCCAG TD 35 [29]
10−3 AGCAATTTACA CAGTAT 70-50
DYS617 (TTA)11-15 4.13 × 10−4 1.53 × 10−5-2.21 × 0/0 0 1684 AGCATGATGCCT GGATTGGGGAGTG TD 5 [29]
10−3 TCAGCTTT ATAGCAT 70-50
DYS618 (TAT)8-14 3.95 × 10−4 1.46 × 10−5-2.09 × 0/0 0 1766 CCCATACCCTTG GAGGGCTATGGG TD 13 [29]
10−3 GTGTTGTC AGGGATAG 70-50
DYS619 (AAT)6-10 4.69 × 10−4 1.70 × 10−5-2.50 × 0/0 0 1479 GGCGACAGAGC GGCATGTGAGTTG TD 16 [29]
10−3 GAGACTCTA AGGAACA 70-50
DYS620 (ATA)8-9 4.11 × 10−4 1.47 × 10−5-2.22 × 0/0 0 1678 TGACGAGTTAAT TGAGTTTGCTCCT TD 40 [29]
10−3 GGGTGCAG CTAGCTTTC 60-50
DYS621 (TTA)7-9 4.44 × 10−4 1.70 × 10−5-2.38 × 0/0 0 1543 GCCCAAATTAA TGACGAGTTAGTG TD 35 [29]
10−3 AAGGCACAA GGTGCAG 70-50
DYS622 (GAAA)6(AGAAG)1(GAAA)8-16 3.40 × 10−3 1.32 × 10−3-7.01 × 2/3 5 1663 TCCAGCCTCGGT GGCTGAAGTGGGT TD 44 [29]
10−3 GATAAGAG TGTGTTA 60-50
DYS624 (GGAT)8-10(G/AGAT)1N35(GGAT)3 4.06 × 10−4 1.55 × 10−5-2.18 × 0/0 0 1699 GCATCTCAAATC TCCACCTGCTTTT TD 43 [29]
10−3 CTTTGTGGA CTCTTCA 60-50
DYS625 (CTTT)4(TTCT)1(CTTT)3(TTT)1(CTTT)4 9.58 × 10−4 1.40 × 10−4-3.18 × 0/1 1 1746 TCATCACACATG GGCAAGTCACATG TD 22 [29]
(TT)1 (CTTT)3N47(CTTT)3-5(CT)1 10−3 GCCTAATTG CATTACAA 60-50
(CTTT)4(CCTT)1 CTTT)3N10(CTTT)3
DYS626 (GAAA)14-23N24(GAAA)3N6(GAAA)5 1.22 × 10−2 7.70 × 10−3-1.82 × 13/7 20 1689 GCAAGACCCCA AAGAAGAATTTTG TD 23 [29]
(AAA)1 (GAAA)2-3(GAAG)1(GAAA)3 10−2 TAGCAAAAG GGACATGTTT 60-50
DYS627 (AGAA)3N16(AGAG)3(AAAG)12-24N81 1.23 × 10−2 7.80 × 10−3-1.81 × 12/9 21 1766 CTAGGTGACAG GGATAATGAGCA TD 21 [29]
(AAGG)3 10−2 CGCAGGATT AATGGCAAG 60-50
DYS629 (TATC)5-12 9.91 × 10−4 1.41 × 10−4-3.31 × 1/0 1 1689 GGGATTATTACA TATGGGTAAATGG TD 19 [29]
10−3 ATTCAAGGTC CAAAAGT 60-50
DYS630 (AAAG)4(AGAG)3N18(AAAG)12-21 4.86 × 10−3 2.31 × 10−3-8.85 × 5/3 8 1784 GCCTTTGGACAG AGCCATGGAAAG TD 25 [29]
10−3 AGCAAGAC CTGTGAGT 70-50
DYS631 (AATA)4(CATA)1(AATA)7-11 9.77 × 10−4 1.40 × 10−4-3.25 × 0/1 1 1721 CACTCCAGCCTC GCGCTCTGTGGAC TD 43 [29]
10−3 GGAGATAG ATTATCA 60-50
DYS632 (CATT)8-10 3.97 × 10−4 1.47 × 10−5-2.13 × 0/0 0 1745 GGCCGTTGCAA TCTGGGCAACAGA TD 24 [29]
10−3 AATAAACTG AGGAGAC 70-50
DYS633 (AAAT)5N16(AAAT)7-9 3.81 × 10−4 1.38 × 10−5-2.02 × 0/0 0 1814 GGCAACAAGAG CCACCAGGGAAGT TD 46 [29]
10−3 CAAAACTCC GTCTTTC 60-50
DYS634 (GGAA)6N10(AAGG)7-10N12(AGGGG)3 4.20 × 10−4 1.51 × 10−5-2.25 × 0/0 0 1646 TCAGAAGCATG TTGCTCCTTACAG TD 19 [29]
10−3 CTAGAACCCTA AAGAGGTGA 60-50
DYS635 (TCTA)4(TGTA)2(TCTA)2(TGTA)2 3.85 × 10−3 1.63 × 10−3-7.55 × 1/5 6 1732 Yfiler Yfiler Yfiler Yfiler [29]
(TCTA)2 (TATG)0-2(TCTA)4-17 10−3
DYS637 (AAAT)4(ACAT)8-14 1.04 × 10−3 1.53 × 10−4-3.42 × 0/1 1 1623 AAGCCAGTCAA TGCTGGGGTTGAA TD 41 [29]
10−3 CCAAACACA GGTAAAA 60-50
DYS638 (TTTA)8-13 1.04 × 10−3 1.47 × 10−4-3.45 × 1/0 1 1617 ACAATTTCCCTT CATGGTGGTAGGC TD 6 [29]
10−3 GGGGCTAC ACCTGTA 70-50
DYS640 (AAAT)9-13 3.98 × 10−4 1.41 × 10−5-2.16 × 0/0 0 1716 TGGGAAAAACC TAGGGTCAAGCCC TD 15 [29]
10−3 ATGAGATCC GTTCATA 70-50
DYS641 (TAAA)8-12 3.90 × 10−4 1.41 × 10−5-2.09 × 0/0 0 1768 CTTGAGCCCAG CCACACGATGCAA TD 6 [29]
10−3 GAAGCATAG TTTTGTC 70-50
DYS642 (TAAA)6-10 3.91 × 10−4 1.45 × 10−5-2.07 × 0/0 0 1785 CATTGTGCACGT AAAGGGTTGTGCT TD 33 [29]
10−3 GTACCCTAA GCATGAT 70-50
DYS643 (CTTTT)6-15 1.50 × 10−3 3.49 × 10−4-4.05 × 2/0 2 1773 AAGCCATGCCT TGTAACCAAACAC TD 14 [29]
10−3 GGTTAAACT CACCCATT 70-50
DYS644 (TTTTA)10-11(TTTA)0-1(TTTTA)0-13 3.22 × 10−3 1.25 × 10−3-6.62 × 3/2 5 1761 TGACTTCGGGGT CCTGGGCAAAAG TD 8 [29]
10−3 AGTTCCAG AGTGAGAC 70-50
DYS645 (TGTTT)7-9 4.07 × 10−4 1.49 × 10−5-2.14 × 0/0 0 1698 GGTTACGGGTG ACTGCCAGACTCA TD 40 [29]
10−3 GCAATCATA CACATGG 60-50
Y-GATA- (ATCT)11-16 3.32 × 10−3 1.25 × 10−3-6.80 × 3/2 5 1713 CCTGCCATCTCT ATAAATGGAGATA TD 41 [29]
A10 10−3 ATTTATCTTGCA GTGGGTGGATT 60-50
TATA
Y-GATA- (TAGA)3N12(TAGG)3(TAGA)8-15 3.22 × 10−3 1.28 × 10−3-6.62 × 1/4 5 1755 Yfiler Yfiler Yfiler Yfiler [29]
H4 N22(TAGA)4 10−3
Notes:
The repeat nomenclature used is in accordance with rules defined by Kayser et al. (2004).
Separation of repeat blocks by “N” represents the break point between the separate loci present within complex markers (as described in Methods and Materials).
Repeat arrays observed to be variable through sequence analysis are highlighted in bold.
The allele ranges given are those seen with the 1966 father-son pairs of European origin.
The “Total number of Meioses” reported is the number of meioses for the marker, and is not the number of allele transmissions for multicopy markers.
The mutations reported for the Yfiler loci have been previously reported in Reference 28.
PCR Protocols:
TD60-50 TD65-50 TD65-55 TD70-50
95 C. 10 min 95 C. 15 min 95 C. 10 min 95 C. 15 min
94 C. 30 s X10 94 C. 30 s X20 94 C. 30 s X10 94 C. 30 s X20
60-1 C. 30 s 65-1 C. 45 s 65-1 C. 30 s 70-1 C. 45 s
72 C. 45 s 72 C. 1 min 72 C. 45 s 72 C. 1 min
94 C. 30 s X25 94 C. 30 s X15 94 C. 30 s X25 94 C. 30 s X15
50 C. 30 s 50 C. 30 s 55 C. 30 s 50 C. 30 s
72 C. 45 s 72 C. 45 s 72 C. 45 s 72 C. 45 s
60 C. 45 min 60 C. 45 min 60 C. 45 min 60 C. 45 min
15 C. forever 15 C. forever 15 C. forever 15 C. forever
RM 1 RM 2 (DYS518, RM 3 (DYF403S1a/b,
(DYF387S1, DYF399S1, DYS526a/b. DYF404S1, DYS449,
DYS570, DYS576) DYS626, DYS627) DYS547, DYS612)
PCR Buffer 1x PCR Buffer 1x PCR Buffer 1x
MgCl2 2.27 mM MgCl2 1.5 mM MgCl2 2.0 mM
dNTPs 220 μM dNTPs 250 μM dNTPs 250 μM
DYF387S1 Primer 0.09 μM DYS518 Primer 0.5 μM DYF403S1a/b Primer 0.6 μM
DYF399S1 Primer 0.36 μM DYS526a/b Primer 0.35 μM DYSF404S1 Primer 0.1 μM
DYS570 Primer 0.09 μM DYS626 Primer 0.2 μM DYS449 Primer 0.1 μM
DYS576 Primer 0.09 μM DYS627Primer 0.15 μM DYS547 Primer 0.6 μM
DYS612 Primer 0.2 μM
Taq 0.25 U Taq 0.35 U Taq 0.5 U
DNA 2 ng DNA 2 ng DNA 2 ng
PCR Protocol TD70-50 PCR Protocol TD65-55 PCR Protocol TD65-55
TABLE 2
Details of the 924 mutations observed. The repeat structure of both the father and son's alleles at the
mutated Y-STR are given where possible. In the case of multicopy markers with multiple variable segments
within the STR, total repeat numbers or amplicon size is given in the absence of sequence information.
The age of the father at the time of the son's birth is given, as is an individual pair reference.
