Data processor having disabled cores

- Pact XPP Technologies AG

A data processor having a plurality of data processing cores configured to disable cores found defective by a self-test.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 10/757,900, filed on Jan. 14, 2004 (now U.S. Pat. No. 7,584,390); which is a continuation of U.S. patent application Ser. No. 09/598,926, filed on Jun. 21, 2000 (now U.S. Pat. No. 6,697,979); which is a US national stage of International Application Serial No. PCT/DE98/03682, filed on Dec. 15, 1998; which claims priority to German Patent Application No. 197 57 200.6, filed on Dec. 22, 1997, the entire contents of each of which are expressly incorporated herein by reference.

1. BACKGROUND OF THE INVENTION

1.1. Related Art

1.1.1. Multidimensional Arrays of Arithmetic and Logic Units

German Patent 196 51 075.9-53 describes processors, having a plurality of 2-dimensional or multidimensional arithmetic and logic units/cells. The computing power of such processors increases with the number of arithmetic arid logic units present. Therefore, an attempt is made to integrate as many arithmetic and logic units as possible on one chip, which increases the area required. With an increase in area, there is also a higher probability of a chip having a manufacturing defect making it useless. All arithmetic and logic units arranged in matrix form have this problem, e.g., including other known types such as DPGAs, Kress arrays, systolic processors and RAW machines; likewise, some digital signal processors (DSPs) having more than one arithmetic and logic unit.

At the same time, all the aforementioned types require a great deal of testing, i.e., to detect faults, an especially large number of test cases must be generated and tested with respect to the functioning of the cells and the networking. Traditional known methods such as BIST, boundary scan, etc. are difficult to integrate because of the large number of test vectors and they are also too time consuming and take up too much space.

1.1.2. Standard Processors

Standard processors such as the known x86 series, MIPS or ALPHA have a plurality of arithmetic and logic units which are driven at the same time by a VLIW command or with a time offset. In the future, the number of integrated units (integer units) and floating point units will continue to increase. Each unit must be tested adequately and must be largely free of defects.

1.2. Problems

1.2.1. Multidimensional Arrays of Arithmetic and Logic Units

Due to the increasing probability of defects with ‘large chips, either only a very small number of cells can be integrated or production costs will increase greatly due to the resulting rejects. Very large chips will reach a maximum area-beyond which a functional chip can no longer be produced. Due to the time consumed in testing according to traditional methods, there is a great increase in testing costs. Integrated BIST functions (built-in self-test) take up a great deal of area due to the high extra complexity, driving costs even higher and reducing manufacturing feasibility. In addition, this greatly increases the probability of a defect lying not within the actual function units but instead within the test structures.

1.2.2. Standard Processors

Due to the increasing number of arithmetic and logic units, there is also an increase in the probability of defects. This means more rejects, causing manufacturing costs to increase. With an increase in area and a related increase in the number of transistors used, there is also an increase in probability of failure during use.

With regard to testing complexity and implementation of BIST, the discussion above regarding “multidimensional arrays of arithmetic and logic units” also applies here.

1.3. Improvement Through the Present Invention; Object

According to the present invention, it is possible to replace defective cells by functional cells by functional cells and thus reduce rejects. A cell can be replaced either by the test systems at the time of manufacture of the chips or even by the user in the completely assembled system. Test vectors can be generated according to the BIST principle within the chip, or outside the unit according to a new method to save on space and costs. In addition, a possibility of chips automatically repairing defects without requiring any additional external tool is described. All the tests and repair can be performed during operation of the chips.

2. DESCRIPTION OF THE PRESENT INVENTION 2.1. Detailed Description of the Present Invention

2.1.1. Replacing Defective Cells

An additional PAE not used in normal operation (referred to below as PAER) is assigned to a group of cells which are referred to below as PAEs according to German Patent 196 51 075.9-53. The cells may be arithmetic and logic units of any type, configurable (programmable) logic cells or other cores having any desired function. Grouping of the PAEs in rows or columns is preferred in the grouping of PAEs and allocation of the PAER, because this simplifies the networking. With respect to future chip technologies, reference is made to a possible grouping of the PAEs within a 3rd dimension. Multiplexers are connected upstream from the inputs of the PAEs in such a way that the input of the first PAE in the row/column can also be switched to the input of the second PM in the row/column, and then the input of the second PAE can be switched to the input of the third PAE and so forth. The input of the last PAE is switched to the input of the PAER. This means that if there is a defect in the first PAE, its function is replaced by the second PAE, the function of the second is replaced by the third and so forth, until the function of the last PAE is replaced by the PAER. If a PAE within the column/row is defective, the PAEs upstream from it are switched normally and after the position of the defective PAE, all functions are shifted by one PAE. For example, if PAE 4 is defective, then PAEs 1 . . . 3 execute their respective functions, while the input multiplexer of PAE 5 is switched so that it receives the data of PAE 4, the input multiplexer of PAE 6 receives the data of PAE 5 and so forth until the input of the PAER receives the data of the last PAE.

To supply the results back to the network in the proper sequence, multiplexers are also provided at the outputs of the PAEs, with the output multiplexer of PAE 1 either switching PAE 1 to the bus (if it is not defective) or if there is a defect, switching the output of PAE 2 to the bus, PAE 3 is switched to the bus instead of PAE 2, until the last PAE, where the PAER is switched in its place. If the defective PAE is in the middle of the row/column, the outputs are shifted exactly as already described above for the inputs.

Especially with a configurable logic and configurable arithmetic and logic units, there are additional bus systems to transfer the configuration data and control the configuration. These bus systems are also connected by multiplexers in the same way as the buses mentioned in this section. The same thing is also true of bus systems over which commands are written to the respective arithmetic and logic units with a matrix arrangement of arithmetic and logic units (e.g., systolic processors, SIMD, etc.). Basically any bus or any signal can be sent over multiplexers. Depending on the fault tolerance requirements, the clock signal, for example, can be sent over multiplexers to prevent a possible short circuit, or the clock signal may be sent directly to the cell because such a failure need not be compensated. The fault tolerance step can be defined in the structural details according to the requirements for each signal or each bus individually.

2.1.2. Replacing Defective Buses

The concept of correcting faults within gate structures as presented here can also be applied accordingly to bus systems where an additional bus (BUS R) is assigned to a number of buses (BUS 1 . . . BUS n). If one of the buses is defective (BUS d), its function is assumed by one of its neighboring buses (BUS (d+1)). The function of the neighboring bus (BUS (d+1)) is assumed by its neighboring bus; (BUS (d+2)), etc., with the direction of the bus assuming the function always remaining the same until the function of BUS n is assumed by BUS R.

When multiplexer structures are used with bus systems, the usual multiplexers, decoders and gates, tristate gates or bidirectional multiplexers are used according to the prevailing connection structure and the direction of the data.

2.1.3. Decoder

It is obvious that two groups of successive multiplexers must always assume the same state, i.e., MUX 1=MUX 2=MUX 3= . . . =MUX n=state A, and MUX (n+1)=MUX (n+2)=MUX (n+3)= . . . =MUX m=state B.

If no PAE is defective, then MUX 1=MUX 2= . . . =MUX m=state A.

If the first PAE is defective, then MUX 1=MUX 2= . . . MUX m=state B.

For example, if PAE 3 is defective, then MUX 1=MUX 2=state A, MUX 3=MUX 4= . . . =MUX m=state B, with PAER being assigned to PAE m in this example, i.e., PAER is directly next to PAE m.

The multiplexers are therefore controlled as follows, for example:

Defective PAE Multiplexer control none 0000 . . . 000 m 0000 . . . 001 m-1 0000 . . . 011 m-2 0000 . . . 111 4 0001 . . . 111 3 0011 . . . 111 2 0111 . . . 111 1 1111 . . . 111

If PAER is assigned to PAE 1, the m . . . 1 sequence is inverted (defective PAE 1 corresponds to 0000 . . . 001, or defective PAE m corresponds to 1111 . . . 111).

Therefore, it is sufficient to store the number of the defective PAE and send it to a decoder which controls the states of the multiplexer on the basis of the table given above.

2.1.4. Performing the Self-Test

Essentially any desired test strategies can be applied to this method, but the following method according to the present invention can be regarded as especially suitable.

The array of PAEs is loaded with one or more test algorithms which calculate one or more test vectors. At one edge of the array, the PAEs are wired as comparators so that the values calculated on the basis of the test vectors are compared to the setpoint results.

If the calculated result does not correspond to the setpoint results, there is a defect. The test data, i.e., the test algorithms, the test vectors and the setpoint results are present in an internal or external memory or are loaded by a higher level unit. In this test strategy, it is necessary for each test algorithm to be calculated at least twice, with the PAEs designed as comparators being on another edge (preferably the opposite edge) the second time to guarantee execution of the test algorithm on all PAEs. It is also conceivable for the comparators to be arranged in the interior of the PAE array, and with one test algorithm A and B each calculating one result A and B from left and right (top and bottom), where the results are sent to the comparators and must match. Depending on the type of test algorithm, the defective PAE may be tracked back on the basis of the defect or not. If the algorithm supports tracking of the defect, the corresponding multiplexer states of the row/column in which the defective PAE is located are changed and sent to the multiplexers. The test algorithm in which the test is failed is executed again to check on freedom from defects, which should now prevail. If the unit is still defective, a check must be performed to determine whether an additional or other PAEs are defective. Execution of the test algorithm and generation of the multiplexer states adapted to the defect are iterative processes. It is not usually sufficient to implement just one test algorithm, but instead multiple different test algorithms must be implemented, each being checked with multiple test vectors. Only in this way can a maximum fault detection rate be achieved.

At the same time, the bus crosslinking must be changed from one test algorithm to the next, so that the bus systems are also checked adequately.

The various embodiments of the test algorithms will not be discussed in further detail here because this is not relevant for the basic method according to the present invention.

2.1.5. Internal Control of the Self-Test

Units such as German Patent 196 51 075.9-53, DPGAs, Kress arrays, systolic processors and RAW machines all have in common an integrated memory which is assigned to one or more PAEs and determines the function of the arithmetic and logic unit(s).

According to the basic BIST principle, the memory is expanded by a region (TestMEM) containing the test algorithms and vectors. This memory can be fixed in the form of a ROM or it may be rewritable by (E)EPROM, flash ROM, NV-RAM or the like.

To perform a self-test, the system jumps to a memory location within the TestMEM and executes the test routine stored there (internal driven self-test=IDST). Except for the expansion of the memory (by the TestMEM) and an analyzer unit for the comparators described above (ErrorCHK), no other additional units typical of BIST are needed on the chip.

2.1.6. External Control of the Self-Test

The reduction in components on a memory expansion (TestMEM) and an analyzer unit of the comparators (ErrorCHK) permit an additional, even less expensive and space-saving variant. No internal TestMEM is implemented here, but instead the usual internal memory is loaded from the outside with the test algorithm and the test vectors (external driven self-test=EDST); this means that the BIST test data is shifted outward and regarded as a normal program. Then the test algorithm is executed. As an alternative, the test algorithm may also be loaded successively from an external memory during the execution and decoded. Only the ErrorCHK unit must still be integrated on the chip. There are several possibilities for loading the test algorithm and the test vectors from the outside into the chip-internal memory (memories). In principle, the process can take place through a functionally higher level CPU or computer unit (HOST), with the latter loading the test data (test algorithm and test vectors) onto the chip (download) or the chip loading the test data automatically from an external (dual-ported) RAM or read-only memory such as ROM, (E)EPROM, flash-ROM, NV-ROM or the like.

2.1.7. Checking the Function During Operation

BIST methods according to the related art usually perform the self-test only during the chip RESET phase, i.e., shortly after applying a voltage (when turned on). In contrast with that, it is possible or practical to perform the methods described here on the chips while the programs are running. For example, a complete test of the chip can be performed during the RESET phase and part of the available test data can be loaded during execution of the application program or during IDLE cycles, i.e., periods of time when no program is running on the chips or the chip is in a waiting mode. This is readily possible by the fact that one of the test algorithms is activated in the internal memory during IDLE cycles or is loaded into the unit from an external memory or host. It is of course possible to select one or more of the plurality of available test algorithms and test data in part, where the number of selected test data can be defined on the basis of the length of the IDLE cycle. New test data can be loaded until the IDLE cycle is ended by the arrival of new data to be processed, by a new program to be executed or by another request.

Another possibility is the fixed integration of test strategies into the application programs to perform tests during processing of the application program. In both cases, the relevant data in the array is saved before calling up the test algorithms. One option is to save the data either in internal memory areas (cf. PACT04) or in memories connected externally. After executing the test algorithms, the data is read back before the normal program processing.

One alternative for increasing the execution speed is to implement in addition to each register (Reg-n, nεN) an additional register (TestReg-n, nεN) which is used only for the test algorithms. Before execution of the test algorithms, the TestReg-n are connected by multiplexers/demultiplexers (gates) and used for the test. The Reg-n remain unchanged. After execution of the test algorithms, the Reg-n are connected again.

If the test strategy provides for testing of only those cells whose data is no longer relevant subsequently, the data need not be saved and loaded.

2.1.8. Storing the Number of the Defective PAE

If a PAE (or a bus) is recognized as defective, its number, i.e., the state vector (defect identifier) of the assigned multiplexer must be stored first to control the multiplexers and also to be available immediately for a chip RESET. Therefore, the defect identifier may be stored

    • 1. internally in the chip in a programmable read-only memory ((E)EPROM, flash ROM, NV-RAM, etc.),
    • 2. externally in a programmable read-only memory ((E)EPROM, flash ROM, NV-RAM, etc.),
    • 3. externally in the HOST within the program to be executed, in its programmable read-only memory ((E)EPROM, flash ROM, NV-RAM, etc.) or in other storage media (magnetic, optical, etc.).

2.1.9. Automatic Generation of Multiplexer States

Usually after detection of a defect, the defective cell is tracked on the basis of the defective performance detected. This is possible with appropriate test algorithms if there is an additional algorithm for tracking the defect. If the test is controlled by a HOST, the tracking can be performed on the HOST. However, if there is no HOST, tracking often cannot be integrated into the defective chip or is too complicated. As an expedient, it is proposed that a loadable counter be integrated upstream from each decoder. In the normal case, the number of the defective PAE is loaded into the counter, after which the decoder controls the states of the multiplexers as described above. If it is not known which PAE is defective, beginning at PAE 0 or PAE m the counter can function in response to any potentially defective PAE by reducing the count by one PAE (counting from PAE m) or increasing the count by one (counting from PAE 0) after each unsuccessful test until the defective PAE is reached and the test takes place normally. The count then reached is stored as the state vector for controlling the multiplexers and represents the defective PAE. If a functional count is not found, there is either another defect (possibly in another row/column or a bus error) or more than one PAE is defective. One disadvantage when using counters is that all possibilities must be permutated until the defective PAE has been located.

Another possibility, although it requires a greater implementation expense, is therefore to use look-up tables which select the corresponding defective PAE on the basis of the test algorithm just executed and the resulting error state in ErrorCHK. To do so, however, the test algorithms and look-up tables must be coordinated. However, this coordination will not be discussed further here because it is highly chip-specific and does not depend on the basic principle.

2.1.10. Special Design for Standard Processors (Pentium, MIPS, ALPHA, Etc.)

Processors today and those in the future will contain a plurality of integer units and floating point units. Therefore, the method described here can be applied directly to these units by having an additional unit in each case which will be available for possible defects. The test of the processors can be performed at the manufacturer, during startup of the computer or also during the operating time. It is especially appropriate for a test to be performed during boot-up, i.e., starting up of the computer after a reset, which is performed with PCs of the BIOS type (BIOS basic input output system). The corresponding state vectors of the multiplexers can be stored either on the processor or in an external memory, e.g., the battery-buffered real-time clock (RTC) in a PC.

3. SUMMARY

The present invention makes it possible to replace defective units, which are designed as arithmetic and logic units in the present publication but in general can represent any desired unit of a chip, by a functional unit. At the same time, the present invention relates to a method with which self-tests can be performed more easily, less expensively and before or during the running of the application program. This also greatly increases fault tolerance during operation, which is especially important for failure-critical applications such as power plant operations, aviation and space travel or in the military.

4. BRIEF DESCRIPTION OF THE DIAGRAMS

The following diagrams illustrate embodiments of the method according to the present invention:

FIG. 1: basic circuit

FIG. 2: no PAE defective

FIG. 3: PAE1 defective

FIG. 4: PAEm defective

FIG. 5: PAE3 defective

FIG. 6: array of PAEs with PAERs

FIG. 7a: principle of a self-test, first part

FIG. 7b: principle of a self-test, second part

FIG. 8a: EDST integrated into an external ROM

FIG. 8b: EDST integrated into an external RAM area

FIG. 8c: EDST controlled directly by the HOST

FIG. 9: example of a chip-internal memory with BIST function integrated into an internal control unit according to German Patent 196 54 846.2

FIG. 10: example of a fault-tolerant standard processor

FIG. 11: flow chart of a self-test

FIG. 12a: shows the generation of new multiplexer states by way of a counter.

FIG. 12b: shows the generation of new multiplexer states where the look-up table is integrated.

FIG. 13: flow chart of a self-test during the IDLE cycle

FIG. 14: flow chart of a self-test integrated into the application program

FIG. 15: look-up table for error correction

FIG. 16: example of a fault-tolerant bus system

FIG. 17: saving registers Reg-n in a chip-internal memory before execution of the test algorithms

FIG. 18: saving registers Reg-n in an external memory before execution of the test algorithms

FIG. 19: disconnecting the Reg-n and connecting the TestReg-n before execution of the test algorithms

4.1. DETAILED DESCRIPTION OF THE DIAGRAMS

FIG. 1 shows the basic principle of a fault-tolerant configuration. All the PAEs (0101) are arranged in a row with the additional PAER (0102) being assigned to the last PAE. Upstream from the first PAE in the row, a gate (0103) is connected to block the data to the PAE if that PAE is defective. Likewise, a gate (0105) is connected upstream from the PAER (0102) to block the data to the PAER if it is not needed (or is defective). The two gates (0103 and 0105) are optional and are not absolutely necessary. The input buses (0111) composed of a plurality of individual signals are directed over multiplexers (0104) and the gates (0103 and 0105) to the PAEs. After a defect, data can be shifted by one PAE to the right in each case up to the PAER. Upstream from the output buses (0112), which are composed of a plurality of individual signals, there are also multiplexers (0106) which again shift the results by one position to the left in the event of a defect, so the defect is not detectable for the result bus system (quantity of all 0112). The individual control signals (0117) for the respective multiplexers and gates are combined to give one bus (0110) and are generated by a decoder (0107). The decoder receives the number of the defective PAE from unit 0108, which is designed either as a register or as a loadable counter. When using a look-up table to detect the defective PAE from the error generated by ErrorCHK, 0108 is implemented as a register into which the number of the defective PAE is loaded. If the defective PAE is sought by a permutation, 0108 represents a loadable counter which counts through all possible PAEs, starting from 0, until the defective PAE is located. Once the defective PAE has been identified, it is loaded directly into the loadable counter in the next RESET operation. The load signal LOAD (0115) is available for loading the counter or register (0108). To increment the counter, the COUNT signal (0116) is sent to the counter. The counter result is returned by way of signals 0114 for storage. The counter/register is driven and the chronological sequence is controlled by a state machine (not shown), an external HOST or a device according to German Patent 196 54 846.2.

