Method for fabricating pixel structure of active matrix organic light-emitting diode
A method for fabricating an AMOLED pixel includes forming a transparent semiconductor layer on a substrate and forming a first channel layer of the switch TFT, a lower electrode of a storage capacitor and a second channel layer of a driving TFT. A first dielectric layer is formed over the substrate. A first opaque metal gate of the switch TFT, a second opaque metal gate of the driving TFT and a scan line are formed on the first dielectric layer. A first source and a first drain of the switch TFT are formed in the first channel layer and a second source and a second drain of the switch TFT are formed in the second channel layer. A patterned transparent metal layer is formed on the first dielectric layer. A data line is formed over the substrate. An OLED is formed over the substrate.
Latest Industrial Technology Research Institute Patents:
- Encoding method, decoding method, encoding/decoding system, encoder, and decoder
- Copper metallization for through-glass vias on thin glass
- Voice signal analysis method and device and chip design method and device
- Phase shift-based three-dimensional measurement system with multiple calibration surfaces and calibration method thereof
- Light-emitting device and display apparatus
This application is a divisional of an application Ser. No. 11/308,015, filed on Mar. 3, 2006, now pending, which claims the priority benefit of Taiwan application serial no. 94147154, filed on Dec. 29, 2005. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
BACKGROUND OF THE INVENTION1. Field of Invention
The present invention relates to an organic light-emitting diode (OLED) and the method for fabricating the same, and particularly to an active matrix organic light-emitting diode (AMOLED) and the method for fabricating the same.
2. Description of the Related Art
An organic light-emitting diode (OLED) is a semiconductor device capable of converting electrical energy into optical energy. Since OLEDs have advantages of high conversion efficiency, no angle of view (AOV) concern, simpler process, low cost, high response rates, broader operation temperature range and full colorization, OLEDs meet the requirements of multi-media age today and are broadly applied in indicator lights, luminance devices of display panels etc.
The earlier generation of OLED display is mainly driven by low-end passive matrix drive. However, the luminance efficiency and the lifetime of a passive driving device are largely declined along with the increase of display size and resolution. Instead, the active matrix OLED display (AMOLED display) featuring high brightness, low electricity-consumption and long lifetime plays an exceptional role in the current development of OLED displays.
An active matrix organic light-emitting diode (AMOLED) is a device using a thin film transistor (TFT) to drive a light emitting diode, wherein each pixel structure thereof includes an organic light-emitting diode (OLED), a switch TFT, a driving TFT, a storage capacitor, a scan line and a data line. The gray-level of an AMOLED pixel structure depends on the data line voltage. When a scan line turns on a switch TFT, the data line voltage drives the gate of the TFT via the switch TFT, so as to drive a required current to the OLED. Depending on a different voltage level, a corresponding different gray-level of display is produced. On the other hand, when the switch TFT is turned on, the storage capacitor begins with a charging action in order to store the input voltage. Therefore, after the switch TFT is turned off, the storage capacitor still remains the input voltage until the next time to turn on the switch TFT. In this way, the driving TFT remains on-state, so that the OLED keeps the original display brightness.
In a typical bottom emitting AMOLED, to keep a required frame quality, the storage capacitor is designed with a sufficient capacitance, and therefore the electrodes of the storage capacitor need to have enough area. However, the electrodes of the storage capacitor and the TFT gate are fabricated by opaque materials, and only an aperture ratio of approximate 30% is given. Thus, when a color filter is integrated into an OLED panel, the luminance brightness of the pixel array of a bottom emitting AMOLED is obviously not as good as a top emitting AMOLED.
SUMMARY OF THE INVENTIONThe present invention is to provide a pixel structure of an active matrix organic light-emitting diode (AMOLED) and the method for fabricating the same, capable of improving the pixel aperture ratio.
The present invention is to provide a pixel structure of an active matrix organic light-emitting diode (AMOLED) and the method for fabricating the same, having sufficient luminance brightness.