Father's Father
Locus Father Allele Son Allele Age Reference #
DYF382S1 (GGAT)13(AGAT)1(GGAT)3N8(GGAC)3 (GGAT)14(AGAT)1(GGAT)3N8(GGAC)3 59 1953
DYF386S1 (AAT)12 (AAT)13 27 20
DYF386S1 (AAT)14 (AAT)13 32 84
DYF386S1 (AAT)13 (AAT)12 38 94
DYF386S1 (AAT)15 (AAT)13 20 208
DYF386S1 (AAT)14 (AAT)13 25 317
DYF386S1 (AAT)11 (AAT)12 19 641
DYF386S1 (AAT)14 (AAT)13 27 1195
DYF386S1 (AAT)14 (AAT)15 40 1558
DYF386S1 (AAT)14 (AAT)13 42 1644
DYF386S1 (AAT)14 (AAT)13 52 1864
DYF387S1 21 24 21 46
DYF387S1 23 22 48 74
DYF387S1 23 24 36 150
DYF387S1 20 21 29 155
DYF387S1 24 23 24 259
DYF387S1 22 21 28 677
DYF387S1 24 23 40 738
DYF387S1 25 24 22 817
DYF387S1 25 26 36 830
DYF387S1 25 26 18 852
DYF387S1 23 24 28 880
DYF387S1 24 23 19 916
DYF387S1 21 22 33 955
DYF387S1 22 23 43 1159
DYF387S1 23 24 Unknown 1202
DYF387S1 24 23 30 1274
DYF387S1 23 22 37 1319
DYF387S1 23 21 Unknown 1328
DYF387S1 24 25 31 1390
DYF387S1 23 24 39 1451
DYF387S1 22 21 24 1469
DYF387S1 22 23 38 1494
DYF387S1 21 22 39 1552
DYF387S1 21 22 20 1592
DYF387S1 23 22 42 1644
DYF387S1 23 22 23 1710
DYF387S1 23 22 18 1750
DYF387S1 23 25 54 1911
DYF388S1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)13N18(CTTC)3(TTTC)1 37 36
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF388S1 (CTTC)6(CTTT)14N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 34 372
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF388S1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)13N18(CTTC)3(TTTC)1 28 674
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF388S1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)13N18(CTTC)3(TTTC)1 21 769
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF388S1 (CTTC)6(CTTT)11N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 49 945
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF388S1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)11N18(CTTC)3(TTTC)1 28 1035
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF388S1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)13N18(CTTC)3(TTTC)1 30 1177
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF388S1 (CTTC)6(CTTT)13N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 56 1272
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF388S1 (CTTC)6(CTTT)13N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 Unknown 1352
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF388S1 (CTTC)6(CTTT)13N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 31 1518
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF388S1 (CTTC)6(CTTT)14N18(CTTC)3(TTTC)1 (CTTC)6(CTTT)12N18(CTTC)3(TTTC)1 28 1734
(CTTC)3N8(CTTC)3N32(CTTC)3 (CTTC)3N8(CTTC)3N32(CTTC)3
DYF390S1 (TTTA)11 (TTTA)10 21 1667
DYF393S1 (AAG)4(AA)1(AAG)26(CAG)1 (AAG)4(AA)1(AAG)25(CAG)1 32 19
DYF393S1 (AAG)4(AA)1(AAG)28(CAG)1 (AAG)4(AA)1(AAG)29(CAG)1 32 84
DYF393S1 (AAG)4(AA)1(AAG)19(CAG)1 (AAG)4(AA)1(AAG)20(CAG)1 34 183
DYF393S1 (AAG)4(AA)1(AAG)26(CAG)1 (AAG)4(AA)1(AAG)25(CAG)1 32 213
DYF393S1 (AAG)4(AA)1(AAG)25(CAG)1 (AAG)4(AA)1(AAG)24(CAG)1 26 303
DYF393S1 (AAG)4(AA)1(AAG)22(CAG)1 (AAG)4(AA)1(AAG)23(CAG)1 31 927
DYF393S1 (AAG)4(AA)1(AAG)26(CAG)2 (AAG)4(AA)1(AAG)27(CAG)2 23 941
DYF393S1 (AAG)4(AA)1(AAG)22(CAG)1 (AAG)4(AA)1(AAG)23(CAG)1 64 951
DYF393S1 (AAG)4(AA)1(AAG)27(CAG)1 (AAG)4(AA)1(AAG)26(CAG)1 21 1207
DYF393S1 (AAG)4(AA)1(AAG)22(CAG)1 (AAG)4(AA)1(AAG)24(CAG)1 17 1406
DYF393S1 (AAG)4(AA)1(AAG)28(CAG)1 (AAG)4(AA)1(AAG)29(CAG)1 19 1530
DYF393S1 (AAG)4(AA)1(AAG)27(CAG)1 (AAG)4(AA)1(AAG)28(CAG)1 26 1551
DYF393S1 (AAG)4(AA)1(AAG)23(CAG)1 (AAG)4(AA)1(AAG)24(CAG)1 36 1672
DYF393S1 (AAG)4(AA)1(AAG)25(CAG)1 (AAG)4(AA)1(AAG)24(CAG)1 55 1928
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 22 14
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)17 46 21
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 36 22
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 30 25
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 32 32
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 16 55
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 32 59
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 30 62
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 46 72
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 46 72
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 25 79
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 25 80
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 28 91
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 32 95
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 30 99
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 27 119
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 48 122
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 33 126
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 36 136
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 28 153
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)17 33 189
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N7(GAAA)18 39 200
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)15 22 203
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 22 229
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)15 50 270
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 28 287
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 32 290
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)17 21 299
DYF399S1 (GAAA)3N8(GAAA)22 (GAAA)3N7(GAAA)21 27 302
DYF399S1 (GAAA)3N8(GAAA)15 (GAAA)3N8(GAAA)16 38 336
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)17 50 356
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)22 28 367
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)17 34 372
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)22 28 373
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)17 35 389
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)17 32 401
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)17 53 453
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N7(GAAA)18 34 459
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 26 480
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 28 484
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 26 488
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 39 492
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 27 494
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 35 500
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)15 19 546
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 34 559
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)22 30 586
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 29 603
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)17 56 608
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 32 614
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 43 624
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 25 630
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 30 640
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 43 657
DYF399S1 (GAAA)3N8(GAAA)22 (GAAA)3N7(GAAA)21 25 666
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 23 675
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 18 680
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 23 687
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N7(GAAA)18 20 706
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 33 718
DYF399S1 (GAAA)3N8(GAAA)15 (GAAA)3N8(GAAA)16 21 720
DYF399S1 (GAAA)3N8(GAAA)15 (GAAA)3N8(GAAA)14 22 747
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 28 772
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)15 28 805
DYF399S1 (GAAA)3N8(GAAA)22 (GAAA)3N8(GAAA)20 22 817
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 20 824
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 20 827
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 25 877
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 31 881
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 19 900
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)17 37 904
DYF399S1 (GAAA)3N8(GAAA)15 (GAAA)3N8(GAAA)14 34 911
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)17 19 916
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)16 24 926
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 22 986
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N7(GAAA)21 36 989
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)17 35 1001
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 41 1008
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 41 1008
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)15 33 1046
DYF399S1 (GAAA)3N8(GAAA)15 (GAAA)3N8(GAAA)16 33 1046
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 31 1072
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 22 1088
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 36 1091
DYF399S1 (GAAA)3N8(GAAA)15 (GAAA)3N8(GAAA)16 23 1095
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N7(GAAA)18 25 1104
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 43 1138
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)17 20 1154
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 36 1155
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)17 34 1158
DYF399S1 (GAAA)3N8(GAAA)22 (GAAA)3N7(GAAA)21 34 1158
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)17 43 1159
DYF399S1 (GAAA)3N8(GAAA)13 (GAAA)3N8(GAAA)14 21 1163
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 21 1207
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 Unknown 1263