FIG. 2 shows the states of the multiplexers (0104 and 0106) as well as the gates (0103 and 0105) where no PAE is defective and the PAER (0102) is not used.

FIG. 3 shows the states of the multiplexers (0104 and 0106) as well as the gates (0103 and 0105) where PAE 1 (0301) is defective and the PAER (0102) is used.

FIG. 4 shows the states of the multiplexers (0104 and 0106) as well as the gates (0103 and 0105) where PAE m (0401) is defective and the PAER (0102) is used.

FIG. 5 shows the states of the multiplexers (0104 and 0106) as well as the gates (0103 and 0105) where PAE 3 (0501) is defective and the PAER (0102) is used.

FIG. 6 shows an array of PAEs (0601), where one PAER (0602) is assigned to each PAE row, and each row has a separate control (0109, see FIG. 1). A plurality of controls can also be combined to a single higher-order control above the rows.

FIG. 7a shows a possible first test of an algorithm, with a plurality of PAEs being configured as processor elements (0701), each performing its operation by using a test vector. The PAEs are interconnected by bus systems (0708) of any desired design. One row of PAEs (0702) is configured as a comparator. The values calculated in the processor elements are compared to a predetermined value in the comparators. There is an error if the two values do not match. The results of the comparisons are sent over a bus system (0705) to a multiplexer (0703) which is connected so that it relays the results of the comparisons from (0702) to a unit (ErrorCHK 0706) of any desired design to detect an error and possibly analyze it. The error analysis (0706) sends its result over the bus (0707) to the HOST or to the controlling state machine (see FIG. 1).

FIG. 7b shows a second test which is performed over the same matrix of PAEs as FIG. 7b. The algorithm to be executed is the same; likewise the values to be calculated. However, the PAEs of row 0702 are designed as normal processor elements, but with the first row of the PAEs (0701) connected previously as arithmetic and logic units (FIG. 7a) now being designed as comparators (0711). The direction of data flow on the bus systems is rotated by 180°. The multiplexer (0703) is connected so that the results of the (mirrored) comparators (0711) are relayed to the error analysis (0706). The mirroring of comparators (0702-0711) achieves the result that the function of each PAE is actually tested. If this mirroring were not performed, only the function of comparison but not any desired function is tested in a PAE row (0702 or 0711).

Implementation of a method other than that on which FIGS. 7a and 7b are based may be appropriate under some circumstances. The matrix here is subdivided into three groups, an upper group, a middle group and a lower group. In the upper and lower groups, results are calculated, with the data flow of the upper group being downward and the data flow of the lower group being upward. The middle group is configured as a comparator and compares the calculated values of the upper group with those of the lower group. The upper and lower groups usually perform the same calculations. There is an error if the results obtained at the comparators are different. Again with this method, it is important for the PAEs which are connected as comparators to be tested adequately for freedom from defects in the next configuration.

FIGS. 8a, b, c show possible circuits for testing a chip (0801). The test data is stored externally here (EDST).

In FIG. 8a the test data is in an external read-only memory ((E)PROM, ROM, flash ROM, etc.) (0802). The data is in a RAM (0808) through which it is exchanged with the HOST (0805). A non-volatile read-write memory (NV-RAM, EEPROM, flash ROM, etc.) (0807) is used to store the defective PAEs, i.e., the state vectors of the multiplexers.

In FIG. 8b, the test data is loaded by a HOST (0805) into part of the RAM (0803) and executed from there. The data is in a RAM (0808) through which it is exchanged with the HOST (0805). It is also possible for the chip itself to load the data into the memory area (0803, 0808) (without the use of a HOST), e.g., directly from a bulk storage device. A non-volatile read-write memory (NV-RAM, EEPROM, flash ROM, etc.) (0807) is used to store the defective PAEs, i.e., the state vectors of the multiplexers.

The errors generated by the chip in FIGS. 8a/8b are brought out of the unit and are available externally (0804).

In FIG. 8c the test data is transmitted incrementally from a HOST (0805) to the chip (0801) using a suitable interface (0806). The chip indicates a possible error state (0804) to the HOST through the interface (0806). The data is in a RAM (0808) through which it is exchanged with the HOST (0805).

FIG. 9 illustrates an expansion of a chip-internal program memory or configuration memory according to German Patent 196 54 846.2 by the addition of a BIST function according to the method described here. The usual memory area (0901) according to the related art is expanded hereby a read-only memory area (0902), which is usually implemented as ROM, but implementation as (E)EPROM, flash ROM, NV-RAM, etc. in which the test data, i.e., the test algorithms and test vectors are stored would also be possible. At the end of the memory, another memory area (0903) is added. This is a few entries in size and includes the addresses of defective PAEs and/or defective buses which are loaded into the counters/registers (0108). This memory area is designed as a non-volatile read-write memory (flash ROM, EEPROM, NV-RAM, etc.). Thus, the data can be read out in a RESET and written over with the instantaneous data after execution of a test algorithm where a reparable defect is found. This data is supplied by the counters (0108, bus 0114) or by the look-up tables, depending on the implementation.

FIG. 10 shows the example of a standard processor with fault correction implemented. According to the related art, the processor is connected to its peripherals over the bus interface (1001). Two multiplexers (1002 and 1003) are assigned to the bus interface, with 1002 controlling two alternative code caches (1004, 1005) and 1003 controlling two alternative data caches (1006, 1007) so that only one of the caches is used at a time.

Thus, one cache is always available for compensating for defects and can be addressed over the multiplexers. The code cache leads over a multiplexer (1008) to the control unit (1009) of the processor, only one of which is used in this example. The integer units (1010, 1011, 1012) and the floating point units (1013, 1014, 1015) are controlled by the control unit. Two are always in operation at a time, with a third being available if one of the units fails. Two integer units are connected to the data bus (1018) over the bidirectional multiplexers (1016, 1017), and two floating point units are connected to the data bus (1018) over the bidirectional multiplexers (1019, 1020). The data bus is connected to the data cache over a bidirectional multiplexer (1021). Multiplexer 1003 is also designed to be bidirectional. The multiplexers are controlled according to the method described above. Multiplexers 1002, 1008, multiplexers 1003, 1021, multiplexers 1016, 1017 and multiplexers 1019, 1020 each form a dependent group.

Thus according to the method described here, the data cache and the code cache and one floating point unit and one integer unit can be replaced within the sample processor in the event of a fault.

FIG. 11 illustrates a self-test sequence. Variable n, nε(1, 2, . . . ) is the index of all algorithms, and defines the algorithm being used at that time. Each algorithm is in a first position (1101) which corresponds to FIG. 7a, and a second mirrored position (1102) which corresponds to FIG. 7b. Variable m, mε(1, 2, . . . ) is the index of the test vectors to be calculated and compared. Within each algorithm, the quantity of test vectors is tested completely and then the algorithm is changed either from 1101 to 1102 or from 1102 to a new algorithm (n=n+1). The test is terminated if n reaches the value after the last valid algorithm. If an error is found during calculation (1103, 1104) of the test vectors, error processing is performed as illustrated in detail in FIGS. 12a, 12b. After successful error processing, all the algorithms are tested again to ensure that no new errors have occurred due to the correction, but in principle testing could also be continued at the site of the instantaneously active algorithm.

Two methods are proposed for error processing. FIG. 12a shows the generation of new multiplexer states by way of a counter, where the variable v, vε(0, 1, . . . (number of PAEs)) is the number of the defective PAE. If no PAE is defective, then v=0. First v is increased so that the next PAE beginning with PAE 1, is marked as defective. Then the test that was failed is carried out again. If the test runs correctly, it is certain that PAE v is defective and v is written into a non-volatile read-write memory (e.g., 0903). If the test is failed again, v is increased until either the test runs correctly or v reaches the position after the last PAE and it is thus proven that the defective group of PAEs cannot be corrected, either because the error is located somewhere else (e.g., the bus system) or two or more PAEs are defective.

FIG. 12b shows a less time-consuming option, where the look-up table described above is integrated. It receives as an input value indices m and n as well as the number of the comparator that found the error. This number is supplied by ErrorCHK (0706) over bus 0707. The look-up table supplies number v back to the defective PAE. Then the test that was failed is performed again. If the test runs correctly, it is certain that PAE v is defective and v is written into a non-volatile read-write memory (e.g., 0903). If the test is failed again, it is assumed that the error is irreparable. With most test algorithms, it is possible to determine the column of the defective PAE but not its row. Thus, the column of defective PAE v can be determined easily, but it is not known in which of the plurality of rows the defective PAE is located. Therefore, in such cases, the error processing of FIGS. 12a, 12b must be performed over all the rows that were involved in calculation of the test algorithm until the error has been detected or all the rows have been tested and the error is uncorrectable.

FIG. 13 shows a possibility of performing a chip test during IDLE cycles, i.e., cycles during which no program is being executed because the system is waiting for an action (e.g., a keyboard input). Such cycles are usually executed through queues in the program code. It is readily possible when such a waiting condition prevails to call up a test routine which performs a test of the chip during the waiting time, although a realtime capability is no longer possible in reaction to the action awaited. Indices m and n known from FIG. 11 are also used in FIG. 13 with the same meanings, but the indices are stored in the data memory. All the relevant data in the array is saved before calling up the test routine and is restored again after execution of the test routine. When the test routine is called up, the indices are first loaded from the data memory. Then the corresponding algorithm with the corresponding test vectors is executed. If the result is faulty, error processing is performed according to FIGS. 12a, 12b. Otherwise, the indices are calculated again and written back into the data memory. Then a test is performed to determine whether an IDLE state still prevails, i.e., if waiting for an action. If an IDLE state still prevails, the test routine is started again, but this time a different calculation is performed—according to the new calculation of indices already performed. If there is no longer an IDLE state, the program execution is continued in the normal way.

FIG. 14 illustrates a possible modification of FIG. 13, where the test routine is called up directly by the application program (call TEST_CHIP (m, n)). The test routine is called up at certain suitable points in the algorithm. All the relevant data in the array is first saved and is restored again after execution of the test routine. Indices m, n are also transferred directly on call-up. Within the TEST_CHIP routine, algorithm n is executed with data m. The error test is performed according to FIGS. 11 and 13. At the end of TEST_CHIP, the indices are not recalculated, in contrast with FIGS. 11 and 13. The return from the TEST_CHIP routine leads to the position directly downstream from “call TEST_CHIP,” which is comparable to the BASIC standard GOSUB . . . RETURN.

FIG. 15 illustrates a possible control of a look-up table. The look-up table (1501) here is implemented as a ROM. Indices m, n, i.e., the identifier of the test algorithm performed instantaneously and the identifier of the current test data, as well as the result (0707) of the ErrorCHK unit (0706) are sent as addresses (1502) to the ROM. The resulting data (1503) indicates the number of the defective PAE. This number is transferred to the register (0108).

FIG. 16 shows a fault-tolerant bus system. An additional bus (1602) is assigned to a quantity of identical buses (1601). The bus system has terminals in all four directions. The terminals are connected to the buses over multiplexers (1603) so that if one bus fails, its function is assumed by the neighboring bus (below it in the horizontal or to the right in the vertical). All the multiplexers connected to a certain bus are addressed by the same control line, e.g., multiplexers 1603a which are connected to bus 1601a are controlled by control line 1604a. Control lines 1604 are controlled by a unit according to 0109 from FIG. 1. Further control and error processing are in principle the same as those described with regard to the preceding figures.

FIG. 17 shows the assignment of a chip-internal RAM or RAM area (1701) to a group of cells (1702). Before executing the test algorithms, the internal registers of the cells (1702) are stored in the RAM or RAM area (1701). After execution of the test algorithms, the data is written back into the internal registers of the cells. The data is read and written over multiplexers/gates (0103, 0104 and 0105). Thus, data originating from a defective cell is written to the cell connected as a replacement according to the position of the multiplexers. The sequence of the user algorithm is not impaired by the test method.

FIG. 18 illustrates the system described in conjunction with FIG. 17, but the data of the cells in the chip (1801) is written to an external memory (1802) or read out of the external memory.

FIG. 19 illustrates the use of explicit test registers TestReg-n. A register TestReg-n (1903) used for the test algorithms is assigned to each internal register Reg-n of a cell (1902). The demultiplexers (the gate) (1901) selects which register is to be written to; the multiplexer (1904) select which register is to be read from. The control of the (de)multiplexers (1901, 1904) is such that in normal operation, i.e., while the user algorithms are running, Reg-n (1902) is selected and TestReg-n (1903) is used in execution of the test algorithm. The circuit according to FIG. 19 is implemented for each relevant register within a cell. A disadvantage of this circuit is that the data of a defective cell is not available to the cell connected as a replacement. To overcome this disadvantage, it is proposed that an additional circuit based on the basic principle (0103, 0104 and 0105) according to the present invention be implemented by (de)multiplexers (1901, 1904). Thus, all the data can be made available to the replacement cell.

DEFINITION OF TERMS

User algorithm: user-specific program that runs on the chip.

Output multiplexer: circuit comparable to a relay which selects between multiple possible buses at the outputs of PAEs.

BIST: built-in self-test. Self-test implemented in an integrated circuit, i.e., the TestMEM and all test functions are included in the circuit,

Booting: loading a basic program and setting the basic functions after a reset.

Bus: bundle of multiple individual signals/individual lines which together fulfil a certain transfer function (data bus, address bus . . . ).

EDST: external driven self-test. Self-test implemented in an integrated circuit where the TestMEM is connected outside the integrated circuit and parts of the control can also be accommodated outside the circuit.

Input multiplexer: circuit comparable to a relay which selects between multiple possible buses at the inputs of PAEs.

ErrorCHK: circuit implemented in an integrated unit which recognizes and localizes a fault during BIST or EDST.

HOST: a higher-order module or computer over an integrated circuit.

IDLE: state in which a processor or similar circuit waits for an action and does not perform any processing.

Look-up table: memory which returns a fixedly defined data word of any desired width on the basis of an address; usually implemented as a ROM or ROM-like memory.

Neighbor bus: bus located directly next to another bus and having the same structure.

PAE: processing array element according to German Patent Application 196 51 075.9-53. Although a PAE in German Patent Application 196 51 075.9-53 is an arithmetic and logic unit, the term is used in more general terms in the present patent to represent any desired cell, e.g., arithmetic and logic units, state machines, memories, etc.

PAER: cell which is additionally implemented on the integrated circuit and can be used as a replacement for a defective cell of the same design.

RESET: returning an integrated circuit to a defined basic state. A reset occurs in general after applying a voltage (turning the circuit on).

Self-test: automatic test method implemented in an integrated unit.

Setpoint results: the results that must be supplied by the test algorithms to prove the correctness of the integrated circuit. There is an error if the setpoint results do not match the calculations.

Test algorithms: program that tests the integrated unit; it contains all the mathematical functions and circuits that are to be tested.

State machine: state machine for sequence control of complex operations; also called a sequencer.

Test algorithm: program for testing the chip or cells of a structure.

Test data: the quantity of all test algorithms, test vectors and setpoint results.

TestMEM: memory in which the test data is stored.

Test routine: individual program section within the test algorithms.

Test vectors: data with which the test algorithms are executed.

Gates: switches that relay or block data.

Cell: self-contained module within an integrated circuit, e.g., arithmetic and logic units, state machines, memories.

Claims

1. An Integrated Circuit Data Processor, comprising:

data processing cores being arranged in an array;
a plurality of the data processing cores comprising at least one Arithmetic and Logic Unit; and
wherein the integrated circuit is operative to:
perform at least a self-test on the plurality of data processing cores comprising at least one Arithmetic and Logic Unit; and
disable data processing cores found by the self-test to be defective.

2. The Integrated Circuit Data Processor according to claim 1, wherein the defective data processing cores are permanently disabled.

3. The Integrated Circuit Data Processor according to claim 1, wherein a defect pattern is stored in a non volatile memory within the integrated circuit, the defect pattern defining the data processing cores being disabled.

4. The Integrated Circuit Data Processor according to claim 1, wherein the defective data processing cores are detected during production test.

5. The Integrated Circuit Data Processor to claim 1, wherein the defective data processing cores are detected in the field.

6. The Integrated Circuit Data Processor according to claim 1, wherein the defective data processing cores are detected by a BIOS routine.

7. The Integrated Circuit Data Processor according to claim 1, wherein the defective data processing cores are detected at system start.

8. The Integrated Circuit Data Processor according to claim 1, wherein the defective data processing cores are managed at system startup.

9. The Integrated Circuit Data Processor according to claim 1, wherein the defective data processing cores are managed by a BIOS routine.

10. The Integrated Circuit Data Processor according to claim 1, wherein the defective data processing cores are at least one of detected and disabled at runtime.

11. The Integrated Circuit Data Processor according to any one of the claims 2 to 7 and 8 to 10, wherein the defective data processing cores are replaced by redundant data processing cores.

12. An Integrated Circuit Data Processor, comprising:

data processing cores arranged in an array;
a plurality of the data processing cores comprise at least one Arithmetic Logic Unit; and
at least some of the data processing cores operative to process different instructions at a single time; and
a non-volatile memory;
wherein, if at least one core is determined to be a defective core: the non-volatile memory is operative to store information representing the defective data processing cores; and at least some of the plurality of data processing cores are capable of being switched-off as function of the information representing the defective data processing cores.

13. The Integrated Circuit Data Processor according to claim 12 further comprising:

an interconnection system to which the plurality of data processing cores are connected.

14. An Integrated Circuit Data Processor, comprising:

data processing cores arranged in an array;
a plurality of the data processing cores comprise at least one Arithmetic Logic Unit; and
at least some of the data processing cores operative to process different instructions at a single time; and
a non-volatile memory;
wherein, if at least one core is determined to be a defective core:
the non-volatile memory is operative to store information representing the defective data processing cores; and
at least some of the plurality of data processing cores are switched-off as function of the information representing the defective data processing cores.