The present invention provides a pixel structure of an active matrix organic light-emitting diode (AMOLED). The pixel structure includes an OLED, a data line, at least one scan line, at least one switch TFT, at least one driving TFT and at least one storage capacitor. The switch TFT has a first gate, a first source and a first drain, wherein the first gate is coupled to the scan line and the first source is coupled to the data line. The driving TFT has a second gate, a second source and a second drain, wherein the second gate is coupled to the first drain and the second drain is coupled to the OLED. The storage capacitor has a first transparent electrode, a second transparent electrode and a dielectric layer, wherein the first transparent electrode is electrically connected to the first drain and the second gate.
According to the embodiment of the present invention, the first transparent electrode of the storage capacitor is a transparent semiconductor layer, while the second transparent electrode is a transparent metal layer. The material of the transparent metal includes indium-tin-oxide (ITO) or indium zinc oxide (IZO). The material of the transparent semiconductor includes ZnO, MgxZn1-xO, CdxZn1-xO or CdO, or ZnO, MgxZn1-xO, CdxZn1-xO or CdO that have been doped with (a) an element that can be univalent or (b) Ni; or indium gallium zinc oxide (InGaZnO). In addition, the area of the storage capacitor can be 50%˜95% of a pixel area.
According to the embodiment of the present invention, the first gate of the switch TFT and the second gate of the driving TFT can be formed by an opaque metal layer, respectively, or by a transparent metal layer and an opaque metal layer, wherein the resistance of the opaque metal layer is smaller than that of the transparent metal layer.
According to the embodiment of the present invention, the first source and the first drain of the switch TFT and the second source and the second drain of the driving TFT are formed in a channel layer, respectively. The material of the channel layer is opaque doped semiconductor or transparent doped semiconductor.
According to the embodiment of the present invention, when the organic light-emitting layer of the OLED is made of white organic light-emitting material, the pixel structure thereof further includes a color filter disposed between the transparent substrate and the OLED. In addition, another color filter can be further included so that the OLED is between two color filters.
The present invention further provides a storage capacitor of the OLED pixel structure, and the capacitor includes a first transparent electrode, a second transparent electrode and a dielectric layer. The first transparent electrode is electrically connected to a drain of a switch TFT of the pixel and a gate of a driving TFT of the pixel.
According to the embodiment of the present invention, the first transparent electrode is a transparent semiconductor layer, while the second transparent electrode is a transparent metal layer. The material of the transparent metal includes indium-tin-oxide (ITO) or indium zinc oxide (IZO). The material of the transparent semiconductor includes ZnO, MgxZn1-xO, CdxZn1-xO or CdO, or ZnO, MgxZn1-xO, CdxZn1-xO or CdO that have been doped with (a) an element that can be univalent or (b) Ni; or indium gallium zinc oxide (InGaZnO). In addition, the area of the storage capacitor can be 50%˜95% of a pixel area.
The present invention also provides a method for fabricating a AMOLED pixel. First, a transparent semiconductor layer is formed on a substrate. By patterning the transparent semiconductor layer, a first channel layer of the switch TFT, a lower electrode of a storage capacitor and a second channel layer of a driving TFT are formed, wherein the lower electrode area of the storage capacitor is 50%˜95% of the pixel area. Next, a first dielectric layer is formed over the substrate and the dielectric layer serves as a first gate dielectric layer, a dielectric layer of the storage capacitor and a second gate dielectric layer of the driving TFT. A first opaque metal gate of the switch TFT, a second opaque metal gate of the driving TFT and a scan line are formed on the first dielectric layer. A first source and a first drain of the switch TFT are formed in the first channel layer and a second source and a second drain of the switch TFT are formed in the second channel layer. A patterned transparent metal layer is formed on the first dielectric layer and the patterned transparent metal layer serves as an upper electrode of the storage capacitor, wherein the area of the storage capacitor upper electrode is 50%˜95% of a pixel area. Afterwards, a data line is formed over the substrate to connect to the first source of the switch TFT. Further, an OLED is formed over the substrate to electrically connect to the second drain of driving TFT.
According to the embodiment of the present invention, the material of the transparent semiconductor includes ZnO, MgxZn1-xO, CdxZn1-xO or CdO, or ZnO, MgxZn1-xO, CdxZn1-xO or CdO that have been doped with (a) an element that can be univalent or (b) Ni; or indium gallium zinc oxide (InGaZnO). The material of the transparent metal includes indium-tin-oxide (ITO) or indium zinc oxide (IZO).