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 Unknown 1265
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 Unknown 1268
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 39 1327
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 27 1397
DYF399S1 (GAAA)3N8(GAAA)14 (GAAA)3N8(GAAA)13 42 1407
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 42 1411
DYF399S1 (GAAA)3N8(GAAA)22 (GAAA)3N7(GAAA)21 40 1443
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 17 1446
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 24 1455
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 18 1456
DYF399S1 (GAAA)3N8(GAAA)15 (GAAA)3N8(GAAA)16 24 1466
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N7(GAAA)21 24 1466
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N7(GAAA)18 39 1471
DYF399S1 (GAAA)3N8(GAAA)14 (GAAA)3N8(GAAA)15 Unknown 1479
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 28 1554
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N8(GAAA)20 37 1577
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N7(GAAA)18 40 1606
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 25 1612
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 17 1620
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 Unknown 1650
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 24 1651
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 24 1658
DYF399S1 (GAAA)3N8(GAAA)14 (GAAA)3N8(GAAA)15 37 1663
DYF399S1 (GAAA)3N8(GAAA)22 (GAAA)3N7(GAAA)21 32 1664
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)20 17 1665
DYF399S1 (GAAA)3N8(GAAA)15 (GAAA)3N8(GAAA)14 20 1670
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 34 1691
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N7(GAAA)21 28 1696
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 23 1722
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)17 30 1733
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N7(GAAA)21 26 1760
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N7(GAAA)18 29 1773
DYF399S1 (GAAA)3N8(GAAA)20 (GAAA)3N8(GAAA)19 31 1798
DYF399S1 (GAAA)3N8(GAAA)15 (GAAA)3N8(GAAA)16 51 1813
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 19 1841
DYF399S1 (GAAA)3N8(GAAA)22 (GAAA)3N7(GAAA)21 55 1844
DYF399S1 (GAAA)3N8(GAAA)22 (GAAA)3N8(GAAA)23 59 1867
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 53 1869
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)15 73 1884
DYF399S1 (GAAA)3N7(GAAA)18 (GAAA)3N8(GAAA)19 52 1891
DYF399S1 (GAAA)3N7(GAAA)21 (GAAA)3N8(GAAA)20 52 1891
DYF399S1 (GAAA)3N8(GAAA)16 (GAAA)3N8(GAAA)15 55 1909
DYF399S1 (GAAA)3N8(GAAA)19 (GAAA)3N7(GAAA)18 60 1913
DYF399S1 (GAAA)3N8(GAAA)17 (GAAA)3N8(GAAA)16 50 1941
DYF401S1 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 37 36
(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6 (AAAG)1(AAGG)3N13(AAAG)16G(AAGG)6
DYF401S1 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 34 372
(AAAG)1(AAGG)3N13(AAAG)17G(AAGG)6 (AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6
DYF401S1 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 28 674
(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6 (AAAG)1(AAGG)3N13(AAAG)16G(AAGG)6
DYF401S1 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 21 769
(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6 (AAAG)1(AAGG)3N13(AAAG)16G(AAGG)6
DYF401S1 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 Unknown 1241
(AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6 (AAAG)1(AAGG)3N13(AAAG)14G(AAGG)6
DYF401S1 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 56 1272
(AAAG)1(AAGG)3N13(AAAG)16G(AAGG)6 (AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6
DYF401S1 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 31 1518
(AAAG)1(AAGG)3N13(AAAG)16G(AAGG)6 (AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6
DYF401S1 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 (AAGG)3(AAGC)1(AAGG)3N39(AAGG)3N8(AAGG)3 28 1734
(AAAG)1(AAGG)3N13(AAAG)17G(AAGG)6 (AAAG)1(AAGG)3N13(AAAG)15G(AAGG)6
DYF403S1a 342 338 20 73
DYF403S1a 321 316 32 128
DYF403S1a 316 321 27 132
DYF403S1a 316, 329, 338 321, 325, 334 17 175
DYF403S1a 346 350 37 186
DYF403S1a 342 346 22 201
DYF403S1a 354 350 37 406
DYF403S1a 350 354 20 423
DYF403S1a 342 346 19 546
DYF403S1a 325 329 24 681
DYF403S1a 325 321 39 749
DYF403S1a 334 338 22 817
DYF403S1a 321 342 28 841
DYF403S1a 338 342 37 904
DYF403S1a 308 312 34 911
DYF403S1a 342 346 18 943
DYF403S1a 312 316 20 977
DYF403S1a 342 346 46 1033
DYF403S1a 321 316 21 1053
DYF403S1a 350 354 39 1071
DYF403S1a 342 346 27 1085
DYF403S1a 325 329 44 1110
DYF403S1a 342 338 22 1323
DYF403S1a 346 350 36 1336
DYF403S1a 312 316 Unknown 1353
DYF403S1a 354 350 45 1364
DYF403S1a 342 338 44 1378
DYF403S1a 342 338 42 1411
DYF403S1a 346 350 42 1441
DYF403S1a 338 342 24 1480
DYF403S1a 325 329 40 1531
DYF403S1a 346 342 28 1554
DYF403S1a 312 316 33 1561
DYF403S1a 321 316 25 1634
DYF403S1a 342 334 36 1643
DYF403S1a 329 334 24 1704
DYF403S1a 312 316 26 1725
DYF403S1a 312 316 40 1785
DYF403S1a 312 316 31 1798
DYF403S1a 329 334 43 1818
DYF403S1a 346 342 27 1840
DYF403S1a 346 350 43 1883
DYF403S1a 329 334 57 1896
DYF403S1a 334 321 64 1912
DYF403S1a 346 342 50 1941
DYF403S1a 325, 346 329, 339 56 1947
DYF403S1b 50 49 40 28
DYF403S1b 46.1 45.1 32 115
DYF403S1b 50 49 33 137
DYF403S1b 49 47 17 175
DYF403S1b 51 50 53 453
DYF403S1b 51 50 18 470
DYF403S1b 50 49 39 749
DYF403S1b 53 52 19 916
DYF403S1b 52 53 21 1090
DYF403S1b 50 49 Unknown 1288
DYF403S1b 52 51 25 1381
DYF403S1b 46.1 47.1 54 1447
DYF403S1b 49 50 Unknown 1479
DYF403S1b 48 49 23 1761
DYF403S1b 49 48 56 1947
DYF403S1b 46.1 47.1 54 1951
DYF404S1 (TTTC)15N42(TTTC)3 (TTTC)16N42(TTTC)3 28 9
DYF404S1 (TTTC)15N42(TTTC)3 (TTTC)14N42(TTTC)3 26 376
DYF404S1 (TTTC)16N42(TTTC)3 (TTTC)17N42(TTTC)3 29 415
DYF404S1 (TTTC)16N42(TTTC)3 (TTTC)17N42(TTTC)3 29 481
DYF404S1 (TTTC)16N42(TTTC)3 (TTTC)17N42(TTTC)3 20 706
DYF404S1 (TTTC)15N42(TTTC)3 (TTTC)16N42(TTTC)3 22 757
DYF404S1 (TTTC)15N42(TTTC)3 (TTTC)16N42(TTTC)3 18 910
DYF404S1 (TTTC)16N42(TTTC)3 (TTTC)17N42(TTTC)3 32 1007
DYF404S1 (TTTC)14N42(TTTC)3 (TTTC)15N42(TTTC)3 23 1012
DYF404S1 (TTTC)15N42(TTTC)3 (TTTC)16N42(TTTC)3 27 1049
DYF404S1 (TTTC)18N42(TTTC)3 (TTTC)17N42(TTTC)3 31 1084
DYF404S1 (TTTC)14N42(TTTC)3 (TTTC)15N42(TTTC)3 38 1114
DYF404S1 (TTTC)16N42(TTTC)3 (TTTC)15N42(TTTC)3 21 1396
DYF404S1 (TTTC)16N42(TTTC)3 (TTTC)17N42(TTTC)3 23 1546
DYF404S1 (TTTC)15N42(TTTC)3 (TTTC)14N42(TTTC)3 40 1578
DYF404S1 (TTTC)17N42(TTTC)3 (TTTC)18N42(TTTC)3 36 1655
DYF404S1 (TTTC)17N42(TTTC)3 (TTTC)16N42(TTTC)3 26 1657
DYF404S1 (TTTC)16N42(TTTC)3 (TTTC)17N42(TTTC)3 36 1687
DYF404S1 (TTTC)15N42(TTTC)3 (TTTC)14N42(TTTC)3 19 1739
DYF404S1 (TTTC)18N42(TTTC)3 (TTTC)17N42(TTTC)3 50 1881
DYF404S1 (TTTC)17N42(TTTC)3 (TTTC)18N42(TTTC)3 60 1913
DYF405S1 (GGAA)11N115(GGAA)3(GAAA)1(GGAA)3 (GGAA)12N115(GGAA)3(GAAA)1(GGAA)3 31 438
DYF405S1 (GGAA)14N115(GGAA)3(GAAA)1(GGAA)3 (GGAA)13N115(GGAA)3(GAAA)1(GGAA)3 34 629
DYF406S1 (TATC)12 (TATC)11 26 204
DYF406S1 (TATC)11 (TATC)10 47 347
DYF406S1 (TATC)12 (TATC)13 35 518
DYF406S1 (TATC)11 (TATC)10 33 1011
DYF406S1 (TATC)12 (TATC)13 41 1122
DYF406S1 (TATC)12 (TATC)13 Unknown 1263
DYF410S1 (AAAT)9 (AAAT)10 Unknown 1457
DYF410S1 (AAAT)9 (AAAT)10 21 1667
DYS19 (TAGA)3(TAGG)1(TAGA)13 (TAGA)3(TAGG)1(TAGA)14 46 21
DYS19 (TAGA)3(TAGG)1(TAGA)11 (TAGA)3(TAGG)1(TAGA)12 43 472
DYS19 (TAGA)3(TAGG)1(TAGA)14 (TAGA)3(TAGG)1(TAGA)13 24 726
DYS19 (TAGA)3(TAGG)1(TAGA)14 (TAGA)3(TAGG)1(TAGA)15 31 927
DYS19 (TAGA)3(TAGG)1(TAGA)12 (TAGA)3(TAGG)1(TAGA)13 Unknown 1224
DYS19 (TAGA)3(TAGG)1(TAGA)14 (TAGA)3(TAGG)1(TAGA)13 29 1257
DYS19 (TAGA)3(TAGG)1(TAGA)14 (TAGA)3(TAGG)1(TAGA)13 24 1767
DYS385a (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)13 (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)5(GAAA)13 22 602
DYS385a (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)13 (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)14 30 1000
DYS385a (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)14 (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15 60 1695
DYS385b (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15 (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)16 39 501
DYS385b (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15 (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)16 48 781
DYS385b (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)14 (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15 24 835
DYS385b (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)14 (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15 21 896
DYS385b (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)14 (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)15 23 1080
DYS385b (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)11 (AAGG)4N14(AAAG)3N12(AAAG)3N29(AAGG)6(GAAA)12 52 1527
DYS389I (TCTG)3(TCTA)12 (TCTG)3(TCTA)11 32 12
DYS389I (TCTG)3(TCTA)11 (TCTG)3(TCTA)10 23 96
DYS389I (TCTG)3(TCTA)10 (TCTG)3(TCTA)11 23 207
DYS389I (TCTG)3(TCTA)11 (TCTG)3(TCTA)10 26 214
DYS389I (TCTG)3(TCTA)9 (TCTG)3(TCTA)10 23 1119
DYS389I (TCTG)3(TCTA)10 (TCTG)3(TCTA)11 Unknown 1265
DYS389I (TCTG)3(TCTA)10 (TCTG)3(TCTA)9 39 1700
DYS389I (TCTG)3(TCTA)10 (TCTG)3(TCTA)11 46 1946
DYS389I (TCTG)3(TCTA)11 (TCTG)3(TCTA)10 33 1966
DYS389II (TCTG)5(TCTA)12N28(TCTG)3(TCTA)10 (TCTG)5(TCTA)11N28(TCTG)3(TCTA)10 32 401
DYS389II (TCTG)5(TCTA)14N28(TCTG)3(TCTA)11 (TCTG)5(TCTA)13N28(TCTG)3(TCTA)11 36 519