15. The Integrated Circuit Data Processor according to claim 14 further comprising:

an interconnection system to which the plurality of data processing cores are connected.

16. An Integrated Circuit Data Processor, comprising:

data processing cores arranged in an array;
a plurality of the data processing cores comprise at least one Arithmetic Logic Unit; and
at least some of the data processing cores operative to process different instructions at a single time;
an interconnection system to which the plurality of data processing cores are connected; and
a non-volatile memory,
wherein, if at least one core is determined to be a defective core:
the non-volatile memory is operative to store information representing the defective data processing cores; and
at least some of the plurality of data processing cores are capable of being removed from the interconnection system as function of the information representing the defective data processing cores.

17. An Integrated Circuit Data Processor, comprising:

data processing cores arranged in an array;
a plurality of the data processing cores comprise at least one Arithmetic Logic Unit; and
at least some of the data processing cores operative to process different instructions at a single time;
an interconnection system to which the plurality of data processing cores are connected; and
a non-volatile memory, wherein, if at least one data processing cores is determined to be a defective core:
the non-volatile memory is operative to store information representing the defective data processing cores;
at least some of the plurality of data processing cores are removed from the interconnection system as function of the information representing the defective data processing cores.

18. An Integrated Circuit Data Processor, comprising:

data processing cores arranged in an array;
a plurality of the data processing cores comprise at least one Arithmetic Logic Unit; and
at least some of the data processing cores being operative to process different instructions at a single time;
an interconnection system to which the plurality of data processing cores are connected; and
a non-volatile memory wherein, if at least one core is determined to be a defective core: the non-volatile memory is operative to store information representing the defective data processing cores; and at least some of the plurality of data processing cores are capable of being disconnected from the interconnection system as function of the information representing the defective data processing cores.

19. The Integrated Circuit Data Processor according to any one of the claims 13, 15 to 18, wherein the defective data processing cores are disconnected from the interconnection system.

20. An Integrated Circuit Data Processor, comprising:

data processing cores arranged in an array;
a plurality of the data processing cores comprise at least one Arithmetic Logic Unit; and
at least some of the data processing cores operative to process different instructions at a single time;
an interconnection system to which the plurality of data processing cores are connected; and
a non-volatile memory wherein, if at least one core is determined to be a defective core:
the non-volatile memory is operative to store information representing the defective data processing cores;
at least some of the plurality of data processing cores are disconnected from the interconnection system as function of the information representing the defective data processing cores.

21. The Integrated Circuit Data Processor according to any one of the claims 12, 14 and 16 to 20, wherein the defective data processing cores are replaced by at least one redundant core.

22. The Integrated Circuit Data Processor according to any one of the claims 13 and 15 to 20, wherein input signals of defective data processing cores are disconnected from the interconnection system.

23. The Integrated Circuit Data Processor according to any one of the claims 13 and 15 to 20, wherein output signals of defective data processing cores are disconnected from the interconnection system.

24. The Integrated Circuit Data Processor according to any one of the claims 13 and 15 to 20, wherein input and output signals of defective data processing cores are disconnected from the interconnection system.

25. The Integrated Circuit Data Processor according to any one of the claims 13, 15, 16, 18 and 20, wherein the defective data processing cores are removed from the interconnection system.

26. The Integrated Circuit Data Processor according to any one of the claims 12 and 16 to 20, wherein the defective data processing cores are switched-off.

27. An Integrated Circuit Data Processor comprising:

a bus system;
a plurality of data processing cores;
each of the plurality of data processing cores comprises at least one Arithmetic and Logic unit;
wherein the plurality of data processing cores are arranged in an arrangement having columns, the number of columns being larger than two, and the number of data processing cores in each column being larger than two; the bus system interconnects the plurality of data processing cores in the arrangement for transferring data between the data processing cores; and wherein, in view of a probability of the chip having defects already when being manufactured, more of the plurality of data processing cores are implemented than used, so that some of the data processing cores can be exempted from data transfer via the bus system in response to a chip test.

28. The Integrated Circuit Data Processor of claim 27, wherein at least some of the functionality of each of the data processing cores is configurable.

29. The Integrated Circuit Data Processor according to any one of claims 27 and 28, wherein the data processing cores receive individual instructions.

30. The Integrated Circuit Data Processor according to any one of claims 27 and 28, wherein the data processing cores perform operations according to individually received instructions.

31. The Integrated Circuit Data Processor of claim 27, wherein the data processing cores operate in according with a configuration.

32. The Integrated Circuit Data Processor according to any one of claims 27 and 31, wherein the data processing cores receive individual instructions.

33. The Integrated Circuit Data Processor according to any one of claims 27 and 31, wherein the data processing cores perform operations according to individually received instructions.

34. The Integrated Circuit Data Processor of claim 27, wherein the data processing cores operate in accordance with a configured function.

35. The Integrated Circuit Data Processor according to any one of claims 27 and 34, wherein the data processing cores receive individual instructions.

36. The Integrated Circuit Data Processor according to any one of claims 27 and 34, wherein the data processing cores perform operations according to individually received instructions.

37. The Integrated Circuit Data Processor of claim 27, wherein the function of the data processing core is configured.

38. The Integrated Circuit Data Processor according to any one of claims 27 and 37, wherein the data processing cores receive individual instructions.

39. The Integrated Circuit Data Processor according to any one of claims 27 and 37, wherein the data processing cores perform operations according to individually received instructions.

40. The Computer of claim 27, wherein at least some of the functionality of each of the data processing cores is configurable.

41. A Computer comprising:

an Integrated Circuit Data Processor; and
a storage media for storing at least one program for execution on the Integrated Circuit Data Processor; the Integrated Circuit Data Processor comprising a bus system; a plurality of data processing cores; each of the plurality of data processing cores comprises at least one Arithmetic and Logic unit;
wherein the plurality of data processing cores are arranged in an arrangement having columns, the number of columns being larger than two, and
the number of data processing cores in each column being larger than two;
the bus system interconnects the plurality of data processing cores in the arrangement for transferring data between the data processing cores; and
wherein, in view of a probability of the chip having defects already when being manufactured, more of the plurality of data processing cores are implemented than used, so that some of the data processing cores can be exempted from data transfer via the bus system in response to a chip test.

42. The Computer according to any one of claims 41 and 40, wherein the data processing cores perform operations according to individually received instructions.

43. The Computer according to any one of claims 41 and 40, wherein the data processing cores receive individual instructions.

44. The Computer of claim 41, wherein the data processing cores operate in according with a configuration.

45. The Computer according to any one of claims 41 and 44, wherein the data processing cores receive individual instructions.

46. The Computer according to any one of claims 41 and 44, wherein the data processing cores perform operations according to individually received instructions.

47. The Computer of claim 41, wherein the data processing cores operate in accordance with a configured function.

48. The Computer according to any one of claims 41 and 47, wherein the data processing cores receive individual instructions.

49. The Computer according to any one of claims 41 and 47, wherein the data processing cores perform operations according to individually received instructions.

50. The Computer of claim 41, wherein the function of the data processing core is configured.

51. The Computer according to any one of claims 41 and 50, wherein the data processing cores receive individual instructions.

52. The Computer according to any one of claims 41 and 50, wherein the data processing cores perform operations according to individually received instructions.