According to the embodiment of the present invention, the step of forming and patterning the transparent metal layer on the first dielectric layer is to form the upper electrode of the storage capacitor and simultaneously to form the first transparent metal gate of the switch TFT and the second transparent metal gate of the driving TFT. In addition, the step for forming and patterning the transparent metal layer can be performed prior to or after the step of forming the first opaque metal gate of the switch TFT, the second opaque metal gate of the driving TFT and the scan line.
According to the embodiment of the present invention, when an organic light-emitting layer of the OLED is made of white organic light-emitting material, a color filter is further formed over the substrate prior forming the data line and the OLED but after forming the upper electrode of the storage capacitor. Furthermore, after the step of forming the OLED, another color filter can be formed on the OLED.
Since the present invention takes two transparent electrodes to form a storage capacitor in the AMOLED pixel structure, the entire capacitor is transparent, which enables to largely increase the aperture ratio of a pixel and allows the capacitor area to be 50%˜95% of a pixel area for improving the frame quality. On the other hand, since the capacitor area in a pixel area can reach 50%˜95%, the frame quality will not be deteriorated even if the size of the pixel is shrunken. Thus, pixel size can be further minimized.
Note that the gate, the scan line and the data line of the pixel structure are made of low-resistance metal, which contributes to a shorter RC time delay. Hence, the present invention is applicable to fabricate an active matrix panel with high resolution.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve for explaining the principles of the invention.
The gate of the switch TFT T1 and the gate of the driving TFT T2 can be formed either by opaque metal layers, or by a transparent metal layer and an opaque metal layer, wherein the resistance of the opaque metal layer is smaller than the resistance of the transparent metal layer. The layer contacting the gate dielectric layer of the switch TFT T1 or the gate dielectric layer of the driving TFT T2 can be either transparent metal layer or opaque metal layer. Furthermore, to select an appropriate opaque metal layer, the work function matching issue between the gate metal and the transparent semiconductor should be taken account of, so that the TFT possesses the optimum threshold voltage and the optimum transistor characteristic. The material of the opaque metal layer can be one of chromium (Cr), aluminum (Al), molybdenum (Mo) or titanium (Ti). The material of the transparent metal can be indium-tin-oxide (ITO) or indium zinc oxide (IZO). When the gate of the switch TFT T1 and the gate of the driving TFT T2 are formed by a transparent metal layer and an opaque metal layer, the transparent metal layer can be formed simultaneously with forming the transparent upper electrode of the storage capacitor Cst.
Both the source and the drain of the switch TFT T1 and the source and the drain of the driving TFT T2 can be made of opaque polysilicon. To simplify the process, the channel layer in the switch TFT T1 for forming the source and the drain thereof and the channel layer in the driving TFT T2 for forming the source and the drain thereof can be made of a same material as of the lower electrode of the storage capacitor Cst, which is a transparent semiconductor layer and can be ZnO, MgxZn1-xO, CdxZn1-xO or CdO, or ZnO, MgxZn1-xO, CdxZn1-xO or CdO that have been doped with (a) an element that can be univalent or (b) Ni; or indium gallium zinc oxide (InGaZnO).
The organic light-emitting layer of the OLED can be made of a white organic light-emitting material. When the OLED is made of the white organic light-emitting material, a color filter can be disposed between the transparent substrate and the OLED for coloring images.
Since the present invention uses two transparent electrodes to form a storage capacitor in the AMOLED pixel structure and the entire capacitor area reaches 50%˜95% of a pixel area, the scheme of the present invention can advance the frame quality and allows to further downsize the pixel without deteriorating the frame quality. Besides, such designed electrodes can be applicable to fabricate a two-side emitting OLED panel.
The AMOLED pixel structure of the present invention can be fabricated by the following method. However, the method described hereinafter is intended to be as an example only, and the present invention should not be limited by it.
Further, referring to
In succession, referring to
The characteristic of the above-described method is forming a patterned opaque metal layer first and then forming a patterned transparent metal layer. In another embodiment, however, the method can be forming a patterned transparent metal layer first and then forming a patterned opaque metal layer, which is shown in FIG. 2CC.