DYS389II (TCTG)5(TCTA)13N28(TCTG)3(TCTA)11 (TCTG)5(TCTA)12N28(TCTG)3(TCTA)11 21 721
DYS389II (TCTG)5(TCTA)12N28(TCTG)3(TCTA)10 (TCTG)5(TCTA)13N28(TCTG)3(TCTA)10 Unknown 1221
DYS389II (TCTG)5(TCTA)12N28(TCTG)3(TCTA)9 (TCTG)5(TCTA)13N28(TCTG)3(TCTA)9 24 1312
DYS389II (TCTG)5(TCTA)13N28(TCTG)3(TCTA)9 (TCTG)5(TCTA)12N28(TCTG)3(TCTA)9 54 1942
DYS390 (TCTG)8(TCTA)12(TCTG)1(TCTG)4 (TCTG)8(TCTA)11(TCTG)1(TCTG)4 30 975
DYS390 (TCTG)8(TCTA)12(TCTG)1(TCTG)4 (TCTG)8(TCTA)11(TCTG)1(TCTG)4 24 1148
DYS391 (TCTG)3(TCTA)11 (TCTG)3(TCTA)10 20 240
DYS391 (TCTG)3(TCTA)10 (TCTG)3(TCTA)11 22 689
DYS391 (TCTG)3(TCTA)11 (TCTG)3(TCTA)10 31 881
DYS391 (TCTG)3(TCTA)11 (TCTG)3(TCTA)12 50 884
DYS391 (TCTG)3(TCTA)11 (TCTG)3(TCTA)12 42 1411
DYS392 (TAT)13 (TAT)14 60 1802
DYS393 (AGAT)14 (AGAT)13 22 1028
DYS393 (AGAT)13 (AGAT)14 42 1411
DYS393 (AGAT)14 (AGAT)15 51 1852
DYS425 (TGT)13 (TGT)12 31 1084
DYS425 (TGT)12 (TGT)13 41 1476
DYS435 (TGGA)11 (TGGA)10 19 916
DYS437 (TCTA)8(TCTG)2(TCTA)4 (TCTA)9(TCTG)2(TCTA)4 32 1025
DYS437 (TCTA)9(TCTG)2(TCTA)4 (TCTA)10(TCTG)2(TCTA)4 53 1869
DYS438 (TTTTC)12 (TTTTC)10, (TTTTC)12 46 23
DYS439 (GATA)3N32(GATA)10 (GATA)3N32(GATA)11 24 516
DYS439 (GATA)3N32(GATA)13 (GATA)3N32(GATA)14 36 617
DYS439 (GATA)3N32(GATA)13 (GATA)3N32(GATA)12 23 620
DYS439 (GATA)3N32(GATA)13 (GATA)3N32(GATA)12 40 1204
DYS439 (GATA)3N32(GATA)14 (GATA)3N32(GATA)13 37 1211
DYS439 (GATA)3N32(GATA)13 (GATA)3N32(GATA)12 21 1463
DYS441 (TTCC)14 (TTCC)15 38 589
DYS442 (GATA)13(GACA)3 (GATA)12(GACA)3 32 213
DYS442 (GATA)13(GACA)3 (GATA)12(GACA)3 26 354
DYS442 (GATA)13(GACA)3 (GATA)12(GACA)3 45 409
DYS442 (GATA)15(GACA)3 (GATA)14(GACA)3 28 425
DYS442 (GATA)16(GACA)3 (GATA)15(GACA)3 30 533
DYS442 (GATA)14(GACA)3 (GATA)13(GACA)3 26 775
DYS442 (GATA)15(GACA)3 (GATA)14(GACA)3 27 953
DYS442 (GATA)14(GACA)3 (GATA)15(GACA)3 30 1181
DYS442 (GATA)13(GACA)3 (GATA)12(GACA)3 16 1238
DYS442 (GATA)12(GACA)3 (GATA)11(GACA)3 39 1239
DYS442 (GATA)14(GACA)3 (GATA)13(GACA)3 Unknown 1245
DYS442 (GATA)12(GACA)3 (GATA)13(GACA)3 28 1537
DYS442 (GATA)12(GACA)3 (GATA)11(GACA)3 73 1884
DYS442 (GATA)13(GACA)3 (GATA)12(GACA)3 51 1888
DYS443 (TTCC)15(CTT)3 (TTCC)14(CTT)3 18 69
DYS443 (TTCC)14(CTT)3 (TTCC)15(CTT)3 35 97
DYS443 (TTCC)14(CTT)3 (TTCC)15(CTT)3 28 473
DYS444 (TAGA)12 (TAGA)11 46 23
DYS444 (TAGA)13 (TAGA)12 20 73
DYS444 (TAGA)13 (TAGA)12 30 448
DYS444 (TAGA)14 (TAGA)15 25 673
DYS444 (TAGA)15 (TAGA)14 30 1067
DYS444 (TAGA)15 (TAGA)14 22 1131
DYS444 (TAGA)15 (TAGA)14 28 1294
DYS444 (TAGA)12 (TAGA)13 33 1680
DYS444 (TAGA)13 (TAGA)12 51 1813
DYS445 (TTTA)12 (TTTA)11 57 464
DYS445 (TTTA)11 (TTTA)12 22 886
DYS445 (TTTA)13 (TTTA)14 21 1448
DYS446 (TCTCT)13 (TCTCT)14 41 313
DYS446 (TCTCT)11 (TCTCT)10 51 1442
DYS446 (TCTCT)12 (TCTCT)11 55 1844
DYS446 (TCTCT)12 (TCTCT)13 53 1893
DYS447 (TTATA)6(TTATT)1(TTATA)8(TTATT)1(TTATA)7 (TTATA)6(TTATT)1(TTATA)9(TTATT)1(TTATA)7 33 690
DYS447 (TTATA)7(TTATT)1(TTATA)10(TTATT)1(TTATA)7 (TTATA)7(TTATT)1(TTATA)9(TTATT)1(TTATA)7 47 1302
DYS447 (TTATA)6(TTATT)1(TTATA)9(TTATT)1(TTATA)9 (TTATA)6(TTATT)1(TTATA)9(TTATT)1(TTATA)8 56 1677
DYS449 (TTCT)15N22(TTCT)3N12(TTCT)16 (TTCT)15N22(TTCT)3N12(TTCT)15 29 78
DYS449 (TTCT)15N22(TTCT)3N12(TTCT)19 (TTCT)14N22(TTCT)3N12(TTCT)19 27 170
DYS449 (TTCT)16N22(TTCT)3N12(TTCT)17 (TTCT)17N22(TTCT)3N12(TTCT)17 23 251
DYS449 (TTCT)16N22(TTCT)3N12(TTCT)17 (TTCT)15N22(TTCT)3N12(TTCT)17 38 449
DYS449 (TTCT)15N22(TTCT)3N12(TTCT)18 (TTCT)15N22(TTCT)3N12(TTCT)19 39 492
DYS449 (TTCT)17N22(TTCT)3N12(TTCT)13 (TTCT)17N22(TTCT)3N12(TTCT)14 35 531
DYS449 (TTCT)14N22(TTCT)3N12(TTCT)14 (TTCT)14N22(TTCT)3N12(TTCT)15 34 568
DYS449 (TTCT)16N22(TTCT)3N12(TTCT)16 (TTCT)16N22(TTCT)3N12(TTCT)17 21 786
DYS449 (TTCT)16N22(TTCT)3N12(TTCT)17 (TTCT)16N22(TTCT)3N12(TTCT)18 25 840
DYS449 (TTCT)15N22(TTCT)3N12(TTCT)13 (TTCT)16N22(TTCT)3N12(TTCT)13 22 894
DYS449 (TTCT)15N22(TTCT)3N12(TTCT)18 (TTCT)15N22(TTCT)3N12(TTCT)17 37 904
DYS449 (TTCT)15N22(TTCT)3N12(TTCT)17 (TTCT)15N22(TTCT)3N12(TTCT)16 33 966
DYS449 (TTCT)16N22(TTCT)3N12(TTCT)16 (TTCT)15N22(TTCT)3N12(TTCT)16 24 1167
DYS449 (TTCT)15N22(TTCT)3N12(TTCT)14 (TTCT)16N22(TTCT)3N12(TTCT)14 22 1349
DYS449 (TTCT)15N22(TTCT)3N12(TTCT)14 (TTCT)16N22(TTCT)3N12(TTCT)14 45 1364
DYS449 (TTCT)18N22(TTCT)3N12(TTCT)16 (TTCT)19N22(TTCT)3N12(TTCT)16 37 1418
DYS449 (TTCT)14N22(TTCT)3N12(TTCT)14 (TTCT)14N22(TTCT)3N12(TTCT)15 21 1505
DYS449 (TTCT)15N22(TTCT)3N12(TTCT)15 (TTCT)14N22(TTCT)3N12(TTCT)15 22 1526
DYS449 (TTCT)14N22(TTCT)3N12(TTCT)15 (TTCT)14N22(TTCT)3N12(TTCT)16 54 1845
DYS450 (TTTTA)9N12(TTTTA)3 (TTTTA)8N12(TTTTA)3 44 1619
DYS452 (TATAC)12[(CATAC)1(TATAC)1]2N20(TATAC)3 (TATAC)13[(CATAC)1(TATAC)1]2N20(TATAC)3 17 967
(CATAC)1(TATAC)3 (CATAC)1(TATAC)3
DYS452 (TATAC)11[(CATAC)1(TATAC)1]2N20(TATAC)3 (TATAC)12[(CATAC)1(TATAC)1]2N20(TATAC)3 26 971
(CATAC)1(TATAC)3 (CATAC)1(TATAC)3
DYS452 (TATAC)11[(CATAC)1(TATAC)1]2N20(TATAC)3 (TATAC)10[(CATAC)1(TATAC)1]2N20(TATAC)3 33 1046
(CATAC)1(TATAC)3 (CATAC)1(TATAC)3
DYS452 (TATAC)10[(CATAC)1(TATAC)1]2N20(TATAC)3 (TATAC)9[(CATAC)1(TATAC)1]2N20(TATAC)3 41 1453
(CATAC)1(TATAC)3 (CATAC)1(TATAC)3
DYS452 (TATAC)8[(CATAC)1(TATAC)1]4N20(TATAC)3 (TATAC)8[(CATAC)1(TATAC)1]3N20(TATAC)3 55 1858
(CATAC)1(TATAC)3 (CATAC)1(TATAC)3
DYS456 (AGAT)15 (AGAT)16 34 308
DYS456 (AGAT)16 (AGAT)17 32 401
DYS456 (AGAT)15 (AGAT)16 28 525
DYS456 (AGAT)16 (AGAT)17 24 560
DYS456 (AGAT)15 (AGAT)16 36 830
DYS456 (AGAT)17 (AGAT)16 20 1037
DYS456 (AGAT)17 (AGAT)16 Unknown 1333
DYS456 (AGAT)16 (AGAT)17 29 1790
DYS458 (GAAA)18 (GAAA)17 25 307
DYS458 (GAAA)18 (GAAA)19 41 313
DYS458 (GAAA)17 (GAAA)18 28 466
DYS458 (GAAA)17 (GAAA)18 27 734
DYS458 (GAAA)16 (GAAA)15 24 771
DYS458 (GAAA)17 (GAAA)18 29 826
DYS458 (GAAA)15 (GAAA)16 Unknown 1063
DYS458 (GAAA)16 (GAAA)15 19 1132
DYS458 (GAAA)17 (GAAA)16 34 1428
DYS458 (GAAA)16 (GAAA)17 37 1454
DYS458 (GAAA)17 (GAAA)16 19 1508
DYS458 (GAAA)17 (GAAA)16 Unknown 1613
DYS458 (GAAA)18 (GAAA)17 64 1912
DYS458 (GAAA)18 (GAAA)19 65 1920
DYS459 (ATTT)10 (ATTT)9 29 246
DYS459 (ATTT)9 (ATTT)10 26 573
DYS459 (ATTT)10 (ATTT)9 43 928
DYS459 (ATTT)10 (ATTT)11 27 1195
DYS460 (TAGA)13 (TAGA)12 27 41
DYS460 (TAGA)9 (TAGA)10 29 481
DYS460 (TAGA)11 (TAGA)10 35 522
DYS460 (TAGA)12 (TAGA)11 24 560
DYS460 (TAGA)11 (TAGA)10 27 777
DYS460 (TAGA)11 (TAGA)10 30 1062
DYS460 (TAGA)12 (TAGA)11 33 1112
DYS460 (TAGA)11 (TAGA)10 29 1601
DYS460 (TAGA)10 (TAGA)11 21 1728
DYS460 (TAGA)13 (TAGA)12 28 1734
DYS461 (TAGA)11 (TAGA)10 23 1676
DYS462 (CATA)11 (CATA)10 18 692
DYS462 (CATA)13 (CATA)12 30 1425
DYS462 (CATA)11 (CATA)10 39 1502
DYS462 (CATA)11 (CATA)12 64 1912
DYS463 (AAAGG)6(AAGGG)15 (AAAGG)6(AAGGG)16 36 327
DYS463 (AAAGG)6(AAGGG)13 (AAAGG)6(AAGGG)14 54 1447
DYS464 (CCTT)16N46(CCTT)3N8(CCTT)4 (CCTT)17N46(CCTT)3N8(CCTT)4 25 4
DYS464 (CCTT)15N46(CCTT)3N8(CCTT)4 (CCTT)14N46(CCTT)3N8(CCTT)4 18 470
DYS464 (CCTT)17N46(CCTT)3N8(CCTT)4 (CCTT)16N46(CCTT)3N8(CCTT)4 25 512
DYS464 (CCTT)16N46(CCTT)3N8(CCTT)4 (CCTT)19N46(CCTT)3N8(CCTT)4 53 760
DYS464 (CCTT)13N46(CCTT)3N8(CCTT)4 (CCTT)14N46(CCTT)3N8(CCTT)4 18 847
DYS464 (CCTT)18N46(CCTT)3N8(CCTT)4 (CCTT)16N46(CCTT)3N8(CCTT)4 19 900
DYS464 (CCTT)16N46(CCTT)3N8(CCTT)4 (CCTT)15N46(CCTT)3N8(CCTT)4 20 1185
DYS464 (CCTT)17N46(CCTT)3N8(CCTT)4 (CCTT)16N46(CCTT)3N8(CCTT)4 31 1339
DYS464 (CCTT)15N46(CCTT)3N8(CCTT)4 (CCTT)16N46(CCTT)3N8(CCTT)4 22 1526
DYS464 (CCTT)18N46(CCTT)3N8(CCTT)4 (CCTT)19N46(CCTT)3N8(CCTT)4 43 1540
DYS464 (CCTT)17N46(CCTT)3N8(CCTT)4 (CCTT)16N46(CCTT)3N8(CCTT)4 19 1784
DYS464 (CCTT)18N46(CCTT)3N8(CCTT)4 (CCTT)17N46(CCTT)3N8(CCTT)4 56 1892
DYS468 (CTG)4N44(CCT)3N40(CTT)3N35(CCT)4N8 (CTG)4N44(CCT)3N40(CTT)3N35(CCT)4N8 29 1743
(CTC)4(CTT)8(ATTCAT)8 (CTC)4(CTT)9(ATTCAT)8
DYS468 (CTG)4N44(CCT)3N40(CTT)3N35(CCT)4N8 (CTG)4N44(CCT)3N40(CTT)3N35(CCT)4N8 60 1802
(CTC)4(CTT)9(ATTCAT)9 (CTC)4(CTT)9(ATTCAT)8
DYS469 (CTT)3N39(CTT)4(GTT)1(CTT)20T(CTT)3N17(CTT)5N37(CTT)3 (CTT)3N39(CTT)4(GTT)1(CTT)21T(CTT)3N17(CTT)5N37 24 107
N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3 (CTT)3N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3
DYS469 (CTT)3N39(CTT)4(GTT)1(CTT)15T(CTT)3N17(CTT)5N37(CTT)3 (CTT)3N39(CTT)4(GTT)1(CTT)16T(CTT)3N17(CTT)5N37(CTT)3 21 769
N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3 N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3
DYS469 (CTT)3N39(CTT)4(GTT)1(CTT)15T(CTT)3N17(CTT)5N37(CTT)3 (CTT)3N39(CTT)4(GTT)1(CTT)16T(CTT)3N17(CTT)5N37(CTT)3 29 1491
N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3 N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3
DYS469 (CTT)3N39(CTT)4(GTT)1(CTT)16T(CTT)3N17(CTT)5N37(CTT)3 (CTT)3N39(CTT)4(GTT)1(CTT)15T(CTT)3N17(CTT)5N37(CTT)3 29 1693
N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3 N12(CTT)4N12(CTT)3N12(CTT)5(CCT)4N9(CTT)3(CCT)3
DYS476 (TGA)11 (TGA)12 59 1867
DYS481 (CTT)28 (CTT)29 30 99
DYS481 (CTT)22 (CTT)23 32 655
DYS481 (CTT)30 (CTT)29 24 778
DYS481 (CTT)32 (CTT)31 17 845
DYS481 (CTT)31 (CTT)30 24 1370
DYS481 (CTT)23 (CTT)21 42 1411
DYS481 (CTT)25 (CTT)24 36 1672
DYS481 (CTT)22 (CTT)23 54 1895
DYS484 (AAT)13N12(AAT)3(TAT)3 (AAT)11N12(AAT)3(TAT)3 22 45
DYS484 (AAT)13N12(AAT)3(TAT)3 (AAT)14N12(AAT)3(TAT)3 35 875
DYS484 (AAT)12N12(AAT)3(TAT)3 (AAT)13N12(AAT)3(TAT)3 25 1213
DYS484 (AAT)12N12(AAT)3(TAT)3 (AAT)10N12(AAT)3(TAT)3 26 1653
DYS487 (AAT)13 (AAT)14 21 172
DYS487 (AAT)14 (AAT)13 28 1410
DYS495 (AAT)15 (AAT)16 26 775
DYS495 (AAT)15 (AAT)16 30 1274
DYS495 (AAT)17 (AAT)16 31 1596
DYS497 (TTA)15 (TTA)14 25 58
DYS497 (TTA)15 (TTA)16 40 305