Referenced Cited
U.S. Patent Documents
3564506 February 1971 Bee et al.
3681578 August 1972 Stevens
3753008 August 1973 Guarnaschelli
3754211 August 1973 Rocher et al.
3855577 December 1974 Vandierendonck
3956589 May 11, 1976 Weathers et al.
3959638 May 25, 1976 Blum et al.
3970993 July 20, 1976 Finnila
4151611 April 1979 Sugawara et al.
4233667 November 11, 1980 Devine et al.
4414547 November 8, 1983 Knapp et al.
4428048 January 24, 1984 Berlin, Jr.
4498134 February 5, 1985 Hansen et al.
4498172 February 5, 1985 Bhavsar
4566102 January 21, 1986 Hefner
4571736 February 18, 1986 Agrawal et al.
4590583 May 20, 1986 Miller
4591979 May 27, 1986 Iwashita
4594682 June 10, 1986 Drimak
4623997 November 18, 1986 Tulpule
4646300 February 24, 1987 Goodman et al.
4663706 May 5, 1987 Allen et al.
4667190 May 19, 1987 Fant et al.
4682284 July 21, 1987 Schrofer
4686386 August 11, 1987 Tadao
4706216 November 10, 1987 Carter
4720778 January 19, 1988 Hall et al.
4720780 January 19, 1988 Dolecek
4733393 March 22, 1988 Morton
4739474 April 19, 1988 Holsztynski
4760525 July 26, 1988 Webb
4761755 August 2, 1988 Ardini et al.
4791603 December 13, 1988 Henry
4811214 March 7, 1989 Nosenchuck et al.
4852043 July 25, 1989 Guest
4852048 July 25, 1989 Morton
4860201 August 22, 1989 Stolfo et al.
4870302 September 26, 1989 Freeman
4873666 October 10, 1989 Lefebvre et al.
4882687 November 21, 1989 Gordon
4884231 November 28, 1989 Mor et al.
4891810 January 2, 1990 de Corlieu et al.
4901268 February 13, 1990 Judd
4907148 March 6, 1990 Morton
4910665 March 20, 1990 Mattheyses et al.
4918440 April 17, 1990 Furtek et al.
4939641 July 3, 1990 Schwartz et al.
4959781 September 25, 1990 Rubenstein et al.
4967340 October 30, 1990 Dawes
4972314 November 20, 1990 Getzinger et al.
4992933 February 12, 1991 Taylor
5010401 April 23, 1991 Murakami et al.
5014193 May 7, 1991 Garner et al.
5015884 May 14, 1991 Agrawal et al.
5021947 June 4, 1991 Campbell et al.
5023775 June 11, 1991 Poret
5031179 July 9, 1991 Yoshida et al.
5034914 July 23, 1991 Osterlund
5036473 July 30, 1991 Butts et al.
5036493 July 30, 1991 Nielsen
5041924 August 20, 1991 Blackborow et al.
5043978 August 27, 1991 Nagler et al.
5047924 September 10, 1991 Fujioka et al.
5055997 October 8, 1991 Sluijter et al.
5065308 November 12, 1991 Evans
5072178 December 10, 1991 Matsumoto
5076482 December 31, 1991 Kozyrski et al.
5081375 January 14, 1992 Pickett et al.
5099447 March 24, 1992 Myszewski
5103311 April 7, 1992 Sluijter et al.
5109503 April 28, 1992 Cruickshank et al.
5113498 May 12, 1992 Evan et al.
5115510 May 19, 1992 Okamoto et al.
5119290 June 2, 1992 Loo et al.
5123109 June 16, 1992 Hillis
5128559 July 7, 1992 Steele
5142469 August 25, 1992 Weisenborn
5144166 September 1, 1992 Camarota et al.
5157785 October 20, 1992 Jackson et al.
5193202 March 9, 1993 Jackson et al.
5203005 April 13, 1993 Horst
5204935 April 20, 1993 Mihara et al.
5208491 May 4, 1993 Ebeling et al.
5212716 May 18, 1993 Ferraiolo et al.
5212777 May 18, 1993 Gove et al.
5214652 May 25, 1993 Sutton
5218302 June 8, 1993 Loewe et al.
5226122 July 6, 1993 Thayer et al.
RE34363 August 31, 1993 Freeman
5233539 August 3, 1993 Agrawal et al.
5237686 August 17, 1993 Asano et al.
5243238 September 7, 1993 Kean
5245616 September 14, 1993 Olson
5247689 September 21, 1993 Ewert
RE34444 November 16, 1993 Kaplinsky
5274593 December 28, 1993 Proebsting
5276836 January 4, 1994 Fukumaru et al.
5287472 February 15, 1994 Horst
5287511 February 15, 1994 Robinson et al.
5287532 February 15, 1994 Hunt
5301284 April 5, 1994 Estes et al.
5301344 April 5, 1994 Kolchinsky
5303172 April 12, 1994 Magar et al.
5311079 May 10, 1994 Ditlow et al.
5327125 July 5, 1994 Iwase et al.
5336950 August 9, 1994 Popli et al.
5343406 August 30, 1994 Freeman et al.
5347639 September 13, 1994 Rechtschaffen et al.
5349193 September 20, 1994 Mott et al.
5353432 October 4, 1994 Richek et al.
5355508 October 11, 1994 Kan
5361373 November 1, 1994 Gilson
5365125 November 15, 1994 Goetting et al.
5379444 January 3, 1995 Mumme
5386154 January 31, 1995 Goetting et al.
5386518 January 31, 1995 Reagle et al.
5392437 February 21, 1995 Matter et al.
5408643 April 18, 1995 Katayose
5410723 April 25, 1995 Schmidt et al.
5412795 May 2, 1995 Larson
5418952 May 23, 1995 Morley et al.
5418953 May 23, 1995 Hunt et al.
5421019 May 30, 1995 Holsztynski et al.
5422823 June 6, 1995 Agrawal et al.
5425036 June 13, 1995 Liu et al.
5426378 June 20, 1995 Ong
5428526 June 27, 1995 Flood et al.
5430687 July 4, 1995 Hung et al.
5435000 July 18, 1995 Boothroyd et al.
5440245 August 8, 1995 Galbraith et al.
5440538 August 8, 1995 Olsen et al.
5442790 August 15, 1995 Nosenchuck
5444394 August 22, 1995 Watson et al.
5448186 September 5, 1995 Kawata
5450022 September 12, 1995 New
5455525 October 3, 1995 Ho et al.
5457644 October 10, 1995 McCollum
5465375 November 7, 1995 Thepaut et al.
5469003 November 21, 1995 Kean
5473266 December 5, 1995 Ahanin et al.
5473267 December 5, 1995 Stansfield
5475583 December 12, 1995 Bock et al.
5475803 December 12, 1995 Stearns et al.
5475856 December 12, 1995 Kogge
5477525 December 19, 1995 Okabe
5483620 January 9, 1996 Pechanek et al.
5485103 January 16, 1996 Pedersen et al.
5485104 January 16, 1996 Agrawal et al.
5489857 February 6, 1996 Agrawal et al.
5491353 February 13, 1996 Kean
5493239 February 20, 1996 Zlotnick
5493663 February 20, 1996 Parikh
5497498 March 5, 1996 Taylor
5502838 March 26, 1996 Kikinis
5504439 April 2, 1996 Tavana
5506998 April 9, 1996 Kato et al.
5510730 April 23, 1996 El Gamal et al.
5511173 April 23, 1996 Yamaura et al.
5513366 April 30, 1996 Agarwal et al.
5521837 May 28, 1996 Frankle et al.
5522083 May 28, 1996 Gove et al.
5525971 June 11, 1996 Flynn
5530873 June 25, 1996 Takano
5530946 June 25, 1996 Bouvier et al.
5532693 July 2, 1996 Winters et al.
5532957 July 2, 1996 Malhi
5535406 July 9, 1996 Kolchinsky
5537057 July 16, 1996 Leong et al.
5537580 July 16, 1996 Giomi et al.
5537601 July 16, 1996 Kimura et al.
5541530 July 30, 1996 Cliff et al.
5544336 August 6, 1996 Kato et al.
5548773 August 20, 1996 Kemeny et al.
5550782 August 27, 1996 Cliff et al.
5555434 September 10, 1996 Carlstedt
5559450 September 24, 1996 Ngai et al.
5561738 October 1, 1996 Kinerk et al.
5568624 October 22, 1996 Sites et al.
5570040 October 29, 1996 Lytle et al.
5572710 November 5, 1996 Asano et al.
5574927 November 12, 1996 Scantlin
5574930 November 12, 1996 Halverson, Jr. et al.
5581731 December 3, 1996 King et al.
5581734 December 3, 1996 DiBrino et al.
5583450 December 10, 1996 Trimberger et al.
5584013 December 10, 1996 Cheong et al.
5586044 December 17, 1996 Agrawal et al.
5587921 December 24, 1996 Agrawal et al.
5588152 December 1996 Dapp et al.
5590345 December 31, 1996 Barker et al.
5590348 December 31, 1996 Phillips et al.
5596742 January 21, 1997 Agarwal et al.
5600265 February 4, 1997 El Gamal Abbas et al.
5600597 February 4, 1997 Kean et al.
5600845 February 4, 1997 Gilson
5602999 February 11, 1997 Hyatt
5603005 February 11, 1997 Bauman et al.
5606698 February 25, 1997 Powell
5608342 March 4, 1997 Trimberger
5611049 March 11, 1997 Pitts
5617547 April 1, 1997 Feeney et al.
5617577 April 1, 1997 Barker et al.
5619720 April 8, 1997 Garde et al.
5625806 April 29, 1997 Kromer
5625836 April 29, 1997 Barker et al.
5627992 May 6, 1997 Baror
5634131 May 27, 1997 Matter et al.
5635851 June 3, 1997 Tavana
5642058 June 24, 1997 Trimberger et al.
5646544 July 8, 1997 Iadanza
5646545 July 8, 1997 Trimberger et al.
5649176 July 15, 1997 Selvidge et al.
5649179 July 15, 1997 Steenstra et al.
5652529 July 29, 1997 Gould et al.
5652894 July 29, 1997 Hu et al.
5655069 August 5, 1997 Ogawara et al.
5655124 August 5, 1997 Lin
5656950 August 12, 1997 Duong et al.
5657330 August 12, 1997 Matsumoto
5659785 August 19, 1997 Pechanek et al.
5659797 August 19, 1997 Zandveld et al.
5675262 October 7, 1997 Duong et al.
5675743 October 7, 1997 Mavity
5675757 October 7, 1997 Davidson et al.
5675777 October 7, 1997 Glickman
5677909 October 14, 1997 Heide
5680583 October 21, 1997 Kuijsten
5682491 October 28, 1997 Pechanek et al.
5682544 October 28, 1997 Pechanek et al.
5687325 November 11, 1997 Chang
5694602 December 2, 1997 Smith
5696791 December 9, 1997 Yeung
5696976 December 9, 1997 Nizar et al.
5701091 December 23, 1997 Kean
5705938 January 6, 1998 Kean
5706482 January 6, 1998 Matsushima et al.
5713037 January 27, 1998 Wilkinson et al.
5717890 February 10, 1998 Ichida et al.
5717943 February 10, 1998 Barker et al.
5727229 March 10, 1998 Kan et al.
5732209 March 24, 1998 Vigil et al.
5734869 March 31, 1998 Chen
5734921 March 31, 1998 Dapp et al.
5737516 April 7, 1998 Circello et al.
5737565 April 7, 1998 Mayfield
5742180 April 21, 1998 DeHon et al.
5745734 April 28, 1998 Craft et al.
5748872 May 5, 1998 Norman
5748979 May 5, 1998 Trimberger
5752035 May 12, 1998 Trimberger
5754459 May 19, 1998 Telikepalli
5754820 May 19, 1998 Yamagami
5754827 May 19, 1998 Barbier et al.
5754871 May 19, 1998 Wilkinson et al.
5754876 May 19, 1998 Tamaki et al.
5760602 June 2, 1998 Tan
5761484 June 2, 1998 Agarwal et al.
5768629 June 16, 1998 Wise et al.
5773994 June 30, 1998 Jones
5778237 July 7, 1998 Yamamoto et al.
5778439 July 7, 1998 Trimberger et al.
5781756 July 14, 1998 Hung
5784313 July 21, 1998 Trimberger et al.
5784630 July 21, 1998 Saito et al.
5784636 July 21, 1998 Rupp
5794059 August 11, 1998 Barker et al.
5794062 August 11, 1998 Baxter
5801547 September 1, 1998 Kean
5801715 September 1, 1998 Norman
5801958 September 1, 1998 Dangelo et al.
5802290 September 1, 1998 Casselman
5804986 September 8, 1998 Jones
5815004 September 29, 1998 Trimberger et al.
5815715 September 29, 1998 Kayhan
5815726 September 29, 1998 Cliff
5821774 October 13, 1998 Veytsman et al.
5828229 October 27, 1998 Cliff et al.
5828858 October 27, 1998 Athanas et al.
5831448 November 3, 1998 Kean
5832288 November 3, 1998 Wong
5838165 November 17, 1998 Chatter
5838988 November 17, 1998 Panwar et al.
5841973 November 24, 1998 Kessler et al.
5844422 December 1, 1998 Trimberger et al.
5844888 December 1, 1998 Markkula, Jr. et al.
5848238 December 8, 1998 Shimomura et al.
5854918 December 29, 1998 Baxter
5857097 January 5, 1999 Henzinger et al.
5857109 January 5, 1999 Taylor
5859544 January 12, 1999 Norman
5860119 January 12, 1999 Dockser
5862403 January 19, 1999 Kanai et al.
5867691 February 2, 1999 Shiraishi
5867723 February 2, 1999 Peters et al.
5870620 February 9, 1999 Kadosumi et al.
5884075 March 16, 1999 Hester et al.
5887162 March 23, 1999 Williams et al.
5887165 March 23, 1999 Martel et al.
5889533 March 30, 1999 Lee
5889982 March 30, 1999 Rodgers et al.
5892370 April 6, 1999 Eaton et al.
5892961 April 6, 1999 Trimberger
5892962 April 6, 1999 Cloutier
5894565 April 13, 1999 Furtek et al.
5895487 April 20, 1999 Boyd et al.
5898602 April 27, 1999 Rothman et al.
5901279 May 4, 1999 Davis, III
5913925 June 22, 1999 Kahle et al.
5915099 June 22, 1999 Takata et al.
5915123 June 22, 1999 Mirsky et al.
5924119 July 13, 1999 Sindhu et al.
5926638 July 20, 1999 Inoue
5933023 August 3, 1999 Young
5933642 August 3, 1999 Greenbaum et al.
5936424 August 10, 1999 Young et al.
5943242 August 24, 1999 Vorbach et al.
5956518 September 21, 1999 DeHon et al.
5960193 September 28, 1999 Guttag et al.
5960200 September 28, 1999 Eager et al.
5966143 October 12, 1999 Breternitz, Jr.
5966534 October 12, 1999 Cooke et al.
5970254 October 19, 1999 Cooke et al.
5978260 November 2, 1999 Trimberger et al.
5978583 November 2, 1999 Ekanadham et al.
5996048 November 30, 1999 Cherabuddi et al.
5996083 November 30, 1999 Gupta et al.
5999990 December 7, 1999 Sharrit et al.
6002268 December 14, 1999 Sasaki et al.
6003143 December 14, 1999 Kim et al.
6011407 January 4, 2000 New
6014509 January 11, 2000 Furtek et al.
6020758 February 1, 2000 Patel et al.
6020760 February 1, 2000 Sample et al.
6021490 February 1, 2000 Vorbach et al.
6023564 February 8, 2000 Trimberger
6023742 February 8, 2000 Ebeling et al.
6026478 February 15, 2000 Dowling
6026481 February 15, 2000 New et al.
6034538 March 7, 2000 Abramovici
6035371 March 7, 2000 Magloire
6038650 March 14, 2000 Vorbach et al.
6038656 March 14, 2000 Martin et al.
6044030 March 28, 2000 Zheng et al.
6045585 April 4, 2000 Blainey
6047115 April 4, 2000 Mohan et al.
6049222 April 11, 2000 Lawman
6049866 April 11, 2000 Earl
6052524 April 18, 2000 Pauna
6052773 April 18, 2000 DeHon et al.
6054873 April 25, 2000 Laramie
6055619 April 25, 2000 North et al.
6058266 May 2, 2000 Megiddo et al.
6058469 May 2, 2000 Baxter
6064819 May 16, 2000 Franssen et al.
6072348 June 6, 2000 New et al.
6075935 June 13, 2000 Ussery et al.
6076157 June 13, 2000 Borkenhagen et al.
6077315 June 20, 2000 Greenbaum et al.
6078736 June 20, 2000 Guccione
6081903 June 27, 2000 Vorbach et al.
6084429 July 4, 2000 Trimberger
6085317 July 4, 2000 Smith
6086628 July 11, 2000 Dave et al.
6088795 July 11, 2000 Vorbach et al.
6092174 July 18, 2000 Roussakov
RE36839 August 29, 2000 Simmons et al.
6096091 August 1, 2000 Hartmann
6105105 August 15, 2000 Trimberger et al.
6105106 August 15, 2000 Manning
6108760 August 22, 2000 Mirsky et al.
6118724 September 12, 2000 Higginbottom
6119181 September 12, 2000 Vorbach et al.
6122719 September 19, 2000 Mirsky et al.
6125072 September 26, 2000 Wu
6125408 September 26, 2000 McGee et al.
6127908 October 3, 2000 Bozler et al.
6128720 October 3, 2000 Pechanek et al.
6134166 October 17, 2000 Lytle et al.
6137307 October 24, 2000 Iwanczuk et al.
6145072 November 7, 2000 Shams et al.
6150837 November 21, 2000 Beal et al.
6150839 November 21, 2000 New et al.
6154048 November 28, 2000 Iwanczuk et al.
6154049 November 28, 2000 New
6154826 November 28, 2000 Wulf et al.
6157214 December 5, 2000 Marshall
6170051 January 2, 2001 Dowling
6172520 January 9, 2001 Lawman et al.
6173419 January 9, 2001 Barnett
6173434 January 9, 2001 Wirthlin et al.
6178494 January 23, 2001 Casselman
6185256 February 6, 2001 Saito et al.
6185731 February 6, 2001 Maeda et al.
6188240 February 13, 2001 Nakaya
6188650 February 13, 2001 Hamada et al.
6191614 February 20, 2001 Schultz et al.
6198304 March 6, 2001 Sasaki
6201406 March 13, 2001 Iwanczuk et al.
6202163 March 13, 2001 Gabzdyl et al.
6202182 March 13, 2001 Abramovici et al.
6204687 March 20, 2001 Schultz et al.
6211697 April 3, 2001 Lien et al.
6212544 April 3, 2001 Borkenhagen et al.
6212650 April 3, 2001 Guccione
6215326 April 10, 2001 Jefferson et al.
6216223 April 10, 2001 Revilla et al.
6219833 April 17, 2001 Solomon et al.
RE37195 May 29, 2001 Kean
6230307 May 8, 2001 Davis et al.
6240502 May 29, 2001 Panwar et al.
6243808 June 5, 2001 Wang
6247147 June 12, 2001 Beenstra
6249756 June 19, 2001 Bunton et al.
6252792 June 26, 2001 Marshall et al.
6256724 July 3, 2001 Hocevar et al.
6260114 July 10, 2001 Schug
6260179 July 10, 2001 Ohsawa et al.
6262908 July 17, 2001 Marshall et al.
6263430 July 17, 2001 Trimberger et al.
6266760 July 24, 2001 DeHon et al.
6279077 August 21, 2001 Nasserbakht et al.
6282627 August 28, 2001 Wong et al.
6282701 August 28, 2001 Wygodny et al.
6285624 September 4, 2001 Chen
6286134 September 4, 2001 Click, Jr. et al.
6288566 September 11, 2001 Hanrahan et al.
6289369 September 11, 2001 Sundaresan
6289440 September 11, 2001 Casselman
6298043 October 2, 2001 Mauger et al.
6298396 October 2, 2001 Loyer et al.
6298472 October 2, 2001 Phillips et al.
6301706 October 9, 2001 Maslennikov et al.
6311200 October 30, 2001 Hanrahan et al.
6311265 October 30, 2001 Beckerle et al.
6321298 November 20, 2001 Hubis
6321366 November 20, 2001 Tseng et al.
6321373 November 20, 2001 Ekanadham et al.
6338106 January 8, 2002 Vorbach et al.
6339424 January 15, 2002 Ishikawa et al.
6339840 January 15, 2002 Kothari et al.
6341318 January 22, 2002 Dakhil
6347346 February 12, 2002 Taylor
6349346 February 19, 2002 Hanrahan et al.
6353841 March 5, 2002 Marshall et al.
6362650 March 26, 2002 New et al.
6370596 April 9, 2002 Dakhil
6373779 April 16, 2002 Pang et al.
6374286 April 16, 2002 Gee
6378068 April 23, 2002 Foster et al.
6381624 April 30, 2002 Colon-Bonet et al.
6389379 May 14, 2002 Lin et al.
6389579 May 14, 2002 Phillips et al.
6392912 May 21, 2002 Hanrahan et al.
6400601 June 4, 2002 Sudo et al.
6404224 June 11, 2002 Azegami et al.
6405185 June 11, 2002 Pechanek et al.
6405299 June 11, 2002 Vorbach et al.
6421808 July 16, 2002 McGeer
6421809 July 16, 2002 Wuytack et al.
6421817 July 16, 2002 Mohan et al.
6425054 July 23, 2002 Nguyen
6425068 July 23, 2002 Vorbach
6426649 July 30, 2002 Fu et al.
6427156 July 30, 2002 Chapman et al.
6430309 August 6, 2002 Pressman et al.
6434642 August 13, 2002 Camilleri et al.
6434672 August 13, 2002 Gaither
6434695 August 13, 2002 Esfahani et al.
6434699 August 13, 2002 Jones et al.
6437441 August 20, 2002 Yamamoto
6438747 August 20, 2002 Schreiber et al.
6449283 September 10, 2002 Chao et al.
6456628 September 24, 2002 Greim et al.
6457116 September 24, 2002 Mirsky et al.
6476634 November 5, 2002 Bilski
6477643 November 5, 2002 Vorbach et al.