After that, referring to
Referring to
Though a pixel structure comprised of a switch TFT, a driving TFT and a capacitor is disclosed hereinabove, however, the disclosed pixel structure does not limit the present invention. Any skilled in the art can make various modifications and variations to the structure of the present invention without departing from the scope or spirit of the invention. For example, the pixel layout of an AMOLED can be of a plurality of switch TFTs, a plurality of driving TFTs and a plurality of capacitors associated with a plurality of scan lines, which is still protected by a true scope and spirit of the invention being indicated by the following claims and their equivalents.
Claims
1. A method for fabricating a pixel of an active matrix organic light-emitting diode, comprising:
- forming a patterned transparent semiconductor layer on a substrate to form at least one first channel layer of a switch thin film transistor, at least one lower electrode of a storage capacitor and at least one second channel layer of a driving thin film transistor, wherein the area of the storage capacitor lower electrode is about 50%˜95% of the pixel area;
- forming a first dielectric layer over the substrate to serve as a first gate dielectric layer of the switch thin film transistor, a dielectric layer of the storage capacitor and a second gate dielectric layer of the driving thin film transistor;
- forming a first opaque metal gate of the switch thin film transistor, a second opaque metal gate of the driving thin film transistor and at least one scan line on the first dielectric layer;
- forming a first source and a first drain of the switch thin film transistor in the first channel layer and forming a second source and a second drain of the driving thin film transistor in the second channel layer;
- forming a patterned transparent metal layer on the first dielectric layer to serve as an upper electrode of the storage capacitor, wherein the area of the upper electrode is about 50%˜95% of the pixel area;
- forming a data line over the substrate electrically connected to the first source of the switch thin film transistor; and
- forming an organic light-emitting diode over the substrate electrically connected to the second drain of the driving thin film transistor.
2. The method for fabricating the pixel of the active matrix organic light-emitting diode of claim 1, wherein the material of the transparent semiconductor comprises ZnO, MgxZn1-xO, CdxZn1-xO or CdO, or ZnO, MgxZn1-xO, CdxZn1-xO or CdO that have been doped with (a) an element that is univalent or (b) Ni; or indium gallium zinc oxide (InGaZnO).
3. The method for fabricating the pixel of the active matrix organic light-emitting diode of claim 1, wherein the material of the transparent metal comprises indium tin oxide or indium zinc oxide.
4. The method for fabricating the pixel of the active matrix organic light-emitting diode of claim 1, wherein the step for forming the patterned transparent metal layer on the first dielectric layer includes forming the upper electrode of the storage capacitor, a first transparent metal gate of the switch thin film transistor and a second transparent metal gate of the driving thin film transistor.
5. The method for fabricating the pixel of the active matrix organic light-emitting diode of claim 4, wherein the step for forming the patterned transparent metal layer on the first dielectric layer is performed prior to the step for forming the first opaque metal gate of the switch thin film transistor, the second opaque metal gate of the driving thin film transistor and the scan line on the first dielectric layer.
6. The method for fabricating the pixel of the active matrix organic light-emitting diode of claim 4, wherein the step for forming the patterned transparent metal layer on the first dielectric layer is performed after the step for forming the first opaque metal gate of the switch thin film transistor, the second opaque metal gate of the driving thin film transistor and the scan line on the first dielectric layer.
7. The method for fabricating the pixel of the active matrix organic light-emitting diode of claim 1, wherein the organic light-emitting diode includes a white organic light-emitting layer and the step of the method further comprises forming a color filter on the substrate prior to forming the data line and the organic light-emitting diode but after forming the upper electrode of the storage capacitor.
8. The method for fabricating the pixel of the active matrix organic light-emitting diode of claim 7, further comprising a step for forming another color filter to cover the organic light-emitting diode after the step of forming the organic light-emitting diode.
Type: Grant
Filed: Oct 20, 2008
Date of Patent: Aug 18, 2009
Patent Publication Number: 20090068773
Assignee: Industrial Technology Research Institute (Hsinchu)
Inventors: Chih-Ming Lai (Changhua County), Yung-Hui Yeh (Hsinchu), Yi-Hsun Huang (Tainan County)
Primary Examiner: Theresa T Doan
Attorney: Jianq Chyun IP Office
Application Number: 12/254,820
International Classification: H01L 21/00 (20060101); H01L 21/84 (20060101);