DYS504 (CCTT)17N7(CCCT)3 (CCTT)16N7(CCCT)3 25 275
DYS504 (CCTT)19N7(CCCT)3 (CCTT)18N7(CCCT)3 Unknown 1223
DYS504 (CCTT)17N7(CCCT)3 (CCTT)18N7(CCCT)3 39 1502
DYS504 (CCTT)18N7(CCCT)3 (CCTT)17N7(CCCT)3 30 1796
DYS504 (CCTT)18N7(CCCT)3 (CCTT)17N7(CCCT)3 54 1895
DYS505 (TCCT)13 (TCCT)12 64 951
DYS505 (TCCT)12 (TCCT)13 25 1070
DYS508 (TATC)10 (TATC)11 32 1369
DYS508 (TATC)11 (TATC)12 21 1635
DYS508 (TATC)11 (TATC)10 20 1862
DYS508 (TATC)14 (TATC)13 67 1954
DYS509 (AAAT)10(AATAA)1(AAAT)3 (AAAT)9(AATAA)1(AAAT)3 18 680
DYS510 (GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3 (GATA)3N12(GATA)13N13(GGAT)4N9(GATA)3 24 17
DYS510 (GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3 (GATA)3N12(GATA)11N13(GGAT)4N9(GATA)3 64 166
DYS510 (GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3 (GATA)3N12(GATA)11N13(GGAT)4N9(GATA)3 25 185
DYS510 (GATA)3N12(GATA)15N13(GGAT)4N9(GATA)3 (GATA)3N12(GATA)14N13(GGAT)4N9(GATA)3 19 761
DYS510 (GATA)3N12(GATA)11N13(GGAT)4N9(GATA)3 (GATA)3N12(GATA)10N13(GGAT)4N9(GATA)3 19 916
DYS510 (GATA)3N12(GATA)14N13(GGAT)4N9(GATA)3 (GATA)3N12(GATA)15N13(GGAT)4N9(GATA)3 43 928
DYS510 (GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3 (GATA)3N12(GATA)11N13(GGAT)4N9(GATA)3 33 1112
DYS510 (GATA)3N12(GATA)13N13(GGAT)4N9(GATA)3 (GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3 34 1118
DYS510 (GATA)3N12(GATA)14N13(GGAT)4N9(GATA)3 (GATA)3N12(GATA)15N13(GGAT)4N9(GATA)3 45 1364
DYS510 (GATA)3N12(GATA)12N13(GGAT)4N9(GATA)3 (GATA)3N12(GATA)13N13(GGAT)4N9(GATA)3 28 1758
DYS511 (GATA)13 (GATA)12 22 418
DYS511 (GATA)11 (GATA)12 52 1804
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13 33 29
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)14 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13 23 134
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12 33 187
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)14 30 1181
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)14 21 1216
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)14 Unknown 1308
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)11 22 1323
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13 36 1421
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)13 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12 36 1672
DYS513 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)11 (TCTA)4(TCCA)1(TATC)3(CGTA)1(TCTA)12 60 1695
DYS516 (TTCT)4N30(TTCT)16 (TTCT)4N30(TTCT)15 28 106
DYS516 (TTCT)4N30(TTCT)14 (TTCT)4N30(TTCT)13 37 904
DYS516 (TTCT)4N30(TTCT)12 (TTCT)4N30(TTCT)13 44 973
DYS516 (TTCT)4N30(TTCT)15 (TTCT)4N30(TTCT)16 34 1030
DYS516 (TTCT)4N30(TTCT)13 (TTCT)4N30(TTCT)14 Unknown 1241
DYS516 (TTCT)4N30(TTCT)12 (TTCT)4N30(TTCT)13 38 1524
DYS516 (TTCT)4N30(TTCT)14 (TTCT)4N30(TTCT)15 42 1628
DYS516 (TTCT)4N30(TTCT)15 (TTCT)4N30(TTCT)16 22 1778
DYS516 (TTCT)4N30(TTCT)15 (TTCT)4N30(TTCT)16 24 1782
DYS516 (TTCT)4N30(TTCT)12 (TTCT)4N30(TTCT)11 53 1869
DYS516 (TTCT)4N30(TTCT)17 (TTCT)4N30(TTCT)15 50 1881
DYS517 (AAAG)16N8(AAAG)3 (AAAG)15N8(AAAG)3 26 802
DYS517 (AAAG)14N8(AAAG)3 (AAAG)15N8(AAAG)3 30 1796
DYS517 (AAAG)16N8(AAAG)3 (AAAG)15N8(AAAG)3 63 1807
DYS517 (AAAG)14N8(AAAG)3 (AAAG)15N8(AAAG)3 54 1860
DYS517 (AAAG)14N8(AAAG)3 (AAAG)15N8(AAAG)3 53 1869
DYS518 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 33 29
N6(AAAG)17N27(AAGG)4 N6(AAAG)17N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)14(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)14(GGAG)1(AAAG)4 32 56
N6(AAAG)14N27(AAGG)4 N6(AAAG)15N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 48 74
N6(AAAG)12N27(AAGG)4 N6(AAAG)12N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)14(GGAG)1(AAAG)4 30 87
N6(AAAG)15N27(AAGG)4 N6(AAAG)15N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 34 88
N6(AAAG)16N27(AAGG)4 N6(AAAG)16N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 29 89
N6(AAAG)13N27(AAGG)4 N6(AAAG)13N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)19(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4 50 270
N6(AAAG)17N27(AAGG)4 N6(AAAG)17N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)19(GGAG)1(AAAG)4 25 426
N6(AAAG)15N27(AAGG)4 N6(AAAG)15N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)22(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)21(GGAG)1(AAAG)4 26 433
N6(AAAG)13N27(AAGG)4 N6(AAAG)13N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 28 525
N6(AAAG)12N27(AAGG)4 N6(AAAG)11N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 24 571
N6(AAAG)17N27(AAGG)4 N6(AAAG)16N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 21 593
N6(AAAG)14N27(AAGG)4 N6(AAAG)14N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4N6(AAAG)1N27 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 23 687
(AAGG)4 N6(AAAG)17N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 20 703
N6(AAAG)14N27(AAGG)4 N6(AAAG)15N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 20 741
N6(AAAG)15N27(AAGG)4 N6(AAAG)15N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 22 747
N6(AAAG)16N27(AAGG)4 N6(AAAG)17N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 15 763
N6(AAAG)16N27(AAGG)4 N6(AAAG)16N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 22 817
N6(AAAG)14N27(AAGG)4 N6(AAAG)16N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 23 888
N6(AAAG)18N27(AAGG)4 N6(AAAG)17N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)14(GGAG)1(AAAG)4 19 916
N6(AAAG)16N27(AAGG)4 N6(AAAG)16N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 56 1043
N6(AAAG)16N27(AAGG)4 N6(AAAG)15N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 37 1107
N6(AAAG)17N27(AAGG)4 N6(AAAG)16N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)18(GGAG)1(AAAG)4 19 1115
N6(AAAG)17N27(AAGG)4 N6(AAAG)18N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)17(GGAG)1(AAAG)4 21 1273
N6(AAAG)17N27(AAGG)4 N6(AAAG)16N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 45 1364
N6(AAAG)13N27(AAGG)4 N6(AAAG)13N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 42 1411
N6(AAAG)17N27(AAGG)4 N6(AAAG)15N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 32 1545
N6(AAAG)18N27(AAGG)4 N6(AAAG)19N27(AAGG)4
DYS518 (AAAG)3(GAAG)1(AAAG)16(GGAG)1(AAAG)4 (AAAG)3(GAAG)1(AAAG)15(GGAG)1(AAAG)4 29 1790
N6(AAAG)15N27(AAGG)4 N6(AAAG)15N27(AAGG)4
DYS520 (GATA)12(CATA)11 (GATA)11(CATA)11 32 56
DYS520 (GATA)12(CATA)11 (GATA)11(CATA)11 34 88
DYS520 (GATA)12(CATA)10 (GATA)12(CATA)11 31 141
DYS520 (GATA)11(CATA)11 (GATA)12(CATA)11 31 434
DYS521 (CTTT)5(TCTT)3(TTTT)1(CTTT)5T(CTTT)13 (CTTT)5(TCTT)3(TTTT)1(CTTT)5T(CTTT)12 25 133
DYS522 (ATAG)10 (ATAG)11 22 1088
DYS525 (AGAT)11 (AGAT)10 24 571
DYS526a (CCTT)16 (CCTT)15 64 166
DYS526a (CCTT)13 (CCTT)14 53 453
DYS526a (CCTT)14 (CCTT)13 31 1315
DYS526a (CCTT)11 (CCTT)12 31 1652
DYS526b (CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)11 (CCCT)3N20(CTTT)13(CCTT)9N113(CCTT)11 24 17
DYS526b (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14 50 42
DYS526b (CCCT)3N20(CTTT)17(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14 34 88
DYS526b (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)12 (CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)12 25 185
DYS526b (CCCT)3N20(CTTT)17(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14 41 298
DYS526b (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14 41 386
DYS526b (CCCT)3N20(CTTT)11(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)12(CCTT)9N113(CCTT)14 31 505
DYS526b (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)10 (CCCT)3N20(CTTT)17(CCTT)9N113(CCTT)10 32 523
DYS526b (CCCT)3N20(CTTT)17(CCTT)9N113(CCTT)10 (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)10 39 654
DYS526b (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)17(CCTT)9N113(CCTT)14 25 918
DYS526b (CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)15(CCTT)8N113(CCTT)14 36 983
DYS526b (CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14 37 1107
DYS526b (CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14 41 1122
DYS526b (CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)14 22 1161
DYS526b (CCCT)3N20(CTTT)13(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)14 45 1171
DYS526b (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14 48 1250
DYS526b (CCCT)3N20(CTTT)13(CCTT)9N113(CCTT)12 (CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)12 54 1447
DYS526b (CCCT)3N20(CTTT)13(CCTT)9N113(CCTT)13 (CCCT)3N20(CTTT)12(CCTT)9N113(CCTT)13 21 1555
DYS526b (CCCT)3N20(CTTT)14(CCTT)9N113(CCTT)13 (CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)13 29 1662
DYS526b (CCCT)3N20(CTTT)15(CCTT)9N113(CCTT)14 (CCCT)3N20(CTTT)16(CCTT)9N113(CCTT)14 50 1881
DYS531 (AAAT)11 (AAAT)9 22 747
DYS532 (TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)12N17(TTCT)3 (TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)13N17(TTCT)3 26 759
N13(TTCC)4N70(TTCT)3N6(TTCT)3 N13(TTCC)4N70(TTCT)3N6(TTCT)3
DYS532 (TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)12N17(TTCT)3 (TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)11N17(TTCT)3 30 1101
N13(TTCC)4N70(TTCT)3N6(TTCT)3 N13(TTCC)4N70(TTCT)3N6(TTCT)3
DYS532 (TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)12N17(TTCT)3 (TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)13N17(TTCT)3 29 1255
N13(TTCC)4N70(TTCT)3N6(TTCT)3 N13(TTCC)4N70(TTCT)3N6(TTCT)3
DYS532 (TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)12N17(TTCT)3 (TCCC)3N5(TTCC)5N9(TTCT)3(TTCC)1(TTCT)13N17(TTCT)3 30 1347