6480937 November 12, 2002 Vorbach et al.
6480954 November 12, 2002 Trimberger et al.
6483343 November 19, 2002 Faith et al.
6487709 November 26, 2002 Keller et al.
6490695 December 3, 2002 Zagorski et al.
6496740 December 17, 2002 Robertson et al.
6496902 December 17, 2002 Faanes et al.
6496971 December 17, 2002 Lesea et al.
6504398 January 7, 2003 Lien et al.
6507898 January 14, 2003 Gibson et al.
6507947 January 14, 2003 Schreiber et al.
6512804 January 28, 2003 Johnson et al.
6513077 January 28, 2003 Vorbach et al.
6516382 February 4, 2003 Manning
6518787 February 11, 2003 Allegrucci et al.
6519674 February 11, 2003 Lam et al.
6523107 February 18, 2003 Stansfield et al.
6525678 February 25, 2003 Veenstra et al.
6526520 February 25, 2003 Vorbach et al.
6538468 March 25, 2003 Moore
6538470 March 25, 2003 Langhammer et al.
6539415 March 25, 2003 Mercs
6539438 March 25, 2003 Ledzius et al.
6539477 March 25, 2003 Seawright
6542394 April 1, 2003 Marshall et al.
6542844 April 1, 2003 Hanna
6542998 April 1, 2003 Vorbach
6553395 April 22, 2003 Marshall et al.
6553479 April 22, 2003 Mirsky et al.
6567834 May 20, 2003 Marshall et al.
6571381 May 27, 2003 Vorbach et al.
6587939 July 1, 2003 Takano
6598128 July 22, 2003 Yoshioka et al.
6606704 August 12, 2003 Adiletta et al.
6624819 September 23, 2003 Lewis
6625631 September 23, 2003 Ruehle
6631487 October 7, 2003 Abramovici et al.
6633181 October 14, 2003 Rupp
6657457 December 2, 2003 Hanrahan et al.
6658564 December 2, 2003 Smith et al.
6665758 December 16, 2003 Frazier et al.
6668237 December 23, 2003 Guccione et al.
6681388 January 20, 2004 Sato et al.
6687788 February 3, 2004 Vorbach et al.
6694434 February 17, 2004 McGee et al.
6697979 February 24, 2004 Vorbach et al.
6704816 March 9, 2004 Burke
6708223 March 16, 2004 Wang et al.
6708325 March 16, 2004 Cooke et al.
6717436 April 6, 2004 Kress et al.
6721830 April 13, 2004 Vorbach et al.
6725334 April 20, 2004 Barroso et al.
6728871 April 27, 2004 Vorbach et al.
6745317 June 1, 2004 Mirsky et al.
6748440 June 8, 2004 Lisitsa et al.
6751722 June 15, 2004 Mirsky et al.
6754805 June 22, 2004 Juan
6757847 June 29, 2004 Farkash et al.
6757892 June 29, 2004 Gokhale et al.
6782445 August 24, 2004 Olgiati et al.
6785826 August 31, 2004 Durham et al.
6802026 October 5, 2004 Patterson et al.
6803787 October 12, 2004 Wicker, Jr.
6820188 November 16, 2004 Stansfield et al.
6829697 December 7, 2004 Davis et al.
6836842 December 28, 2004 Guccione et al.
6847370 January 25, 2005 Baldwin et al.
6859869 February 22, 2005 Vorbach
6868476 March 15, 2005 Rosenbluth
6871341 March 22, 2005 Shyr
6874108 March 29, 2005 Abramovici et al.
6886092 April 26, 2005 Douglass et al.
6901502 May 31, 2005 Yano et al.
6928523 August 9, 2005 Yamada
6957306 October 18, 2005 So et al.
6961924 November 1, 2005 Bates et al.
6975138 December 13, 2005 Pani et al.
6977649 December 20, 2005 Baldwin et al.
7000161 February 14, 2006 Allen et al.
7007096 February 28, 2006 Lisitsa et al.
7010667 March 7, 2006 Vorbach
7010687 March 7, 2006 Ichimura
7028107 April 11, 2006 Vorbach et al.
7036114 April 25, 2006 McWilliams et al.
7038952 May 2, 2006 Zack et al.
7043416 May 9, 2006 Lin
7144152 December 5, 2006 Rusu et al.
7155708 December 26, 2006 Hammes et al.
7164422 January 16, 2007 Wholey et al.
7210129 April 24, 2007 May et al.
7216204 May 8, 2007 Rosenbluth
7237087 June 26, 2007 Vorbach et al.
7249351 July 24, 2007 Songer et al.
7254649 August 7, 2007 Subramanian et al.
7266725 September 4, 2007 Vorbach et al.
7340596 March 4, 2008 Crosland et al.
7346644 March 18, 2008 Langhammer et al.
7350178 March 25, 2008 Crosland et al.
7382156 June 3, 2008 Pani et al.
7455450 November 25, 2008 Liu et al.
7595659 September 29, 2009 Vorbach et al.
7650448 January 19, 2010 Vorbach et al.
7657877 February 2, 2010 Vorbach et al.
7759968 July 20, 2010 Hussein et al.
7873811 January 18, 2011 Wolinski et al.
20010001860 May 24, 2001 Beiu
20010003834 June 14, 2001 Shimonishi
20010010074 July 26, 2001 Nishihara et al.
20010018733 August 30, 2001 Fujii et al.
20010032305 October 18, 2001 Barry
20020004916 January 10, 2002 Marchand et al.
20020010853 January 24, 2002 Trimberger et al.
20020013861 January 31, 2002 Adiletta et al.
20020038414 March 28, 2002 Taylor
20020045952 April 18, 2002 Blemel
20020051482 May 2, 2002 Lomp
20020073282 June 13, 2002 Chauvel et al.
20020083308 June 27, 2002 Pereira et al.
20020099759 July 25, 2002 Gootherts
20020103839 August 1, 2002 Ozawa
20020124238 September 5, 2002 Metzgen
20020138716 September 26, 2002 Master et al.
20020143505 October 3, 2002 Drusinsky
20020144229 October 3, 2002 Hanrahan
20020147932 October 10, 2002 Brock et al.
20020152060 October 17, 2002 Tseng
20020156962 October 24, 2002 Chopra et al.
20020162097 October 31, 2002 Meribout
20020165886 November 7, 2002 Lam
20030001615 January 2, 2003 Sueyoshi et al.
20030014743 January 16, 2003 Cooke et al.
20030046607 March 6, 2003 May et al.
20030052711 March 20, 2003 Taylor
20030055861 March 20, 2003 Lai et al.
20030056062 March 20, 2003 Prabhu
20030056085 March 20, 2003 Vorbach
20030056091 March 20, 2003 Greenberg
20030056202 March 20, 2003 May et al.
20030061542 March 27, 2003 Bates et al.
20030062922 April 3, 2003 Douglass et al.
20030070059 April 10, 2003 Dally et al.
20030086300 May 8, 2003 Noyes et al.
20030093662 May 15, 2003 Vorbach et al.
20030097513 May 22, 2003 Vorbach et al.
20030123579 July 3, 2003 Safavi et al.
20030135686 July 17, 2003 Vorbach et al.
20030154349 August 14, 2003 Berg et al.
20030192032 October 9, 2003 Andrade et al.
20030226056 December 4, 2003 Yip et al.
20040015899 January 22, 2004 May et al.
20040025005 February 5, 2004 Vorbach et al.
20040039880 February 26, 2004 Pentkovski et al.
20040078548 April 22, 2004 Claydon et al.
20040088689 May 6, 2004 Hammes
20040088691 May 6, 2004 Hammes et al.
20040168099 August 26, 2004 Vorbach et al.
20040199688 October 7, 2004 Vorbach et al.
20050066213 March 24, 2005 Vorbach et al.
20050091468 April 28, 2005 Morita et al.
20050144210 June 30, 2005 Simkins et al.
20050144212 June 30, 2005 Simkins et al.
20050144215 June 30, 2005 Simkins et al.
20060036988 February 16, 2006 Allen et al.
20060230094 October 12, 2006 Simkins et al.
20060230096 October 12, 2006 Thendean et al.
20070050603 March 1, 2007 Vorbach et al.
20070083730 April 12, 2007 Vorbach et al.
20080034184 February 7, 2008 Norman
20080313383 December 18, 2008 Morita et al.
20090085603 April 2, 2009 Paul et al.
20090193384 July 30, 2009 Sima et al.
20100306602 December 2, 2010 Kamiya et al.
Foreign Patent Documents
42 21 278 January 1994 DE
44 16 881 November 1994 DE
38 55 673 November 1996 DE
196 51 075 June 1998 DE
196 54 593 July 1998 DE
196 54 595 July 1998 DE
196 54 846 July 1998 DE
197 04 044 August 1998 DE
197 04 728 August 1998 DE
197 04 742 September 1998 DE
198 22 776 March 1999 DE
198 07 872 August 1999 DE
198 61 088 February 2000 DE
199 26 538 December 2000 DE
100 28 397 December 2001 DE
100 36 627 February 2002 DE
101 29 237 April 2002 DE
102 04 044 August 2003 DE
0 208 457 January 1987 EP
0 221 360 May 1987 EP
0 398 552 November 1990 EP
0 428 327 May 1991 EP
0 463 721 January 1992 EP
0 477 809 April 1992 EP
0 485 690 May 1992 EP
0 497 029 August 1992 EP
0 539 595 May 1993 EP
0 638 867 August 1994 EP
0 628 917 December 1994 EP
0 678 985 October 1995 EP
0 686 915 December 1995 EP
0 696 001 February 1996 EP
0 707 269 April 1996 EP
0 726 532 August 1996 EP
0 735 685 October 1996 EP
0 746 106 December 1996 EP
0 748 051 December 1996 EP
0 926 594 June 1999 EP
1 061 439 December 2000 EP
1 115 204 July 2001 EP
1 146 432 October 2001 EP
1 669 885 June 2006 EP
2 752 466 February 1998 FR
2 304 438 March 1997 GB
58-058672 April 1983 JP
10-44571 February 1989 JP
1-229378 September 1989 JP
2-130023 May 1990 JP
2-226423 September 1990 JP
5-265705 October 1993 JP
5-276007 October 1993 JP
5-509184 December 1993 JP
6-266605 September 1994 JP
7-086921 March 1995 JP
7-154242 June 1995 JP
8-148989 June 1995 JP
7-182160 July 1995 JP
7-182167 July 1995 JP
8-044581 February 1996 JP
8-069447 March 1996 JP
8-101761 April 1996 JP
8-102492 April 1996 JP
8-106443 April 1996 JP
8-221164 August 1996 JP
8-250685 September 1996 JP
9-027745 January 1997 JP
9-237284 September 1997 JP
9-294069 November 1997 JP
11-046187 February 1999 JP
11-184718 July 1999 JP
11-307725 November 1999 JP
2000-076066 March 2000 JP
2000-181566 June 2000 JP
2000-201066 July 2000 JP
2000-311156 November 2000 JP
2001-500682 January 2001 JP
2001-167066 June 2001 JP
2001-510650 July 2001 JP
2001-236221 August 2001 JP
2002-0033457 January 2002 JP
3-961028 August 2007 JP
WO90/04835 May 1990 WO
WO90/11648 October 1990 WO
WO92/01987 February 1992 WO
WO93/11503 June 1993 WO
WO94/06077 March 1994 WO
WO94/08399 April 1994 WO
WO95/26001 September 1995 WO
WO98/10517 March 1998 WO
WO98/26356 June 1998 WO
WO98/28697 July 1998 WO
WO98/29952 July 1998 WO
WO98/31102 July 1998 WO
WO98/35294 August 1998 WO
WO98/35299 August 1998 WO
WO99/00731 January 1999 WO
WO99/00739 January 1999 WO
WO99/12111 March 1999 WO
WO99/32975 July 1999 WO
WO99/40522 August 1999 WO
WO99/44120 September 1999 WO
WO99/44147 September 1999 WO
WO00/17771 March 2000 WO
WO00/38087 June 2000 WO
WO00/45282 August 2000 WO
WO00/49496 August 2000 WO
WO00/77652 December 2000 WO
WO01/55917 August 2001 WO
WO02/13000 February 2002 WO
WO02/29600 April 2002 WO
WO02/50665 June 2002 WO
WO02/071196 September 2002 WO
WO02/071248 September 2002 WO
WO02/071249 September 2002 WO
WO02/103532 December 2002 WO
WO03/017095 February 2003 WO
WO03/023616 March 2003 WO
WO03/025781 March 2003 WO
WO03/036507 May 2003 WO
WO03/091875 November 2003 WO
WO2004/053718 June 2004 WO
WO2004/114128 December 2004 WO
WO2005/045692 May 2005 WO
WO 2007/030395 March 2007 WO
Other references
  • Mukherjee, N.; Kassab, H.; Rajski, J.; Tyszer, J., “Arithmetic built-in self test for high-level synthesis,” VLSI Test Symposium, 1995. Proceedings., 13th IEEE , vol., No., pp. 132,139, Apr. 30-May 3, 1995.
  • Li, Zhiyuan, et al., “Configuration prefetching techniques for partial reconfigurable coprocessor with relocation and defragmentation,” International Symposium on Field Programmable Gate Arrays, Feb. 1, 2002, pp. 187-195.
  • ARM Limited, “ARM Architecture Reference Manual,” Dec. 6, 2000, pp. A10-6-A10-7.
  • Agarwal, A., et al., “APRIL: A Processor Architecture for Multiprocessing,” Laboratory for Computer Science, MIT, Cambridge, MA, IEEE 1990, pp. 104-114.
  • Almasi and Gottlieb, Highly Parallel Computing, The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1989, 3 pages (Fig. 4.1).
  • Advanced RISC Machines Ltd (ARM), “AMBA—Advanced Microcontroller Bus Architecture Specification,” (Document No. ARM IHI 0001C), Sep. 1995, 72 pages.
  • Alfke, Peter; New, Bernie, Xilinx Application Note, “Additional XC3000 Data,” XAPP 024.000, 1994, pp. 8-11 through 8-20.
  • Alfke, Peter; New, Bernie, Xilinx Application Note, “Adders, Subtracters and Accumulators in XC3000,” XAPP 022.000, 1994, pp. 8-98 through 8-104.
  • Alfke, Peter, Xilinx Application Note, “Megabit FIFO in Two Chips: One LCA Device and One DRAM,” XAPP 030.000, 1994, pp. 8-148 through 8-150.
  • Alfke, Peter, Xilinx Application Note, “Dynamic Reconfiguration,” XAPP 093, Nov. 10, 1997, pp. 13-45 through 13-46.
  • Alfke, Peter; New, Bernie, Xilinx Application Note, “Implementing State Machines in LCA Devices,” XAPP 027.001, 1994, pp. 8-169 through 8-172.
  • Algotronix, Ltd., CAL64K Preliminary Data Sheet, Apr. 1989, pp. 1-24.
  • Algotronix, Ltd., CAL4096 Datasheet, 1992, pp. 1-53.
  • Algotronix, Ltd., CHS2x4 User Manual, “CHA2x4 Custom Computer,” 1991, pp. 1-38.
  • Allaire, Bill; Fischer, Bud, Xilinx Application Note, “Block Adaptive Filter,” XAPP 055, Aug. 15, 1996 (Version 1.0), pp. 1-10.
  • Altera Application Note (73), “Implementing FIR Filters in FLEX Devices,” Altera Corporation, Feb. 1998, ver. 1.01, pp. 1-23.
  • Athanas, P. (Thesis), “An adaptive machine architecture and compiler for dynamic processor reconfiguration,” Brown University 1992, pp. 1-157.
  • Berkeley Design Technology, Inc., Buyer's Guide to DSP Processors, 1995, Fremont, CA., pp. 673-698.
  • Bittner, R. et al., “Colt: An Experiment in Wormhole Run-Time Reconfiguration,” Bradley Department of Electrical and Computer Engineering, Blacksburg, VA, SPIE—International Society for Optical Engineering, vol. 2914/187, Nov. 1996, Boston, MA, pp. 187-194.
  • Camilleri, Nick; Lockhard, Chris, Xilinx Application Note, “Improving XC4000 Design Performance,” XAPP 043.000, 1994, pp. 8-21 through 8-35.
  • Cartier, Lois, Xilinx Application Note, “System Design with New XC4000EX I/O Features,” Feb. 21, 1996, pp. 1-8.
  • Chen, D., (Thesis) “Programmable arithmetic devices for high speed digital signal processing,” U. California Berkeley 1992, pp. 1-175.
  • Churcher, S., et al., “The XC6200 FastMap™ Processor Interface,” Xilinx, Inc., Aug. 1995, pp. 1-8.
  • Cowie, Beth, Xilinx Application Note, “High Performance, Low Area, Interpolator Design for the XC6200,” XAPP 081, May 7, 1997 (Version 1.0), pp. 1-10.
  • Duncan, Ann, Xilinx Application Note, “A32×16 Reconfigurable Correlator for the XC6200,” XAPP 084, Jul. 25, 1997 (Version 1.0), pp. 1-14.
  • Ebeling, C., et al., “RaPiD—Reconfigurable Pipelined Datapath,” Dept. of Computer Science and Engineering, U. Washington, 1996, pp. 126-135.
  • Epstein, D., “IBM Extends DSP Performance with Mfast—Powerful Chip Uses Mesh Architecture to Accelerate Graphics, Video,” 1995 MicroDesign Resources, vol. 9, No. 16, Dec. 4, 1995, pp. 231-236.
  • Fawcett, B., “New SRAM-Based FPGA Architectures Address New Applications,” Xilinx, Inc. San Jose, CA, Nov. 1995, pp. 231-236.
  • Goslin, G; Newgard, B, Xilinx Application Note, “16-Tap, 8-Bit FIR Filter Applications Guide,” Nov. 21, 1994, pp. 1-5.
  • Iwanczuk, Roman, Xilinx Application Note, “Using the XC4000 RAM Capability,” XAPP 031.000, 1994, pp. 8-127 through 8-138.
  • Knapp, Steven, “Using Programmable Logic to Accelerate DSP Functions,” Xilinx, Inc., 1995, pp. 1-8.
  • New, Bernie, Xilinx Application Note, “Accelerating Loadable Counters in SC4000,” XAPP 023.001, 1994, pp. 8-82 through 8-85.
  • New, Bernie, Xilinx Application Note, “Boundary Scan Emulator for XC3000,” XAPP 007.001, 1994, pp. 8-53 through 8-59.
  • New, Bernie, Xilinx Application Note, “Ultra-Fast Synchronous Counters,” XAPP 014.001, 1994, pp. 8-78 through 8-81.
  • New, Bernie, Xilinx Application Note, “Using the Dedicated Carry Logic in XC4000,” XAPP 013.001, 1994, pp. 8-105 through 8-115.
  • New, Bernie, Xilinx Application Note, “Complex Digital Waveform Generator,” XAPP 008.002, 1994, pp. 8-163 through 8-164.
  • New, Bernie, Xilinx Application Note, “Bus-Structured Serial Input-Output Device,” XAPP 010.001, 1994, pp. 8-181 through 8-182.
  • Ridgeway, David, Xilinx Application Note, “Designing Complex 2-Dimensional Convolution Filters,” XAPP 037.000, 1994, pp. 8-175 through 8-177.
  • Rowson, J., et al., “Second-generation compilers optimize semicustom circuits,” Electronic Design, Feb. 19, 1987, pp. 92-96.
  • Schewel, J., “A Hardware/Software Co-Design System using Configurable Computing Technology,” Virtual Computer Corporation, Reseda, CA, IEEE 1998, pp. 620-625.
  • Segers, Dennis, Xilinx Memorandum, “MIKE—Product Description and MRD,” Jun. 8, 1994, pp. 1-29.
  • Texas Instruments, “TMS320C8x System-Level Synopsis,” Sep. 1995, 75 pages.
  • Texas Instruments, “TMS320C80 Digital Signal Processor,” Data Sheet, Digital Signal Processing Solutions 1997, 171 pages.
  • Texas Instruments, “TMS320C80 (MVP) Parallel Processor,” User's Guide, Digital Signal Processing Products 1995, 73 pages.
  • Trainor, D.W., et al., “Implementation of the 2D DCT Using A Xilinx XC6264 FPGA,” 1997, IEEE Workshop of Signal Processing Systems SiPS 97, pp. 541-550.
  • Trimberger, S, (Ed.) et al., “Field-Programmable Gate Array Technology,” 1994, Kluwer Academic Press, pp. 1-258 (and the Title Page, Table of Contents, and Preface) [274 pages total].
  • Trimberger, S., “A Reprogrammable Gate Array and Applications,” IEEE 1993, Proceedings of the IEEE, vol. 81, No. 7, Jul. 1993, pp. 1030-1041.
  • Trimberger, S., et al., “A Time-Multiplexed FPGA,” Xilinx, Inc., 1997 IEEE, pp. 22-28.
  • Ujvari, Dan, Xilinx Application Note, “Digital Mixer in an XC7272,” XAPP 035.002, 1994, p. 1.
  • Veendrick, H., et al., “A 1.5 GIPS video signal processor (VSP),” Philips Research Laboratories, The Netherlands, IEEE 1994 Custom Integrated Circuits Conference, pp. 95-98.
  • Wilkie, Bill, Xilinx Application Note, “Interfacing XC6200 to Microprocessors (TMS320C50 Example),” XAPP 064, Oct. 9, 1996 (Version 1.1), pp. 1-9.
  • Wilkie, Bill, Xilinx Application Note, “Interfacing XC6200 to Microprocessors (MC68020 Example),” XAPP 063, Oct. 9, 1996 (Version 1.1), pp. 1-8.
  • XCELL, Issue 18, Third Quarter 1995, “Introducing three new FPGA Families!”; “Introducing the XC6200 FPGA Architecture: The First FPGA Architecture Optimized for Coprocessing in Embedded System Applications,” 40 pages.