N13(TTCC)4N70(TTCT)3N6(TTCT)3 N13(TTCC)4N70(TTCT)3N6(TTCT)3
DYS533 (TATC)13 (TATC)12 34 27
DYS533 (TATC)13 (TATC)12 29 892
DYS533 (TATC)13 (TATC)12 37 905
DYS533 (TATC)13 (TATC)14 18 1039
DYS533 (TATC)12 (TATC)13 42 1054
DYS533 (TATC)14 (TATC)15 34 1158
DYS533 (TATC)12 (TATC)13 21 1166
DYS533 (TATC)13 (TATC)12 40 1281
DYS534 (CTTT)3N8(CTTT)16N9(CTTT)3 (CTTT)3N8(CTTT)17N9(CTTT)3 37 135
DYS534 (CTTT)3N8(CTTT)16N9(CTTT)3 (CTTT)3N8(CTTT)17N9(CTTT)3 27 167
DYS534 (CTTT)3N8(CTTT)15N9(CTTT)3 (CTTT)3N8(CTTT)16N9(CTTT)3 17 235
DYS534 (CTTT)3N8(CTTT)14N9(CTTT)3 (CTTT)3N8(CTTT)15N9(CTTT)3 41 250
DYS534 (CTTT)3N8(CTTT)14N9(CTTT)3 (CTTT)3N8(CTTT)15N9(CTTT)3 34 308
DYS534 (CTTT)3N8(CTTT)17N9(CTTT)3 (CTTT)3N8(CTTT)16N9(CTTT)3 39 419
DYS534 (CTTT)3N8(CTTT)18N9(CTTT)3 (CTTT)3N8(CTTT)19N9(CTTT)3 28 674
DYS534 (CTTT)3N8(CTTT)13N9(CTTT)3 (CTTT)3N8(CTTT)14N9(CTTT)3 23 1205
DYS534 (CTTT)3N8(CTTT)16N9(CTTT)3 (CTTT)3N8(CTTT)17N9(CTTT)3 45 1364
DYS534 (CTTT)3N8(CTTT)14N9(CTTT)3 (CTTT)3N8(CTTT)13N9(CTTT)3 58 1808
DYS534 (CTTT)3N8(CTTT)17N9(CTTT)3 (CTTT)3N8(CTTT)18N9(CTTT)3 61 1836
DYS536 (TCCT)12N8(TTCT)4 (TCCT)13N8(TTCT)4 20 1092
DYS537 (TCTA)12 (TCTA)13 29 609
DYS537 (TCTA)13 (TCTA)12 27 1248
DYS537 (TCTA)11 (TCTA)12 40 1427
DYS539 (TAGA)11 (TAGA)10 63 1902
DYS540 (TTAT)12 (TTAT)13 31 141
DYS540 (TTAT)12 (TTAT)11 59 152
DYS540 (TTAT)11 (TTAT)10 19 682
DYS540 (TTAT)11 (TTAT)12 38 1020
DYS540 (TTAT)12 (TTAT)11 31 1134
DYS541 (TATC)12(TTC)1(TATC)3 (TATC)13(TTC)1(TATC)3 34 151
DYS541 (TATC)12(TTC)1(TATC)3 (TATC)11(TTC)1(TATC)3 34 239
DYS541 (TATC)14(TTC)1(TATC)3 (TATC)13(TTC)1(TATC)3 33 339
DYS541 (TATC)13(TTC)1(TATC)3 (TATC)12(TTC)1(TATC)3 36 733
DYS541 (TATC)14(TTC)1(TATC)3 (TATC)13(TTC)1(TATC)3 25 1415
DYS541 (TATC)12(TTC)1(TATC)3 (TATC)13(TTC)1(TATC)3 64 1843
DYS543 (AGAT)3(GATA)11N42(ATGT)4(ATGG)2N35(GAAA)3 (AGAT)3(GATA)12N42(ATGT)4(ATGG)2N35(GAAA)3 23 16
DYS543 (AGAT)3(GATA)15N42(ATGT)3(ATGG)3N35(GAAA)3 (AGAT)3(GATA)14N42(ATGT)3(ATGG)3N35(GAAA)3 40 774
DYS543 (AGAT)3(GATA)15N42(ATGT)3(ATGG)3N35(GAAA)3 (AGAT)3(GATA)14N42(ATGT)3(ATGG)3N35(GAAA)3 33 844
DYS543 (AGAT)3(GATA)12N42(ATGT)4(ATGG)2N35(GAAA)3 (AGAT)3(GATA)11N42(ATGT)4(ATGG)2N35(GAAA)3 43 939
DYS543 (AGAT)3(GATA)13N42(ATGT)3(ATGG)3N35(GAAA)3 (AGAT)3(GATA)14N42(ATGT)3(ATGG)3N35(GAAA)3 42 1054
DYS543 (AGAT)3(GATA)15N42(ATGT)3(ATGG)3N35(GAAA)3 (AGAT)3(GATA)16N42(ATGT)3(ATGG)3N35(GAAA)3 Unknown 1063
DYS543 (AGAT)3(GATA)13N42(ATGT)4(ATGG)2N35(GAAA)3 (AGAT)3(GATA)12N42(ATGT)4(ATGG)2N35(GAAA)3 Unknown 1223
DYS543 (AGAT)3(GATA)15N42(ATGT)3(ATGG)3N35(GAAA)3 (AGAT)3(GATA)14N42(ATGT)3(ATGG)3N35(GAAA)3 31 1229
DYS543 (AGAT)3(GATA)13N42(ATGT)3(ATGG)3N35(GAAA)3 (AGAT)3(GATA)12N42(ATGT)3(ATGG)3N35(GAAA)3 31 1315
DYS543 (AGAT)3(GATA)11N42(ATGT)4(ATGG)2N35(GAAA)3 (AGAT)3(GATA)12N42(ATGT)4(ATGG)2N35(GAAA)3 Unknown 1591
DYS543 (AGAT)3(GATA)13N42(ATGT)4(ATGG)2N35(GAAA)3 (AGAT)3(GATA)12N42(ATGT)4(ATGG)2N35(GAAA)3 28 1712
DYS546 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)17 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)18 34 371
DYS546 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)14 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)13 20 706
DYS546 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)16 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)17 20 756
DYS546 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)17 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)16 31 878
DYS546 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)18 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)17 23 1119
DYS546 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)16 (TTCC)3N23(TTCT)3N33(TTCC)3N16(TTCT)14 55 1840
DYS547 (CCTT)10T(CTTC)5N56(TTTC)16N10(CCTT)4 (CCTT)10T(CTTC)5N56(TTTC)17N10(CCTT)4 28 1
(TCTC)1(TTTC)11N14(TTTC)3 (TCTC)1(TTTC)11N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)15N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)15N10(CCTT)4 46 10
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)13N14(TTTC)3
DYS547 (CCTT)11T(CTTC)5N56(TTTC)17N10(CCTT)4 (CCTT)11T(CTTC)5N56(TTTC)18N10(CCTT)4 59 152
(TCTC)1(TTTC)14N14(TTTC)3 (TCTC)1(TTTC)14N14(TTTC)3
DYS547 (CCTT)13T(CTTC)5N56(TTTC)16N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4 34 243
(TCTC)1(TTTC)13N14(TTTC)3 (TCTC)1(TTTC)13N14(TTTC)3
DYS547 (CCTT)13T(CTTC)5N56(TTTC)14N10(CCTT)4 (CCTT)13T(CTTC)5N56(TTTC)14N10(CCTT)4 31 268
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)11N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4 50 270
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)11N14(TTTC)3
DYS547 (CCTT)10T(CTTC)5N56(TTTC)18N10(CCTT)4 (CCTT)10T(CTTC)5N56(TTTC)19N10(CCTT)4 33 339
(TCTC)1(TTTC)10N14(TTTC)3 (TCTC)1(TTTC)10N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)17N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)17N10(CCTT)4 36 378
(TCTC)1(TTTC)11N14(TTTC)3 (TCTC)1(TTTC)10N14(TTTC)3
DYS547 (CCTT)13T(CTTC)4N56(TTTC)16N10(CCTT)4 (CCTT)13T(CTTC)4N56(TTTC)17N10(CCTT)4 28 425
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)13T(CTTC)5N56(TTTC)16N10(CCTT)4 (CCTT)13T(CTTC)5N56(TTTC)18N10(CCTT)4 28 484
(TCTC)1(TTTC)11N14(TTTC)3 (TCTC)1(TTTC)11N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4 31 613
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)15N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)15N10(CCTT)4 39 654
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)11N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)15N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)14N10(CCTT)4 27 710
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)13T(CTTC)5N56(TTTC)15N10(CCTT)4 (CCTT)13T(CTTC)5N56(TTTC)14N10(CCTT)4 25 711
(TCTC)1(TTTC)11N14(TTTC)3 (TCTC)1(TTTC)11N14(TTTC)3
DYS547 (CCTT)10T(CTTC)5N56(TTTC)18N10(CCTT)4 (CCTT)10T(CTTC)5N56(TTTC)17N10(CCTT)4 59 846
(TCTC)1(TTTC)10N14(TTTC)3 (TCTC)1(TTTC)10N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4 37 904
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)18N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)19N10(CCTT)4 22 986
(TCTC)1(TTTC)13N14(TTTC)3 (TCTC)1(TTTC)13N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)22N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)21N10(CCTT)4 55 1022
(TCTC)1(TTTC)9N14(TTTC)3 (TCTC)1(TTTC)9N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4 43 1153
(TCTC)1(TTTC)13N14(TTTC)3 (TCTC)1(TTTC)14N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)19N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)18N10(CCTT)4 31 1229
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4 29 1276
(TCTC)1(TTTC)13N14(TTTC)3 (TCTC)1(TTTC)14N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)18N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)19N10(CCTT)4 28 1294
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)11T(CTTC)4N56(TTTC)16N10(CCTT)4 (CCTT)11T(CTTC)4N56(TTTC)16N10(CCTT)4 30 1297
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)13N14(TTTC)3
DYS547 (CCTT)11T(CTTC)5N56(TTTC)15N10(CCTT)4 (CCTT)11T(CTTC)5N56(TTTC)15N10(CCTT)4 32 1321
(TCTC)1(TTTC)11N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)15N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)15N10(CCTT)4 41 1379
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)13N14(TTTC)3
DYS547 (CCTT)10T(CTTC)5N56(TTTC)18N10(CCTT)4 (CCTT)10T(CTTC)5N56(TTTC)19N10(CCTT)4 24 1466
(TCTC)1(TTTC)10N14(TTTC)3 (TCTC)1(TTTC)10N14(TTTC)3
DYS547 (CCTT)10T(CTTC)5N56(TTTC)16N10(CCTT)4 (CCTT)10T(CTTC)5N56(TTTC)16N10(CCTT)4 42 1485
(TCTC)1(TTTC)10N14(TTTC)3 (TCTC)1(TTTC)11N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)15N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4 29 1491
(TCTC)1(TTTC)13N14(TTTC)3 (TCTC)1(TTTC)13N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4 23 1510
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4 38 1524
(TCTC)1(TTTC)11N14(TTTC)3 (TCTC)1(TTTC)10N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)10N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)10N10(CCTT)4 36 1582
(TCTC)1((TTTC)17N14(TTTC)3 (TCTC)1(TTTC)16N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)17N10(CCTT)4 28 1640
(TCTC)1(TTTC)13N14(TTTC)3 (TCTC)1(TTTC)13N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)15N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)14N10(CCTT)4 22 1648
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)17N10(CCTT)4 37 1663
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)12T(CTTC)4N56(TTTC)16N10(CCTT)4 (CCTT)12T(CTTC)4N56(TTTC)17N10(CCTT)4 Unknown 1723
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)17N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4 54 1860
(TCTC)1(TTTC)12N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)10T(CTTC)5N56(TTTC)16N10(CCTT)4 (CCTT)10T(CTTC)5N56(TTTC)16N10(CCTT)4 53 1871
(TCTC)1(TTTC)13N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)16N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)15N10(CCTT)4 55 1910
(TCTC)1(TTTC)11N14(TTTC)3 (TCTC)1(TTTC)11N14(TTTC)3
DYS547 (CCTT)12T(CTTC)5N56(TTTC)14N10(CCTT)4 (CCTT)12T(CTTC)5N56(TTTC)14N10(CCTT)4 65 1920
(TCTC)1(TTTC)11N14(TTTC)3 (TCTC)1(TTTC)12N14(TTTC)3
DYS549 (GATA)13 (GATA)12 30 87
DYS549 (GATA)13 (GATA)12 47 113
DYS549 (GATA)12 (GATA)11 27 119
DYS549 (GATA)12 (GATA)13 38 336
DYS549 (GATA)14 (GATA)13 43 472
DYS549 (GATA)12 (GATA)11 25 517
DYS549 (GATA)12 (GATA)11 22 625
DYS551 (AGAT)15N8(AGAC)3(AGGT)1(AGAT)4 (AGAT)14N8(AGAC)3(AGGT)1(AGAT)4 21 436
DYS551 (AGAT)14N8(AGAC)3(AGGT)1(AGAT)4 (AGAT)13N8(AGAC)3(AGGT)1(AGAT)4 22 604
DYS551 (AGAT)15N8(AGAC)3(AGGT)1(AGAT)4 (AGAT)14N8(AGAC)3(AGGT)1(AGAT)4 41 862
DYS551 (AGAT)14N8(AGAC)3(AGGT)1(AGAT)4 (AGAT)13N8(AGAC)3(AGGT)1(AGAT)4 51 1212
DYS551 (AGAT)13N8(AGAC)3(AGGT)1(AGAT)4 (AGAT)14N8(AGAC)3(AGGT)1(AGAT)4 27 1671
DYS552 (TCTA)3(TCTG)1(TCTA)9N40(TCTA)15 (TCTA)3(TCTG)1(TCTA)7N40(TCTA)15 25 471
DYS552 (TCTA)3(TCTG)1(TCTA)10N40(TCTA)15 (TCTA)3(TCTG)1(TCTA)10N40(TCTA)16 59 846
DYS552 (TCTA)3(TCTG)1(TCTA)10N40(TCTA)14 (TCTA)3(TCTG)1(TCTA)10N40(TCTA)15 18 847
DYS552 (TCTA)3(TCTG)1(TCTA)11N40(TCTA)14 (TCTA)3(TCTG)1(TCTA)12N40(TCTA)14 31 1486
DYS554 (TAAA)10 (TAAA)11 37 1277
DYS556 (AAAT)12 (AAAT)11 30 1101
DYS556 (AAAT)11 (AAAT)12 21 1448
DYS557 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)15 24 17
DYS557 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)15 23 52
DYS557 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)15 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16 34 394
DYS557 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)15 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16 38 589
DYS557 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)17 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16 38 1494
DYS557 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)15 (TTTC)4(TTCTC)1(TTTC)4(TTC)1(TTTC)16 17 1517
DYS559 (TAAA)9 (TAAA)8 27 1357
DYS561 (GATA)13(GACA)4 (GATA)12(GACA)4 34 359
DYS565 (ATAA)13 (ATAA)12 34 101
DYS565 (ATAA)13 (ATAA)12 43 624
DYS565 (ATAA)13 (ATAA)14 27 1673
DYS568 (AAAT)12 (AAAT)13 35 1547
DYS569 (ATTT)12 (ATTT)11 31 598
DYS569 (ATTT)12 (ATTT)11 21 1053
DYS570 (TTTC)17 (TTTC)16 34 92
DYS570 (TTTC)19 (TTTC)20 39 112
DYS570 (TTTC)19 (TTTC)18 20 240
DYS570 (TTTC)20 (TTTC)19 37 293
DYS570 (TTTC)17 (TTTC)18 41 313
DYS570 (TTTC)19 (TTTC)17 16 316
DYS570 (TTTC)19 (TTTC)18 25 317
DYS570 (TTTC)20 (TTTC)21 32 614
DYS570 (TTTC)20 (TTTC)21 24 855
DYS570 (TTTC)20 (TTTC)19 30 867
DYS570 (TTTC)21 (TTTC)22 22 922
DYS570 (TTTC)18 (TTTC)19 36 1061
DYS570 (TTTC)19 (TTTC)20 20 1253
DYS570 (TTTC)16 (TTTC)15 41 1256
DYS570 (TTTC)21 (TTTC)20 45 1364
DYS570 (TTTC)17 (TTTC)18 54 1895
DYS570 (TTTC)19 (TTTC)18 66 1901
DYS572 (AAAT)11 (AAAT)10 35 735
DYS572 (AAAT)11 (AAAT)10 24 1342
DYS572 (AAAT)11 (AAAT)10 28 1696
DYS574 (TTAT)10 (TTAT)9 43 1818
DYS576 (AAAG)17 (AAAG)18 28 153
DYS576 (AAAG)19 (AAAG)18 34 236
DYS576 (AAAG)17 (AAAG)18 34 243
DYS576 (AAAG)18 (AAAG)17 47 347
DYS576 (AAAG)19 (AAAG)18 17 635
DYS576 (AAAG)19 (AAAG)18 37 715
DYS576 (AAAG)20 (AAAG)21 23 716
DYS576 (AAAG)18 (AAAG)17 38 719
DYS576 (AAAG)20 (AAAG)21 29 789
DYS576 (AAAG)20 (AAAG)19 50 884
DYS576 (AAAG)17 (AAAG)18 42 1054
DYS576 (AAAG)19 (AAAG)18 36 1061
DYS576 (AAAG)18 (AAAG)19 Unknown 1200
DYS576 (AAAG)18 (AAAG)19 40 1204
DYS576 (AAAG)18 (AAAG)19 51 1212
DYS576 (AAAG)18 (AAAG)17 Unknown 1224
DYS576 (AAAG)18 (AAAG)19 Unknown 1265
DYS576 (AAAG)18 (AAAG)19 38 1278
DYS576 (AAAG)17 (AAAG)16 22 1403
DYS576 (AAAG)19 (AAAG)18 42 1411
DYS576 (AAAG)18 (AAAG)17 26 1440
DYS576 (AAAG)18 (AAAG)19 47 1675
DYS576 (AAAG)18 (AAAG)19 55 1844
DYS576 (AAAG)20 (AAAG)19 54 1939
DYS578 (AAAT)8 (AAAT)9 Unknown 1353
DYS585 (TTATG)9 (TTATG)10 35 794
DYS585 (TTATG)9 (TTATG)8 26 1105
DYS585 (TTATG)9 (TTATG)10 17 1109
DYS587 (CAATA)11[(CAGTA)1(CAATA)1]3 (CAATA)10[(CAGTA)1(CAATA)1]3 24 83
DYS587 (CAATA)11[(CAGTA)1(CAATA)1]3 (CAATA)12[(CAGTA)1(CAATA)1]3 59 152
DYS587 (CAATA)12[(CAGTA)1(CAATA)1]3 (CAATA)11[(CAGTA)1(CAATA)1]3 25 260
DYS587 (CAATA)12[(CAGTA)1(CAATA)1]3 (CAATA)13[(CAGTA)1(CAATA)1]3 63 917
DYS593 (AAAAC)4(AAAAT)8 (AAAAC)4(AAAAT)7 26 1082
DYS593 (AAAAC)4(AAAAT)8 (AAAAC)4(AAAAT)9 Unknown 1353
DYS594 (AAATA)10 (AAATA)11 31 1134
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 30 99
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)19N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)20N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 31 164
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)17N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 20 254
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)18N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 25 517
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)15N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)14N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 18 956
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)17N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)18N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 48 969
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)15N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 34 990
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)15N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 45 1171
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)15N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 21 1216
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)14N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 40 1281
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)17N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)16N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 30 1401
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)15N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)14N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS611 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 (TTC)5N9(TTC)4(CTC)1(TTC)3N9(TTC)5(CTC)1(TTC)3N15 53 1839
(TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7 (TTC)4(CT)1(TTC)3(CTC)1(TTC)3N20(TTC)3T(TTC)4N7
(TTC)3N9(TTC)4(TCC)1(TTC)19N23(TTC)4N4 (TTC)3N9(TTC)4(TCC)1(TTC)18N23(TTC)4N4
[(TTC)1(CTC)1]2[(CTC)1(TTC)1]3 [(TTC)1(CTC)1]2[(CTC)1(TTC)1]3
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)27 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 25 4
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 34 124
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 33 127
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)27 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)28 31 141
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)24 49 161
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)24 26 248
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)27 34 258
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)24 21 593
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)24 53 659
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)24 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 19 696
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 32 770
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)22 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)21 36 830
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 35 875
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)27 24 933
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)24 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 27 1044
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)28 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)27 21 1053
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)24 Unknown 1224
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)27 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 49 1335
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 23 1359
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)24 20 1460
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)23 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)24 36 1582
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)23 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)24 Unknown 1613
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)27 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 41 1786
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)28 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)27 32 1792
DYS612 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)25 (CCT)5(CTT)1(TCT)4(CCT)1(TCT)26 51 1888
DYS614 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 22 219
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)19N8(CTT)4 (CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5 [(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
DYS614 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 24 855
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)20N8(CTT)4 (CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)19N8(CTT)4
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5 [(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
DYS614 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 19 916
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4 (CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)17N8(CTT)4
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5 [(CTC)1(CTT)1]3[(CTC)1(TTT)1](CTT)5
DYS614 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 45 1283
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4 (CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)19N8(CTT)4
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5 [(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
DYS614 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 27 1583
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4 (CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)19N8(CTT)4
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5 [(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
DYS614 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 19 1784