  • Xilinx Application Note, Advanced Product Specification, “XC6200 Field Programmable Gate Arrays,” Jun. 1, 1996 (Version 1.0), pp. 4-253-4-286.
  • Xilinx Application Note, A Fast Constant Coefficient Multiplier for the XC6200, XAPP 082, Aug. 24, 1997 (Version 1.0), pp. 1-5.
  • Xilinx Technical Data, “XC5200 Logic Cell Array Family,” Preliminary (v1.0), Apr. 1995, pp. 1-43.
  • Xilinx Data Book, “The Programmable Logic Data Book,” 1996, 909 pages.
  • Xilinx, Series 6000 User's Guide, Jun. 26, 1997, 223 pages.
  • Yeung, K., (Thesis) “A Data-Driven Multiprocessor Architecture for High Throughput Digital Signal Processing,” Electronics Research Laboratory, U. California Berkeley, Jul. 10, 1995, pp. 1-153.
  • Yeung, L., et al., “A 2.4GOPS Data-Driven Reconfigurable Multiprocessor IC for DSP,” Dept. of EECS, U. California Berkeley, 1995 IEEE International Solid State Circuits Conference, pp. 108-110.
  • ZILOG Preliminary Product Specification, “Z86C95 CMOS Z8 Digital Signal Processor,” 1992, pp. 1-82.
  • ZILOG Preliminary Product Specification, “Z89120 Z89920 (ROMless) 16-Bit Mixed Signal Processor,” 1992, pp. 1-82.
  • Defendants' Invalidity Contentions in PACT XPP Technologies, AG v. XILINX, Inc., et al., (E.D. Texas Dec. 28, 2007) (No. 2:07cv563)., including Exhibits A through K in separate PDF files.
  • U.S. Appl. No. 60/109,417, filed Nov. 18, 1998, Jefferson et al.
  • Abnous et al., “Ultra-Low-Power Domain-Specific Multimedia Processors,” U.C. Berkeley, 1996 IEEE, pp. 461-470.
  • Abnous, A., et al., “The Pleiades Architecture,” Chapter I of The Application of Programmable DSPs in Mobile Communications, A. Gatherer and A. Auslander, Ed., Wiley, 2002, pp. 1-33.
  • Ade, et al., “Minimum Memory Buffers in DSP Applications,” Electronics Letters, vol. 30, No. 6, Mar. 17, 1994, pp. 469-471.
  • Advanced RISC Machines, “Introduction to AMBA,” Oct. 1996, Section 1, pp. 1-7.
  • ARM, “The Architecture for the Digital World,” http://www.arm.com/products/ Mar. 18, 2009, 3 pages.
  • ARM, “The Architecture for the Digital World; Milestones,” http://www.arm.com/aboutarm/milestones.html Mar. 18, 2009, 5 pages.
  • Albahama, O.T. et al., “On the Viability of FPGA-Based Integrated Coprocessors,” Dept. of Electrical and Electronic Engineering, Imperial College of Science, London, 1999 IEEE, pp. 206-215.
  • Alippi, et al., “Determining the Optimum Extended Instruction Set Architecture for Application Specific Reconfigurable VLIW CPUs,” IEEE, 2001, pp. 50-56.
  • Altera, “Flex 8000 Programmable Logic Device Family,” Altera Corporation product description, Jan. 2003, pp. 1-62.
  • Altera, “Flex 10K Embedded Programmable Logic Device Family,” Altera Corporation product description, Jan. 2003, pp. 1-128.
  • Altera, “APEX 20K Programmable Logic Device Family,” Altera Corporation Data Sheet, Mar. 2004, ver. 5.1, pp. 1-117.
  • Arabi, et al., “PLD Integrates Dedicated High-speed Data Buffering, Complex State machine, and Fast Decode Array,” conference record on WESCON '93, Sep. 28, 1993, pp. 432-436.
  • Asari, K. et al., “FeRAM circuit technology for system on a chip,” Proceedings First NASA/DoD Workshop on Evolvable Hardware (1999), pp. 193-197.
  • Athanas, “A Functional Reconfigurable Architecture and Compiler for Adoptive Computing,” IEEE 1993, pp. 49-55.
  • Athanas, et al., “An Adaptive Hardware Machine Architecture and Compiler for Dynamic Processor Recongifugation,” IEEE, Laboratory for Engineering man/Machine Systems Division of Engineering, Box D, Brown University, Providence, Rhode Island, 1991, pp. 397-400.
  • Athanas et al., “Processor Reconfiguration Through Instruction-Set Metamorphosis,” 1993, IEEE Computers, pp. 11-18.
  • Atmel, 5-K-50K Gates Coprocessor FPGA with Free Ram, Data Sheet, Jul. 2006, 55 pages.
  • Atmel, FPGA-based FIR Filter Application Note, Sep. 1999, 10 pages.
  • Atmel, “An Introduction to DSP Applications using the AT40K FPGA,” FPGA Application Engineering, San Jose, CA, Apr. 2004, 15 pages.
  • Atmel, Configurable Logic Design & Application Book, Atmel Corporation, 1995, pp. 2-19 through 2-25.
  • Atmel, Field Programmable Gate Array Configuration Guide, AT6000 Series Configuration Data Sheet, Sep. 1999, pp. 1-20.
  • Bacon, D. et al., “Compiler Transformations for High-Performance Computing,” ACM Computing Surveys, 26(4):325-420 (1994).
  • Bakkes, P.J., et al., “Mixing Fixed and Reconfigurable Logic for Array Processing,” Dept. of Electrical and Electronic Engineering, University of Stellenbosch, South Africa, 1996 IEEE, pp. 118-125.
  • Baumgarte, V. et al., PACT XPP “A Self-reconfigurable Data Processing Architecture,” PACT Info. GMBH, Munchen Germany, 2001, 7 pages.
  • Beck et al., “From control flow to data flow,” TR 89-1050, Oct. 1989, Dept. of Computer Science, Cornell University, Ithaca, NY, pp. 1-25.
  • Becker, J. et al., “Architecture, Memory and Interface Technology Integration of an Industrial/Academic Configurable System-on-Chip (CSoC),” IEEE Computer Society Annual Workshop on VLSI (WVLSI 2003), (Feb. 2003).
  • Becker, J., “Configurable Systems-on-Chip (CSoC),” (Invited Tutorial), Proc. of 9th Proc. of XV Brazilian Symposium on Integrated Circuit, Design (SBCCI 2002), (Sep. 2002).
  • Becker et al., “Automatic Parallelism Exploitation for FPL-Based Accelerators,” 1998, Proc. 31st Annual Hawaii International Conference on System Sciences, pp. 169-178.
  • Becker, J. et al., “Parallelization in Co-compilation for Configurable Accelerators—a Host/accelerator Partitioning Compilation Method,” Poceedings of Asia and South Pacific Design Automation Conference, Yokohama, Japan, Feb. 10-13, 1998, 11 pages.
  • Bittner, “Wormhole Run-time Reconfiguration: Conceptualization and VLSI Design of a High Performance Computing System,” Dissertation, Jan. 23, 1997, pp. I-XX, 1-415.
  • Bratt, A, “Motorola field programmable analogue arrays, present hardware and future trends,” Motorola Programmable Technology Centre, Gadbrook Business Centre, Northwich, Cheshire, 1998, The Institute of Electrical Engineers, IEE. Savoy Place, London, pp. 1-5.
  • Cadambi, et al., “Managing Pipeline-reconfigurable FPGAs,” ACM, 1998, pp. 55-64.
  • Callahan, et al., “The Garp Architecture and C Compiler,” Computer, Apr. 2000, pp. 62-69.
  • Cardoso, J.M.P., et al., “A novel algorithm combining temporal partitioning and sharing of functional units,” University of Algarve, Faro, Portugal, 2001 IEEE, pp. 1-10.
  • Cardoso, Joao M.P., and Markus Weinhardt, “XPP-VC: A C Compiler with Temporal Partitioning for the PACT-XPP Architecture,” Field-Programmable Logic and Applications. Reconfigurable Computing is Going Mainstream, 12th International Conference FPL 2002, Proceedings (Lecture Notes in Computer Science, vol. 2438) Springer-Verlag Berlin, Germany, 2002, pp. 864-874.
  • Cardoso, J.M.P., “Compilation of Java™ Algorithms onto Reconfigurable Computing Systems with Exploitation of Operation-Level Parallelism,” Ph.D. Thesis, Universidade Tecnica de Lisboa (UTL), Lisbon, Portugal Oct. 2000 (Table of Contents and English Abstract only).
  • Cardoso, J.M.P., et al., “Compilation and Temporal Partitioning for a Coarse-Grain Reconfigurable Architecture,” New Algorithms, Architectures and Applications for Reconfigurable Computing, Lysacht, P. & Rosentiel, W. eds., (2005) pp. 105-115.
  • Cardoso, J.M.P., et al., “Macro-Based Hardware Compilation of Java™ Bytecodes into a Dynamic Reconfigurable Computing System,” Field-Programmable Custom Computing Machines (1999) FCCM '99. Proceedings. Seventh Annual IEEE Symposium on NAPA Valley, CA, USA, Apr. 21-23, 1999, IEEE Comput. Soc, US, (Apr. 21, 1999) pp. 2-11.
  • Chaudhry, G.M. et al., “Separated caches and buses for multiprocessor system,” Circuits and Systems, 1993; Proceedings of the 36th Midwest Symposium on Detroit, MI, USA, Aug. 16-18, 1993, New York, NY IEEE, Aug. 16, 1993, pp. 1113-1116, XP010119918 ISBN: 0-7803-1760-2.
  • Chen et al., “A reconfigurable multiprocessor IC for rapid prototyping of algorithmic-specific high-speed DSP data paths,” IEEE Journal of Solid-State Circuits, vol. 27, No. 12, Dec. 1992, pp. 1895-1904.
  • Clearspeed, CSX Processor Architecture, Whitepaper, PN-1110-0702, 2007, pp. 1-15, www.clearspeed.com.
  • Clearspeed, CSX Processor Architecture, Whitepaper, PN-1110-0306, 2006, pp. 1-14, www.clearspeed.com.
  • Compton, K., et al., “Configurable Computing: A Survey of Systems and Software,” Northwestern University, Dept. of ECE, Technical Report, 1999, (XP-002315148), 39 pages.
  • Cook, Jeffrey J., “The Amalgam Compiler Infrastructure,” Thesis at the University of Illinois at Urbana-Champaign (2004) Chapter 7 & Appendix G.
  • Cronquist, D., et al., “Architecture Design of Reconfigurable Pipelined Datapaths,” Department of Computer Science and Engineering, University of Washington, Seattle, WA, Proceedings of the 20th Anniversary Conference on Advanced Research in VSLI, 1999, pp. 1-15.
  • Culler, D.E; Singh, J.P., “Parallel Computer Architecture,” pp. 434-437, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559.
  • DeHon, A., “DPGA Utilization and Application,” MIT Artificial Intelligence Laboratory, Proceedings of the Fourth International ACM Symposium on Field-Programmable Gate Arrays (FPGA '96), IEEE Computer Society, pp. 1-7.
  • DeHon, Andre, “Reconfigurable Architectures for General-Purpose Computing,” Massachusetts Institute of Technology, Technical Report AITR-1586, Oct. 1996, XP002445054, Cambridge, MA, pp. 1-353.
  • Del Corso et al., “Microcomputer Buses and Links,” Academic Press Inc. Ltd., 1986, pp. 138-143, 277-285.
  • Diniz, P., et al., “Automatic Synthesis of Data Storage and Control Structures for FPGA-based Computing Engines,” 2000, IEEE, pp. 91-100.
  • Diniz, P., et al., “A behavioral synthesis estimation interface for configurable computing,” University of Southern California, Marina Del Rey, CA, 2001 IEEE, pp. 1-2.
  • Donandt, “Improving Response Time of Programmable Logic Controllers by use of a Boolean Coprocessor,” AEG Research Institute Berlin, IEEE, 1989, pp. 4-167-4-169.
  • Dutt, et al., “If Software is King for Systems-in-Silicon, What's New in Compilers?” IEEE, 1997, pp. 322-325.
  • Ebeling, C., et al., “Mapping Applications to the RaPiD Configurable Architecture,” Department of Computer Science and Engineering, University of Washington, Seattle, WA, FPGAs for Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium, Publication Date: Apr. 16-18, 1997, 10 pages.
  • Equator, Pixels to Packets, Enabling Multi-Format High Definition Video, Equator Technologies BSP-15 Product Brief, www.equator.com, 2001, 4 pages.
  • Fawcett, B.K., “Map, Place and Route: The Key to High-Density PLD Implementation,” Wescon Conference, IEEE Center (Nov. 7, 1995) pp. 292-297.
  • Ferrante, J., et al., “The Program Dependence Graph and its Use in Optimization ACM Transactions on Programming Languages and Systems,” Jul. 1987, USA, [online] Bd. 9, Nr., 3, pp. 319-349, XP002156651 ISSN: 0164-0935 ACM Digital Library.
  • Fineberg, S, et al., “Experimental Analysis of a Mixed-Mode Parallel Architecture Using Bitonic Sequence Sorting,” Journal of Parallel and Distributed Computing, vol. 11, No. 3, Mar. 1991, pp. 239-251.
  • Fornaciari, et al., System-level power evaluation metrics, 1997 Proceedings of the 2nd Annual IEEE International Conference on Innovative Systems in Silicon, New York, NY, Oct. 1997, pp. 323-330.
  • Forstner, “Wer Zuerst Kommt, Mahlt Zuerst!: Teil 3: Einsatzgebiete und Anwendungbeispiele von FIFO-Speichern,” Elektronik, Aug. 2000, pp. 104-109.
  • Franklin, Manoj, et al., “A Fill-Unit Approach to Multiple Instruction Issue,” Proceedings of the Annual International Symposium on Microarchitecture, Nov. 1994, pp. 162-171.
  • Freescale Slide Presentation, An Introduction to Motorola's RCF (Reconfigurable Compute Fabric) Technology, Presented by Frank David, Launched by Freescale Semiconductor, Inc., 2004, 39 pages.
  • Genius, D., et al., “A Case for Array Merging in Memory Hierarchies,” Proceedings of the 9th International Workshop on Compilers for Parallel Computers, CPC'01 (Jun. 2001), 10 pages.
  • Gokhale, M.B., et al., “Automatic Allocation of Arrays to Memories in FPGA processors with Multiple Memory Banks,” Field-Programmable Custom Computing Machines, 1999, IEEE, pp. 63-69.
  • Hammes, Jeff, et al., “Cameron: High Level Language Compilation for Reconfigurable Systems,” Department of Computer Science, Colorado State University, Conference on Parallel Architectures and Compilation Techniques, Oct. 12-16, 1999, 9 pages.
  • Hartenstein, R. et al., “A new FPGA architecture for word-oriented datapaths,” Proc. FPL'94, Springer LNCS, Sep. 1994, pp. 144-155.
  • Hartenstein, R., “Coarse grain reconfigurable architectures,” Design Automation Conference, 2001, Proceedings of the ASP-DAC 2001 Asia and South Pacific, Jan. 30-Feb. 2, 2001, IEEE Jan. 30, 2001, pp. 564-569.
  • Hastie et al., “The implementation of hardware subroutines on field programmable gate arrays,” Custom Integrated Circuits Conference, 1990, Proceedings of the IEEE 1990, May 16, 1990, pp. 31.3.1-31.4.3 (3 pages).
  • Hauck, “The Roles of FPGAs in Reprogrammable Systems,” IEEE, Apr. 1998, pp. 615-638.
  • Hauser, J.R., et al., “Garp: A MIPS Processor with a Reconfigurable Coprocessor,” University of California, Berkeley, IEEE, 1997, pp. 24-33.
  • Hedge, S.J., “3D WASP Devices for On-line Signal and Data Processing,” 1994, International Conference on Wafer Scale Integration, pp. 11-21.
  • Hendrich, N., et al., “Silicon Compilation and Rapid Prototyping of Microprogrammed VLSI-Circuits with MIMOLA and SOLO 1400,” Microprocessing & Microprogramming (Sep. 1992) vol. 35(1-5), pp. 287-294.
  • Hwang, K., “Advanced Computer Architecture—Parallelism, Scalability, Programmability,” 1993, McGraw-Hill, Inc., pp. 348-355.
  • Hwang, K., “Computer Architecture and Parallel Processing,” Data Flow Computers and VLSI Computations, XP-002418655, 1985 McGraw-Hill, Chapter 10, pp. 732-807.
  • Hwang, L., et al., “Min-cut Replication in Partitioned Networks,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, [online] Bd. 14, Nr. 1, Jan. 1995, pp. 96-106, XP00053228 USA ISSN: 0278-0070 IEEE Xplore.
  • IBM Technical Disclosure Bulletin, IBM Corp., New York, XP000424878, Bd. 36, Nr. 11, Nov. 1, 1993, pp. 335-336.
  • “IEEE Standard Test Access Port and Boundary-Scan Architecture,” IEEE Std. 1149.1-1990, 1993, pp. 1-127.
  • Inside DSP, “Ambric Discloses Massively Parallel Architecture,” Aug. 23, 2006, http://www.insidedsp.com/Articles/tabid/64/articleType/ArticleView/articleId/155/Default.aspx, 2 pages.
  • Intel, Intel MXP5800/MXP5400 Digital Media Processors, Architecture Overview, Jun. 2004, Revision 2.4, pp. 1-24.
  • Iseli, C., et al. “A C++ Compiler for FPGA Custom Execution Units Synthesis,” IEEE, 1995, pp. 173-179.
  • Isshiki, Tsuyoshi, et al., “Bit-Serial Pipeline Synthesis for Multi-FPGA Systems with C++ Design Capture.” 1996 IEEE, pp. 38-47.
  • Jacob, J., et al., “Memory Interfacing and Instruction Specification for Reconfigurable Processors,” ACM 1999, pp. 145-154.
  • Jantsch, Axel et al., “A Case Study on Hardware/Software Partitioning,” Royal Institute of Technology, Kista, Sweden, Apr. 10, 1994, IEEE, pp. 111-118.
  • Jantsch, Axel et al., “Hardware/Software Partitioning and Minimizing Memory Interface Traffic,” Electronic System Design Laboratory, Royal Institute of Technology, ESDLab, Electrum 229, S-16440 Kista, Sweden (Apr. 1994), pp. 226-231.
  • John, L., et al., “A Dynamically Reconfigurable Interconnect for Array Processors,” vol. 6, No. 1, Mar. 1998, IEEE, pp. 150-157.
  • Kastrup, B., “Automatic Hardware Synthesis for a Hybrid Reconfigurable CPU Featuring Philips CPLDs,” Proceedings of the PACT Workshop on Reconfigurable Computing, 1998, pp. 5-10.
  • Kaul, M., et al., “An automated temporal partitioning and loop fission approach of FPGA based reconfigurable synthesis of DSP applications,” University of Cincinnati, Cincinnati, OH, ACM 1999, pp. 616-622.
  • Kean, T.A., “Configurable Logic: A Dynamically Programmable Cellular Architecture and its VLSI Implementation,” University of Edinburgh (Dissertation) 1988, pp. 1-286.
  • Kean, T., et al., “A Fast Constant Coefficient Multiplier for the XC6200,” Xilinx, Inc., Lecture Notes in Computer Science, vol. 1142, Proceedings of the 6th International Workshop of Field-Programmable Logic, 1996, 7 pages.
  • Kim et al., “A Reconfigurable Multifunction Computing Cache Architecture,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems vol. 9, Issue 4, Aug. 2001 pp. 509-523.
  • Knittel, Gunter, “A PCI-compatible FPGA-Coprocessor for 2D/3D Image Processing,” University of Turgingen, Germany, 1996 IEEE, pp. 136-145.
  • Koch, A., et al., “Practical Experiences with the SPARXIL Co-Processor,” 1998, IEEE, pp. 394-398.
  • Koch, Andreas et al., “High-Level-Language Compilation for Reconfigurable Computers,” Proceedings of European Workshop on Reconfigurable Communication-Centric SOCS (Jun. 2005) 8 pages.
  • Koren et al., “A data-driven VLSI array for arbitrary algorithms,” IEEE Computer Society, Long Beach, CA vol. 21, No. 10, Oct. 1, 1988, pp. 30-34.
  • Kung, “Deadlock Avoidance for Systolic Communication,” 1988 Conference Proceedings of the 15th Annual International Symposium on Computer Architecture, May 30, 1998, pp. 252-260.
  • Lange, H. et al., “Memory access schemes for configurable processors,” Field-Programmable Logic and Applications, International Workshop, FPL, Aug. 27, 2000, pp. 615-625, XP02283963.
  • Larsen, S., et al., “Increasing and Detecting Memory Address Congruence,” Proceedings of the 2002 IEEE International Conference on Parallel Architectures and Compilation Techniques (PACT'02), pp. 1-12 (Sep. 2002).
  • Lee et al., “A new distribution network based on controlled switching elements and its applications,” IEEE/ACT Trans. of Networking, vol. 3, No. 1, pp. 70-81, Feb. 1995.
  • Lee, Jong-eun, et al., “Reconfigurable ALU Array Architecture with Conditional Execution,” International Soc. Design Conference (ISOOC) [online] Oct. 25, 2004, Seoul, Korea, 5 pages.
  • Lee, R. B., et al., “Multimedia extensions for general-purpose processors,” IEEE Workshop on Signal Processing Systems, SIPS 97—Design and Implementation (1997), pp. 9-23.
  • Lee, Ming-Hau et al., “Designs and Implementation of the MorphoSys Reconfigurable Computing Processors,” The Journal of VLSI Signal Processing, Kluwer Academic Publishers, BO, vol. 24, No. 2-3, Mar. 2, 2000, pp. 1-29.
  • Ling, X., “WASMII: An MPLD with Data-Driven Control on a Virtual Hardware,” Journal of Supercomputing, Kluwer Acdemic Publishers, Dordrecht, Netherlands, 1995, pp. 253-276.
  • Ling et al., “WASMII: A Multifunction Programmable Logic Device (MPLD) with Data Driven Control,” The Transactions of the Institute of Electronics, Information and Communication Engineers, Apr. 25, 1994, vol. J77-D-1, Nr. 4, pp. 309-317. [This reference is in Chinese, but should be comparable in content to the Ling et al. reference above.].
  • Mano, M.M., “Digital Design,” by Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632, 1984, pp. 119-125, 154-161.
  • Margolus, N., “An FPGA architecture for DRAM-based systolic computations,” Boston University Center for Computational Science and MIT Artificial Intelligence Laboratory, IEEE 1997, pp. 2-11.
  • Maxfield,C., “Logic that Mutates While-U-Wait,” EDN (Bur. Ed) (USA), EDN (European Edition), Nov. 7, 1996, Cahners Publishing, USA, pp. 137-140, 142.
  • Mei, Bingfeng, “A Coarse-Grained Reconfigurable Architecture Template and Its Compilation Techniques,” Katholeike Universiteit Leuven, PhD Thesis, Jan. 2005, IMEC vzw, Universitair Micro-Electronica Centrum, Belgium, pp. 1-195 (and Table of Contents).
  • Mei, Bingfeng et al., “Design and Optimization of Dynamically Reconfigurable Embedded Systems,” IMEC vzw, 2003, Belgium, 7 pages, http://www.imec.be/reconfigurable/pdf/ICERSA01design.pdf.
  • Mei, Bingfeng et al., “Adres: An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix,”Proc. Field-Programmable Logic and Applications (FPL 03), Springer, 2003, pp. 61-70.
  • Miller, M.J., et al., “High-Speed FIFOs Contend with Widely Differing Data Rates: Dual-port RAM Buffer and Dual-pointer System Provide Rapid, High-density Data Storage and Reduce Overhead,” Computer Design, Sep. 1, 1985, pp. 83-86.
  • Mirsky, E. DeHon, “MATRIX: A Reconfigurable Computing Architecture with Configurable Instruction Distribution and Deployable Resources,” Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, 1996, pp. 157-166.
  • Miyamori, T., et al., “REMARC: Reconfigurable Multimedia Array Coprocessor,” Computer Systems Laboratory, Stanford University, IEICE Transactions on Information and Systems E Series D, 1999; (abstract): Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays, p. 261, Feb. 22-25, 1998, Monterey, California, United States, pp. 1-12.
  • Moraes, F., et al., “A Physical Synthesis Design Flow Based on Virtual Components,” XV Conference on Design of Circuits and Integrated Systems (Nov. 2000) 6 pages.
  • Muchnick, S., “Advanced Compiler Design and Implementation,” (Morgan Kaufmann 1997), Table of Contents, 11 pages.
  • Murphy, C., “Virtual Hardware Using Dynamic Reconfigurable Field Programmable Gate Arrays,” Engineering Development Centre, Liverpool John Moores University, UK, GERI Annual Research Symposium 2005, 8 pages.
  • Myers, G. “Advances in Computer Architecture,” Wiley-Interscience Publication, 2nd ed., John Wiley & Sons, Inc., 1978, pp. 463-494.
  • Nageldinger, U., “Design-Space Exploration for Coarse Grained Reconfigurable Architectures,” (Dissertation) Universitaet Kaiserslautern, 2000, Chapter 2, pp. 19-45.
  • Neumann, T., et al., “A Generic Library for Adaptive Computing Environments,” Field Programmable Logic and Applications, 11th International Conference, FPL 2001, Proceedings (Lecture Notes in Computer Science, vol. 2147) (2001) pp. 503-512.
  • Nilsson, et al., “The Scalable Tree Protocol—A Cache Coherence Approaches for Large-Scale Multiprocessors,” IEEE, pp. 498-506, Dec. 1992.
  • Norman, R.S., “Hyperchip Business Summary, The Opportunity,” Jan. 31, 2000, pp. 1-3.
  • Ohmsha, “Information Processing Handbook,” edited by the Information Processing Society of Japan, p. 376, Dec. 21, 1998.
  • Olukotun, K., “The Case for a Single-Chip Microprocessor,” ACM Sigplan Notices, ACM, Association for Computing Machinery, New York, vol. 31, No. 9, Sep. 1996 pp. 2-11.
  • Ozawa, Motokazu et al., “A Cascade ALU Architecture for Asynchronous Super-Scalar Processors,” IEICE Transactions on Electronics, Electronics Society, Tokyo, Japan, vol. E84-C, No. 2, Feb. 2001, pp. 229-237.
  • PACT Corporation, “The XPP Communication System,” Technical Report 15 (2000), pp. 1-16.
  • Parhami, B., “Parallel Counters for Signed Binary Signals,” Signals, Systems and Computers, 1989, Twenty-Third Asilomar Conference, vol. 1, pp. 513-516.
  • PCI Local Bus Specification, Production Version, Revision 2.1, Jun. 1, Portland, OR, 1995, pp. 1-281.
  • Piotrowski, A., “IEC-Bus, Die Funktionsweise des IEC-Bus unde seine Anwendung in Geräten und Systemen,” 1987, Franzis-Verlag GmbH, München, pp. 20-25, English abstract included.
  • Pirsch, P. et al., “VLSI implementations of image and video multimedia processing systems,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, No. 7, Nov. 1998, pp. 878-891.
  • Quenot, G.M., et al., “A Reconfigurable Compute Engine for Real-Time Vision Automata Prototyping,” Laboratoire Systeme de Perception, DGA/Etablissement Technique Central de l'Armement, France, 1994 IEEE, pp. 91-100.
  • Razdan et al., A High-Performance Microarchitecture with Hardware-Programmable Functional Units, Micro-27, Proceedings of the 27th Annual International Symposium on Microarchitecture, IEEE Computer Society and Association for Computing Machinery, Nov. 30-Dec. 2, 1994, pp. 172-180.
  • Ryo, A., “Auszug aus Handbuch der Informationsverarbeitung,” ed. Information Processing Society of Japan, Information Processing Handbook, New Edition, Software Information Center, Ohmsha, Dec. 1998, 4 pages. [Translation provided].
  • Saleeba, Z.M.G., “A Self-Reconfiguring Computer System,” Department of Computer Science, Monash University (Dissertation) 1998, pp. 1-306.
  • Saleeba, M. “A Self-Contained Dynamically Reconfigurable Processor Architecture,” Sixteenth Australian Computer Science Conference, ASCS-16, QLD, Australia, Feb. 1993, pp. 59-70.
  • Salefski, B. et al., “Re-configurable computing in wireless,” Annual ACM IEEE Design Automation Conference: Proceedings of the 38th conference on Design automation (2001) pp. 178-183.
  • Schmidt, H. et al., “Behavioral synthesis for FGPA-based computing,” Carnegie Mellon University, Pittsburgh, PA, 1994 IEEE, pp. 125-132.
  • Schmidt, U. et al., “Datawave: A Single-Chip Multiprocessor for Video Applications,” IEEE Micro, vol. 11, No. 3, May/Jun. 1991, pp. 22-25, 88-94.
  • Schmit, et al., “Hidden Markov Modeling and Fuzzy Controllers in FPGAs, FPGAs for Custom Computing Machines,” 1995; Proceedings, IEEE Symposium in Napa Valley, CA, Apr. 1995, pp. 214-221.
  • Schönfeld, M., et al., “The LISA Design Environment for the Synthesis of Array Processors Including Memories for the Data Transfer and Fault Tolerance by Reconfiguration and Coding Techniques,” J. VLSI Signal Processing Systems for Signal, Image, and Video Technology, (Oct. 1, 1995) vol. 11(1/2), pp. 51-74.
  • Shin, D., et al., “C-based Interactive RTL Design Methodology,” Technical Report CECS-03-42 (Dec. 2003) pp. 1-16.
  • Shirazi, et al., “Quantitative analysis of floating point arithmetic on FPGA based custom computing machines,” IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer Society Press, Apr. 19-21, 1995, pp. 155-162.
  • Siemers, C., “Rechenfabrik Ansaetze Fuer Extrem Parallele Prozessoren,” Verlag Heinze Heise GmbH., Hannover, DE No. 15, Jul. 16, 2001, pp. 170-179.
  • Siemers et al., “The .>S<puter: A Novel Micoarchitecture Model for Execution inside Superscalar and VLIW Processors Using Reconfigurable Hardware,” Australian Computer Science Communications, vol. 20, No. 4, Computer Architecture, Proceedings of the 3rd Australian Computer Architecture Conference, Perth, John Morris, Ed., Feb. 2-3, 1998, pp. 169-178.
  • Simunic, et al., Source Code Optimization and Profiling of Energy Consumation in Embedded Systems, Proceedings of the 13th International Symposium on System Synthesis, Sep. 2000, pp. 193-198.
  • Singh, H. et al., “MorphoSys: An Integrated Reconfigurable System for Data-Parallel Computation-Intensive Applications,” University of California, Irvine, CA. and Federal University of Rio de Janeiro, Brazil, 2000, IEEE Transactions on Computers, pp. 1-35.
  • Skokan, Z.E., “Programmable logic machine (A programmable cell array),” IEEE Journal of Solid-State Circuits, vol. 18, Issue 5, Oct. 1983, pp. 572-578.
  • Sondervan, J., “Retiming and logic synthesis,” Electronic Engineering (Jan. 1993) vol. 65(793), pp. 33, 35-36.
  • Soni, M., “VLSI Implementation of a Wormhole Run-time Reconfigurable Processor,” Jun. 2001, (Masters Thesis)Virginia Polytechnic Institute and State University, 88 pages.
  • Sueyoshi, T, “Present Status and Problems of the Reconfigurable Computing Systems Toward the Computer Evolution,” Department of Artificial Intelligence, Kyushi Institute of Technology, Fukuoka, Japan; Institute of Electronics, Information and Communication Engineers, vol. 96, No. 426, IEICE Technical Report (1996), pp. 111-119 [English Abstract Only].
  • Sutton et al., “A Multiprocessor DSP System Using PADDI-2,” U.C. Berkeley, 1998 ACM, pp. 62-65.
  • Tau, E., et al., “A First Generation DPGA Implementation,” FPD'95, pp. 138-143.
  • Tenca, A.F., et al., “A Variable Long-Precision Arithmetic Unit Design for Reconfigurable Coprocessor Architectures,” University of California, Los Angeles, 1998, pp. 216-225.
  • The XPP White Paper, Release 2.1, PACT—A Technical Perspective, Mar. 27, 2002, pp. 1-27.
  • TMS320C54X DSP: CPU and Peripherals, Texas Instruments, 1996, 25 pages.
  • TMS320C54x DSP: Mnemonic Instruction Set, Texas Instruments, 1996, 342 pages.
  • Tsutsui, A., et al., “YARDS: FPGA/MPU Hybrid Architecture for Telecommunication Data Processing,” NTT Optical Network Systems Laboratories, Japan, 1997 ACM, pp. 93-99.
  • Vasell et al., “The Function Processor: A Data-Driven Processor Array for Irregular Computations,” Chalmers University of Technology, Sweden, 1992, pp. 1-21.
  • Villasenor, et al., “Configurable Computing Solutions for Automatic Target Recognition,” IEEE, 1996 pp. 70-79.
  • Villasenor, et al., “Configurable Computing,” Scientific American, vol. 276, No. 6, Jun. 1997, pp. 66-71.
  • Villasenor, et al., “Express Letters Video Communications Using Rapidly Reconfigurable Hardware,” IEEE Transactions on Circuits and Systems for Video Technology, IEEE, Inc., NY, Dec. 1995, pp. 565-567.
  • Wada, et al., “A Performance Evaluation of Tree-based Coherent Distributed Shared Memory,” Proceedings of the Pacific RIM Conference on Communications, Comput and Signal Processing, Victoria, May 19-21, 1993, pp. 390-393.
  • Waingold, E., et al., “Baring it all to software: Raw machines,” IEEE Computer, Sep. 1997, at 86-93.
  • Weinhardt, M., “Compilation Methods for Structure-programmable Computers,” dissertation, ISBN 3-89722-011-3, 1997. [Table of Contents and English Abstract Provided].
  • Weinhardt, Markus et al., “Pipeline Vectorization for Reconfigurable Systems,” 1999, IEEE, pp. 52-62.
  • Weinhardt, Markus et al., “Pipeline Vectorization,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, No. 2, Feb. 2001, pp. 234-248.
  • Weinhardt, Markus et al., “Memory Access Optimization for Reconfigurable Systems,” IEEE Proceedings Computers and Digital Techniques, 48(3) (May 2001) pp. 1-16.
  • Wittig, et al., “OneChip: An FPGA Processor with Reconfigurable Logic,” IEEE, 1996, pp. 126-135.
  • Wolfe, M. et al., “High Performance Compilers for Parallel Computing,” (Addison-Wesley 1996) Table of Contents, 11 pages.
  • Wu, et al., “A New Cache Directory Scheme,” IEEE, pp. 466-472, Jun. 1996.
  • Xilinx, “Logic Cell Array Families: XC4000, XC4000A and XC4000H,” 1994, product description, pp. 2-7, 2-9, 2-14, 2-15, 8-16, and 9-14.
  • Xilinx, “The Programmable Logic Data Book,” 1994, Section 2, pp. 1-231, Section 8, pp. I, 23-25, 29, 45-52, 169-172.
  • Xilinx, “Spartan and SpartanXL Families Field Programmable Gate Arrays,” Jan. 1999, Xilinx, pp. 4-3 through 4-70.
  • Xilinx, “XC6200 Field Programmable Gate Arrays,” Apr. 24, 1997, Xilinx product description, pp. 1-73.
  • Xilinx, “XC3000 Series Field Programmable Gate Arrays,” Nov. 6, 1998, Xilinx product description, pp. 1-76.
  • Xilinx, “XC4000E and XC4000X Series Field Programmable Gate Arrays,” May 14, 1999, Xilinx product description, pp. 1-68.
  • Xilinx, “Virtex-E 1.8 V Extended Memory Field Programmable Gate Arrays,” Jul. 17, 2002, Xilinx Production Product Specification, pp. 1-118.
  • Xilinx, “Virtex-E 1.8 V Extended Memory Field Programmable Gate Arrays,” (v2.2) Sep. 10, 2002, Xilinx Production Product Specification, pp. 1-52.
  • Xilinx, “Virtex-II and Virtex-II Pro X FPGA User Guide,” Mar. 28, 2007, Xilinx user guide, pp. 1-559.
  • Xilinx, “Virtex-II and Virtex-II Pro X FPGA Platform FPGAs: Complete Data Sheet,” (v4.6) Mar. 5, 2007, pp. 1-302.
  • Xilinx, “Virtex-II Platform FPGAs: Complete Data Sheet,” (v3.5) Nov. 5, 2007, pp. 1-226.
  • Xu, H. et al., “Parallel QR Factorization on a Block Data Flow Architecture,” Conference Proceeding Article, Mar. I, 1992, pp. 332-336 XP010255276, p. 333, Abstract 2.2, 2.3, 2.4-p. 334.
  • Ye, Z.A. et al., “A C-Compiler for a Processor With a Reconfigurable Functional Unit,” FPGA 2000 ACM/SIGNA International Symposium on Field Programmable Gate Arrays, Monterey, CA Feb. 9-11, 2000, pp. 95-100.
  • Yeung, A. et al., “A data-driven architecture for rapid prototyping of high throughput DSP algorithms,” Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA, Proceedings VLSI Signal Processing Workshop, IEEE Press, pp. 225-234, Napa, Oct. 1992.
  • Yeung, A. et al., “A reconfigurable data-driven multiprocessor architecture for rapid prototyping of high throughput DSP algorithms,” Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA, pp. 169-178, IEEE 1993.
  • Zhang, et al., “Architectural Evaluation of Flexible Digital Signal Processing for Wireless Receivers, Signals, Systems and Computers,” 2000; Conference Record of the Thirty-Fourth Asilomar Conference, Bd. 1, Oct. 29, 2000, pp. 78-83.
  • Zhang, et al., “A 1-V Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital Signal Processing,” IEEE Journal of Solid-State Circuits, vol. 35, No. 11, Nov. 2000, pp. 1697-1704.
  • Zhang et al., “Abstract: Low-Power Heterogeneous Reconfigurable Digital Signal Processors with Energy-Efficient Interconnect Network,” U.C. Berkeley (2004), pp. 1-120.
  • Zima, H. et al., “Supercompilers for parallel and vector computers,” (Addison-Wesley 1991) Table of Contents, 5 pages.
  • Coelho, F., “Compiling dynamic mappings with array copies,” Jul. 1997, 12 pages, http://delivery.acm.org/10.1145/270000/263786/p168-coelho.pdf.
  • Janssen et al., “A Specification Invariant Technique for Regularity Improvement between Flow-Graph Clusters,” Mar. 1996, 6 pages, http://delivery.acm.org/10.1145/790000/787534/74230138.pdf.
  • Microsoft Press Computer Dictionary, Second Edition, 1994, Microsoft Press, ISBN 1-55615-597-2, p. 10.
  • Newton, Harry, “Newton's Telecom Dictionary,” Ninteenth Edition, 2003, CMP Books, p. 40.
  • Rehmouni et al., “Formulation and evaluation of scheduling techniques for control flow graphs,” Dec. 1995, 6 pages, http://delivery.acm.org/10.1145/230000/224352/p386-rahmouni.pdf.
  • Sinha et al., “System-dependence-graph-based slicing of programs with arbitrary interprocedural control flow,” May 1999, 10 pages, http://delivery.acm.org/10.1145/310000/203675/p432-sinha.pdf.
  • Stallings, William, “Data & Computer Communications,” Sixth Edition, Jun. 2000, Prentice-Hall, Inc., ISBN 0-084370-9, pp. 195-196.