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)19N8(CTT)4 (CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5 [(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
DYS614 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 (CTT)4(CCT)1(CTT)3N15(CCT)4(CTT)4(CCT)1(CTT)3N18 52 1965
(CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)18N8(CTT)4 (CCT)3(CTT)5N20[(CTT)1(CTG)1]3(CT)1(CTT)16N8(CTT)4
[(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5 [(CTC)1(CTT)1]3[(CTC)1(TTT)1]1(CTT)5
DYS616 (TAT)14(CAT)1(TAT)3 (TAT)15(CAT)1(TAT)3 25 40
DYS616 (TAT)15(CAT)1(TAT)3 (TAT)14(CAT)1(TAT)3 41 417
DYS622 (GAAA)6(AGAAG)1(GAAA)12 (GAAA)6(AGAAG)1(GAAA)13 33 187
DYS622 (GAAA)6(AGAAG)1(GAAA)14 (GAAA)6(AGAAG)1(GAAA)15 34 308
DYS622 (GAAA)6(AGAAG)1(GAAA)14 (GAAA)6(AGAAG)1(GAAA)13 30 842
DYS622 (GAAA)6(AGAAG)1(GAAA)11 (GAAA)6(AGAAG)1(GAAA)10 19 1006
DYS622 (GAAA)6(AGAAG)1(GAAA)13 (GAAA)6(AGAAG)1(GAAA)12 21 1436
DYS625 (CTTT)4(TTCT)1(CTTT)3(TTT)1(CTTT)4(TT)1(CTTT)3N47 (CTTT)4(TTCT)1(CTTT)3(TTT)1(CTTT)4(TT)1(CTTT)3N47 38 445
(CTTT)4(CT)1(CTTT)4(CCTT)1(CTTT)3N10(CTTT)3 (CTTT)3(CT)1(CTTT)4(CCTT)1(CTTT)3N10(CTTT)3
DYS626 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)20N24(GAAA)3N6(GAAA)5(AAA)1 42 383
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)16N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)17N24(GAAA)3N6(GAAA)5(AAA)1 37 388
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)17N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)18N24(GAAA)3N6(GAAA)5(AAA)1 35 500
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)18N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)17N24(GAAA)3N6(GAAA)5(AAA)1 38 529
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)18N24(GAAA)3N6(GAAA)5(AAA)1 24 571
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)18N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 40 612
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)17N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)18N24(GAAA)3N6(GAAA)5(AAA)1 29 650
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)20N24(GAAA)3N6(GAAA)5(AAA)1 36 733
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)18N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 41 779
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)20N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 29 901
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)20N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)21N24(GAAA)3N6(GAAA)5(AAA)1 27 953
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)20N24(GAAA)3N6(GAAA)5(AAA)1 39 1071
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)17N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)18N24(GAAA)3N6(GAAA)5(AAA)1 17 1109
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)20N24(GAAA)3N6(GAAA)5(AAA)1 33 1112
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)20N24(GAAA)3N6(GAAA)5(AAA)1 27 1389
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)18N24(GAAA)3N6(GAAA)5(AAA)1 25 1445
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)16N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)15N24(GAAA)3N6(GAAA)5(AAA)1 25 1514
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)18N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 19 1530
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)19N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)20N24(GAAA)3N6(GAAA)5(AAA)1 59 1823
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS626 (GAAA)22N24(GAAA)3N6(GAAA)5(AAA)1 (GAAA)21N24(GAAA)3N6(GAAA)5(AAA)1 56 1907
(GAAA)2(GAAG)1(GAAA)3 (GAAA)2(GAAG)1(GAAA)3
DYS627 (AGAA)3N16(AGAG)3(AAAG)21N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3 25 4
DYS627 (AGAA)3N16(AGAG)3(AAAG)22N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)21N81(AAGG)3 36 49
DYS627 (AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 29 82
DYS627 (AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 39 112
DYS627 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3 27 170
DYS627 (AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)21N81(AAGG)3 34 243
DYS627 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3 20 256
DYS627 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3 21 328
DYS627 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3 31 331
DYS627 (AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)17N81(AAGG)3 37 355
DYS627 (AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)21N81(AAGG)3 23 496
DYS627 (AGAA)3N16(AGAG)3(AAAG)23N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)22N81(AAGG)3 35 500
DYS627 (AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 36 619
DYS627 (AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 25 711
DYS627 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3 20 742
DYS627 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3 29 789
DYS627 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3 Unknown 1310
DYS627 (AGAA)3N16(AGAG)3(AAAG)15N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)16N81(AAGG)3 22 1323
DYS627 (AGAA)3N16(AGAG)3(AAAG)18N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 42 1407
DYS627 (AGAA)3N16(AGAG)3(AAAG)22N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)23N81(AAGG)3 17 1416
DYS627 (AGAA)3N16(AGAG)3(AAAG)19N81(AAGG)3 (AGAA)3N16(AGAG)3(AAAG)20N81(AAGG)3 54 1860
DYS629 (TATC)9 (TATC)10 29 609
DYS630 (AAAG)4(AGAG)3N18(AAAG)14 (AAAG)4(AGAG)3N18(AAAG)15 21 46
DYS630 (AAAG)4(AGAG)3N18(AAAG)15 (AAAG)4(AGAG)3N18(AAAG)14 33 53
DYS630 (AAAG)4(AGAG)3N18(AAAG)18 (AAAG)4(AGAG)3N18(AAAG)17 23 96
DYS630 (AAAG)4(AGAG)3N18(AAAG)16 (AAAG)4(AGAG)3N18(AAAG)15 40 255
DYS630 (AAAG)4(AGAG)3N18(AAAG)15 (AAAG)4(AGAG)3N18(AAAG)16 30 448
DYS630 (AAAG)4(AGAG)3N18(AAAG)13 (AAAG)4(AGAG)3N18(AAAG)14 21 478
DYS630 (AAAG)4(AGAG)3N18(AAAG)17 (AAAG)4(AGAG)3N18(AAAG)18 39 501
DYS630 (AAAG)4(AGAG)3N18(AAAG)14 (AAAG)4(AGAG)3N18(AAAG)15 36 665
DYS631 (AATA)4(CATA)1(AATA)11 (AATA)4(CATA)1(AATA)10 47 347
DYS635 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)12 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)11 53 35
DYS635 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)13,14 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)13 33 528
DYS635 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)13 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)12 36 617
DYS635 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)12 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)11 26 800
DYS635 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)12 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)11 29 1674
DYS635 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)11 (TCTA)4(TGTA)2(TCTA)2(TGTA)2(TCTA)2(TCTA)12 52 1891
DYS637 (AAAT)4(ACAT)11 (AAAT)4(ACAT)10 25 950
DYS638 (TTTA)11 (TTTA)12 56 1677
DYS643 (AAAT)11 (AAAT)12 32 95
DYS643 (AAAT)13 (AAAT)14 19 1697
DYS644 (TTTTA)10(TTTTA)7 (TTTTA)10(TTTTA)8 22 487
DYS644 (TTTTA)10(TTTTA)6 (TTTTA)10(TTTTA)5 24 681
DYS644 (TTTTA)10(TTTA)1(TTTTA)13 (TTTTA)11(TTTA)1(TTTTA)13 21 1667
DYS644 (TTTTA)10(TTTTA)6 (TTTTA)10(TTTTA)7 19 1717
DYS644 (TTTTA)10(TTTTA)7 (TTTTA)10(TTTTA)6 50 1832
Y-GATA-A10 (ATCT)13 (ATCT)14 41 417
Y-GATA-A10 (ATCT)14 (ATCT)15 35 735
Y-GATA-A10 (ATCT)13 (ATCT)12 24 855
Y-GATA-A10 (ATCT)13 (ATCT)12 46 1252
Y-GATA-A10 (ATCT)13 (ATCT)14 40 1606
Y-GATA-H4 (TAGA)3N12(TAGG)3(TAGA)12N22(TAGA)4 (TAGA)3N12(TAGG)3(TAGA)11N22(TAGA)4 23 251
Y-GATA-H4 (TAGA)3N12(TAGG)3(TAGA)11N22(TAGA)4 (TAGA)3N12(TAGG)3(TAGA)12N22(TAGA)4 19 1004
Y-GATA-H4 (TAGA)3N12(TAGG)3(TAGA)12N22(TAGA)4 (TAGA)3N12(TAGG)3(TAGA)11N22(TAGA)4 29 1051
Y-GATA-H4 (TAGA)3N12(TAGG)3(TAGA)13N22(TAGA)4 (TAGA)3N12(TAGG)3(TAGA)12N22(TAGA)4 42 1411
Y-GATA-H4 (TAGA)3N12(TAGG)3(TAGA)13N22(TAGA)4 (TAGA)3N12(TAGG)3(TAGA)12N22(TAGA)4 53 1799
Data 3. Ability of 13 rapidly-mutating RM Y-STRs and 17 YFiler
Y-STRs to differentiate between male relatives by one or more
mutations from analyzing 103 pairs from 80 male pedigrees,
according to the number of generations separating members
of the same pedigree.
Number of RM
Meioses RM Y-STR Y-STR Locus Yfiler Yfiler Locus
Separating Pair Mutations Comparisons Mutations Comparisons
1 1 9 0 17
1 1 12 0 17
1 1 12 0 17
1 1 11 0 17
1 1 10 0 17
1 1 12 0 17
1 2 5 0 17
1 0 13 0 17
1 1 12 0 17
1 0 13 0 17
1 0 13 0 17
1 1 13 0 17
1 0 13 0 17
1 0 13 0 17
1 3 11 0 17
1 1 10 0 17
1 0 13 0 17
1 1 10 0 17
1 1 4 0 17
1 1 12 0 17
2 1 12 0 17
2 2 11 0 17
2 1 8 0 17
2 2 11 0 17
2 2 13 0 17
2 1 9 0 17
2 2 13 0 17
2 0 13 0 17
2 0 13 0 17
2 0 13 0 17
2 1 13 0 17
2 0 13 0 17
2 0 13 0 17
2 1 12 0 17
2 3 13 0 17
2 0 13 0 17
2 0 13 0 17
2 0 13 1 17
2 0 13 0 17
2 0 13 0 17
2 3 13 0 17
2 0 12 0 17
2 4 13 0 17
2 1 13 0 17
2 3 13 0 17
2 0 13 0 17
2 0 13 0 17
2 0 13 0 17
2 1 13 0 17
2 0 13 0 17
2 1 10 1 17
2 1 13 0 17
2 1 13 0 17
2 2 3 0 17
3 0 13 0 17
3 0 13 0 17
3 0 13 0 17
3 2 12 0 17
3 2 12 0 17
3 2 13 0 17
3 3 13 0 17
4 0 13 0 17
4 1 13 0 17
4 1 13 0 17
5 1 5 0 17
5 1 13 0 17
5 1 12 0 17
5 2 12 0 17
6 3 9 0 17
6 1 10 0 17
6 1 13 2 17
6 5 12 1 17
6 3 13 0 17
6 4 13 0 17
6 3 13 0 17
6 0 13 0 17
6 2 13 0 17
7 0 13 0 17
7 4 13 1 17
8 3 13 0 17
8 4 13 0 17
8 2 13 0 17
8 0 13 0 17
8 0 13 1 17
8 4 13 0 17
8 2 13 0 17
9 1 13 1 17
10 1 13 0 17
10 4 12 1 17
10 2 13 0 17
10 3 13 0 17
10 3 13 1 17
10 1 12 2 17
10 0 12 1 17
11 6 13 0 17
11 6 13 0 17
11 3 12 0 17
11 4 13 2 17
11 1 13 1 17
11 3 13 0 17
13 4 12 1 17
13 5 13 0 17
20 4 13 0 17
Total 158 1246 17 1751
Average 1.53 12.10 0.17 17