  • Bondalapati et al., “Reconfigurable Meshes: Theory and Practice,” Dept. of Electrical Engineering-Systems, Univ. of Southern California, Apr. 1997, Reconfigurable Architectures Workshop, International Parallel Processing Symposium, 15 pages.
  • Cherbaka, Mark F., “Verification and Configuration of a Run-time Reconfigurable Custom Computing Integrated Circuit for DSP Applications,” Thesis: Virginia Polytechnic Institute and State University, Jul. 8, 1996, 106 pages.
  • Cong et al., “Structural Gate Decomposition for Depth-Optimal Technology Mapping in LUT-Based FPGA Designs,” Univ. of California, ACM Transactions on Design Automation of Electronic Systems, vol. 5, No. 2, Apr. 2000, pp. 193-225.
  • Foldoc, The Free On-Line Dictionary of Computing, “handshaking,” online Jan. 13, 1995, retrieved from Internet Jan. 23, 2011 at http://foldoc.org/handshake.
  • Li et al., “Hardware-Software Co-Design of Embedded Reconfigurable Architectures,” Los Angeles, CA, 2000 ACM, pp. 507-512.
  • Marshall et al., “A Reconfigurable Arithmetic Array for Multimedia Applications,” FPGA '99 Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays, 10 pages.
  • Melvin, Stephen et al., “Hardware Support for Large Atomic Units in Dynamically Scheduled Machines,” Computer Science Division, University of California, Berkeley, IEEE (1988), pp. 60-63.
  • Pistorius et al., “Generation of Very Large Circuits to Benchmark the Partitioning of FPGAs,” Monterey, CA, ACM 1999, pp. 67-73.
  • Roterberg, Eric., et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction Fetching,” Proceedings of the 29th Annual International Symposium on Michoarchitecture, Paris, France, IEEE (1996), 12 pages.
  • Translation of DE 101 39 170 by examiner using Google Translate, 10 pages.
  • Altera, “Flex 8000 Programmable Logic Device Family,” Altera Corporation Data Sheet, Jan. 2003, pp. 1-62.
  • Altera, “Flex 10K Embedded Programmable Logic Device Family,” Altera Corporation Data Sheet, Jan. 2003, pp. 1-128.
  • Becker, J. et al., “Architecture, Memory and Interface Technology Integration of an Industrial/Academic Configurable System-on-Chip (CSoC),” IEEE Computer Society Annual Workshop on VLSI (WVLSI 2003), (Feb. 2003), 6 pages.
  • Becker, J., “Configurable Systems-on-Chip (CSoC),” (Invited Tutorial), Proc. of 9th Proc. of XV Brazilian Symposium on Integrated Circuit, Design (SBCCI 2002), (Sep. 2002), 6 pages.
  • Becker, J. et al., “Parallelization in Co-compilation for Configurable Accelerators—a Host/accelerator Partitioning Compilation Method,” Proceedings of Asia and South Pacific Design Automation Conference, Yokohama, Japan, Feb. 10-13, 1998, 11 pages.
  • Becker, J., “A Partitioning Compiler for Computers with Xputer-based Accelerators,” 1997, Kaiserslautern University, 326 pp.
  • Cardoso, J.M.P., et al., “Macro-Based Hardware Compilation of Java™ Bytecodes into a Dynamic Reconfigurable Computing System,” IEEE, Apr. 21, 1999, pp. 2-11.
  • DeHon, A., “DPGA Utilization and Application,” MIT Artificial Intelligence Laboratory, Proceedings of the Fourth International ACM Symposium on Field-Programmable Gate Arrays (FPGA 1996), IEEE Computer Society, pp. 1-7.
  • Fomaciari, et al., System-level power evaluation metrics, 1997 Proceedings of the 2nd Annual IEEE International Conference on Innovative Systems in Silicon, New York, NY, Oct. 1997, pp. 323-330.
  • Hartenstein et al., “Parallelizing Compilation for a Novel Data-Parallel Architecture,” 1995, PCAT-94, Parallel Computing: Technology and Practice, 13 pp.
  • Hartenstein et al., “A Two-Level Co-Design Framework for Xputer-based Data-driven Reconfigurable Accelerators,” 1997, Proceedings of the Thirtieth Annual Hawaii International Conference on System Sciences, 10 pp.
  • Hauser, J.R., et al., “Garp: A MIPS Processor with a Reconfigurable Coprocessor,” University of California, Berkeley, IEEE, Apr. 1997, pp. 24-33.
  • Huang, Libo et al., “A New Architecture for Multiple-Precision Floating-Point Multiply-Add Fused Unit Design,” School of Computer National University of Defense Technology, China, IEEE 2007, 8 pages.
  • IMEC, “ADRES multimedia processor & 3MF multimedia platform,” Transferable IP, IMEC Technology Description, (Applicants believe the date to be Oct. 2005), 3 pages.
  • Isshiki, Tsuyoshi, et al., “Bit-Serial Pipeline Synthesis for Multi-FPGA Systems with C++ Design Capture,” 1996 IEEE, pp. 38-47.
  • Jacob, J., et al., “Memory Interfacing and Instruction Specification for Reconfigurable Processors,” ACM Feb. 1999, pp. 145-154.
  • Jo, Manhwee et al., “Implementation of Floating-Point Operations for 3D Graphics on a Coarse-Grained Reconfigurable Architecture,” Design Automation Laboratory, School of EE/CS, Seoul National University, Korea, IEEE 2007, pp. 127-130.
  • Kanter, David, “NVIDIA's GT200: Inside a Parallel Processor,” http://www.realworldtech.com/page.cfm?ArticleID=RWT090989195242&p=1, Sep. 8, 2008, 27 pages.
  • Lee, Ming-Hau et al., “Design and Implementation of the MorphoSys Reconfigurable Computing Processors,” The Journal of VLSI Signal Processing, Kluwer Academic Publishers, BO, vol. 24, No. 2-3, Mar. 2, 2000, pp. 1-29.
  • Ling et al., “WASMII: A Multifunction Programmable Logic Device (MPLD) with Data Driven Control,” The Transactions of the Institute of Electronics, Information and Communication Engineers, Apr. 25, 1994, vol. J77-D-1, Nr. 4, pp. 309-317. [This reference is in Chinese, but should be comparable in content to the Ling et al. reference above.]
  • Mei, Bingfeng et al., “Design and Optimization of Dynamically Reconfigurable Embedded Systems,” IMEC vzw, 2003, Belgium, 7 pages, http://www.imec.be/reconfigurabie/pdf/ICERSA01design.pdf.
  • Mei, Bingfeng et al., “Adres: An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix,” Proc. Field-Programmable Logic and Applications (FPL 03), Springer, 2003, pp. 61-70.
  • Ohmsha, “Information Processing Handbook,” edited by the Information Processing Society of Japan, pp. 376, Dec. 21, 1998.
  • Parhami, B., “Parallel Counters for Signed Binary Signals,” Signals, Systems and Computers, 1989, Twenty-Third Asilomar Conference, vol. I, pp. 513-516.
  • PCI Local Bus Specification, Production Version, Revision 2.1, Portland, OR, Jun. 1, 1995, pp. 1-281.
  • Piotrowski, A., “IEC-Bus, Die Funktionsweise des IEC-Bus unde seine Anwendung in Geräten and Systemen,” 1987, Franzis-Verlag GmbH, München, pp. 20-25. [English Abstract Provided].
  • Xilinx, “The Programmable Logic Data Book,” 1994, Section 2, pp. 1-231, Section 8, pp. 1, 23-25, 29, 45-52, 169-172.
  • Xilinx, “Virtex-E 1.8 V Extended Memory Field Programmable Gate Arrays,” (v1.5) Jul. 17, 2002, Xilinx Production Product Specification, pp. 1-118.
  • Xilinx, White Paper 370: (Virtex-6 and Spartan-6 FPGA Families) “Reducing Switching Power with Intelligent Clock Gating,” Frederic Rivoallon, May 3, 2010, pp. 1-5.
  • Xilinx, White Paper 298: (Spartan-6 and Virtex-6 Devices) “Power Consumption at 40 and 50 nm,” Matt Klein, Apr. 13, 2009, pp. 1-21.
  • Xu, H. et al., “Parallel QR Factorization on a Block Data Flow Architecture,” Conference Proceeding Article, Mar. 1, 1992, pp. 332-336 XPO10255276, p. 333, Abstract 2.2, 2.3, 2.4-p. 334.
  • Ye, Z.A. et al., “A C-Compiler for a Processor With a Reconfigurable Functional Unit,” FPGA 2000 ACM/SIGNA International Symposium on Field Programmable Gate Arrays, Monterey, CA Feb 9-11, 2000, pp. 95-100.
  • ARM, “The Architecture for the Digital World; Milestones,” htto://www.arm.com/aboutarm/milestones.html Mar. 18, 2009, 5 pages.
  • Albaharna, O.T. et al., “On the Viability of FPGA-Based Integrated Coprocessors,” Dept. of Electrical and Electronic Engineering, Imperial College of Science, London, 1999 IEEE, pp. 206-215.
  • Altera, “2. TriMatrix Embedded Memory Blocks in Stratix & Stratix GX Devices,” Altera Corporation, Jul. 2005, 28 pages.
  • Altera, “APEX II Programmable Logic Device Family,” Altera Corporation Data Sheet, Aug. 2002, Ver. 3.0, 99 pages.
  • Bacon, D. et al., “Compiler Transformations for High-Perfomance Computing,” ACM Computing Surveys, 26(4):325-420 (1994).
  • “BlueGene/L—Hardware Architecture Overview,” BlueGene/L design team, IBM Research, Oct. 17, 2003 slide presentation, pp. 1-23.
  • “BlueGene/L: the next generation of scalable supercomputer,” Kissel et al., Lawrence Livermore National Laboratory, Livermore, California, Nov. 18, 2002, 29 pages.
  • BlueGene Project Update, Jan. 2002, IBM slide presentation, 20 pages.
  • BlueGene/L, “An Overview of the BlueGene/L Supercomputer,” The BlueGene/L Team, IBM and Lawrence Livermore National Laboratory, 2002 IEEE. pp. 1-22.
  • Epstein, Dave, “IBM Extends DSP Performance with Mfaxt,” Microprocessor Report, vol. 9, No. 16 (MicroDesign Resources), Dec. 4, 1995, pp. 1-4 [XL0029013].
  • Forstner, “Wer Zuerst Kommt, Mahit Zuerst!: Teil 3: Einsatzgebiete und Anwendungbeispiele von FIFO-Speichern,” Elektronik, Aug. 2000, pp. 104-109.
  • Galanis, M.D. et al., “Accelerating Applications by Mapping Critical Kernels on Coarse-Grain Reconfigurable Hardware in Hybrid Systems,” Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2005, 2 pages.
  • Guo, Z. et al., “A Compiler Intermediate Representation for Reconfigurable Fabrics,” UniVersity of California, Riverside, Dept. of Electrical Engineering, IEEE 2006, 4 pages.
  • Gwennap, Linley, “P6 Underscores Intel's Lead,” Microprocessor Report, vol. 9., No. 2, Feb. 16, 1995 (MicroDesign Resources), p. 1 and pp. 6-15.
  • Gwennap, Linley, “Intel's P6 Bus Designed for Multiprocessing,” Microprocessor Report, vol. 9, No. 7 (MicroDesign Resources), May 30, 1995, p. 1 and pp. 6-10.
  • Intel, “Pentium Pro Family Developer's Manual , vol. 3: Operating System Writer's Guide,” Intel Corporation, Dec. 1995, [submitted in 4 PDF files: Part I, Part II, Part III and Part IV], 458 pages.
  • Iseli, C., et al. “A C++ Compiler for FPGA Custom Execution Units Synthesis,” IEEE, 1995, pp. 173-479.
  • Isstiki, Tsuyoshi, et al., “Bit-Serial Pipeline Synthesis for Multi-FPGA Systems with C++ Design Capture,” 1996 IEEE, pp. 38-47.
  • Ling et al., “WSMII: A Multifunction Programmable Logic Device (MPLD) with Data Driven Control,” The Transactions of the Institute of Electronics, Information and Communication Engineers, Apr. 25, 1994, vol. J77-D-1, Nr. 4, pp. 309-317. [This reference is in Chinese, but should be comparable in content to the Ling et al. reference above.].
  • Mario, M.M., “Digital Design,” by Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632, 1984, pp. 119-125, 154-161.
  • Maxfield,C., “Logic that Mutates While-U-Wait,” EDN (Bur. Ed) (USA), EDNn (European Edition), Nov. 7, 1996, Cahners Publishing, USA, pp. 137-140, 142.
  • Murphy, C., “Virtual Hardware Using Dynamic Reconfigurabie Field Programmable Gate Arrays,” Engineering Development Centre, Liverpool John Moores University, UK, Geri Annual Research Symposium 2005, 8 pages.
  • Piotrowski, A., “IEC-Bus, Die Funktionsweise des IEC-Bus unde seine Anwendung in Geräten und Systemen,” 1987, Franzis-Verlag GmbH, München, pp. 20-25. [English Abstract Provided].
  • Schönfeld, M., et al., “The LISA Design Environment for the Synthesis of Array Processors Including Memories for the Data Transfer and Fault Tolerance by Reconfiguration and Coding Techniques,” J. VLSI Signal Processing Systems for Signal, Image, and Video Technology, (Oct. 1, 1995) vol. 11 (1/2), pp. 51-74.
  • Altera, “Implementing High-Speed Search Applications with Altera CAM,” Jul. 2001, Ver. 2.1, Application Note 119, 50 pages.
  • Bolsens, Ivo (CTO Xilinx), “FPGA, a history of interconnect,” Xilinx slide presentation, posted on the internet Oct. 30, 2008 at http://www.docstoc.com/docs/2198008/FPGA-a-history-of-interconnect, 32 pages.
  • U.S. Appl. No. 90/010,979, filed May 4, 2010, Vorbach et al.
  • U.S. Appl. No. 90/011,087, filed Jul. 8, 2010, Vorbach et al.
  • Hauser, John Reid, (Dissertation) “Augmenting A Microprocessor with Reconfigurable Hardware,” University of California, Berkeley, Fall 2000, 255 pages. (submitted in 3 PDFs, Parts 1-3).
  • Hauser, John R., “The Garp Architecture,”University of California at Berkeley, Computer Science Division, Oct. 1997, pp. 1-55.
  • Venkatachalam et al., “A highly flexible, distributed multiprocessor architecture for network processing,” Computer Networks, The International Journal of Computer and Telecommunications Networking, vol. 41, No. 5, Apr. 5, 2003, pp. 563-568.
  • Xilinx, Inc.'s and Avnet, Inc.'s Disclosure Pursuant to P.R. 4-2; PACT XPP Technologies, AG. V. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, 4 pages.
  • Xilinx, Inc.'s and Avnet, Inc.'s Disclosure Pursuant to P.R. 4-1; PACT XPP Technologies, AG. V. Xilinx, Inc. and Avnet, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, 9 pages.
  • Defendant's Claim Construction Chart for P.R. 4-2 Constructions and Extrinsic Evidence for Terms Proposed by Defendants, PACT XPP Technologies, AG. V.Xilinx, Inc, and AVENT, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-19.
  • PACT's P.R. 4-1 List of Claim Terms for Construction, PACT XPP Technologies, AG. V. Xilinx, Inc. and Avnet Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-7.
  • PACT's P.R. 4-2 Preliminary Claim Constructions and Extrinsic Evidence, PACT XPP Technologies, AG. V. Xilinx, Inc. and AVNET, Inc., Case No. 2:07-cv-00563-TJW-CE, U.S. District Court for the Eastern District of Texas, Dec. 28, 2007, pp. 1-16, and Exhibits re Extrinsic Evidence Parts in seven (7) separate additional PDF files (Parts 1-7).
  • Ballagh et al., “Java Debug Hardware Models Using JBits,” 8th Reconfigurable Architectures Workshop, 2001, 8 pages.
  • Bellows et al., “Designing Run-Time Reconfigurable Systems with JHDL,” Journal of VLSI Signal Processing, vol. 28, Kluwer Academic Publishers, The Netherlands, 2001, pp. 29-45.
  • Guccione et al., “JBits: Java based interface for reconfigurable computing,” Xilinx, Inc., San Jose, CA, 1999; 9 pages.
  • Price et al., “Debug of Reconfigurable Systems,” Xilinx, Inc., San Jose, CA, Proceedings of SPIE, 2000, pp. 181-187.
  • Sundararajan et al., “Testing FPGA Devices Using JBits,” Proc. MAPLD 2001, Maryland, USA, Katz (ed.), NASA, CA, 8 pages.
  • U.S. Appl. No. 90/010,450, filed Mar. 27, 2009.
  • Microsoft Press Computer Dictionary, Third Edition, Redmond, WA, 1997, 3 pages.
  • Microsoft Press Computer Dictionary, Second Edition, Redmond, WA, 1994, 3 pages.
  • A Dictionary of Computing, Fourth Edition, Oxford University Press, 1997, 4 pages.
  • Communications Standard Dictionary, Third Edition, Martin Weik (Ed.), Chapman & Hall, 1996, 3 pages.
  • Dictionary of Communications Technology, Terms Definitions and Abbreviations, Second Edition, Gilbert Held (Ed.), John Wiley & Sons, England, 1995, 5 pages.
  • The Random House College Dictionary, Revised Edition, Random House, Inc., 1984, 14 pages.
  • The Random House College Dictionary, Revised Edition, Random House, Inc., 1984, 7 pages.
  • Random House Webster's College Dictionary with CD-ROM, Random House, 2001, 7 pages.
  • Random House Webster's College Dictionary with CD-ROM, Random House, 2001, 4 pages.
  • Random House Personal Computer Dictionary, Second Edition, Philip E. Margolis (Ed.), Random House, New York, 1996, 5 pages.
  • The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition, 1996, 36 pages.
  • The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition, 1996, 8 pages.
  • McGraw-Hill Electronics Dictionary, Sixth Edition, Neil Sclater et al. (Ed.), McGraw-Hill, 1997, 3 pages.
  • Modem Dictionary of Electronics, Sixth Edition, Rudolf Graf (Ed.), Newnes (Butterwoth-Heinemann), 1997, 5 pages.
  • The American Heritage Dictionary, Fourth Edition, Dell (Houghton-Mifflin), 2001, 5 pages.
  • The American Heritage Dictionary, Second College Edition, Houghton Mifflin, 1982, 23 pages.
  • The American Heritage Dictionary, Second College Edition, Houghton Mifflin, 1982, 8 pages.
  • The American Heritage Dictionary, Third Edition, Dell Publishing (Bantam Doubleday Dell Publishing Group, Inc.), 1994, 4 pages.
  • The American Heritage Dictionary, Fourth Edition, Dell/Houghton Mifflin 2001, 5 pages.
  • Webster's New Collegiate Dictionary, Merriam Co., 1981, 5 pages.
  • Webster's New Collegiate Dictionary, Merriam Co., 1981, 4 pages.
  • The Oxford American Dictionary and Language Guide, Oxford University Press, 1999, 5 pages.
  • The Oxford Duden German Dictionary, Edited by the Dudenredaktion and the German Section of the Oxford University Press, W. Scholze-Stubenrecht et al. (Eds), Clarendon Press, Oxford, 1990, 7 pages.
  • Oxford Dictionary of Computing, Oxford University Press, 2008, 4 pages.
  • Modern Dictionary of Electronics, Sixth Edition Revised and Updated, Rudolf F. Graf (Ed.), Butterworth-Heinemann, 1997, 7 pages.
  • Modern Dictionary of Electronics, Sixth Edition Revised and Updated, Rudolf F. Graf (Ed.), Butterworth-Heinemann, 1997, 5 pages.
  • Garner's Modern American Usage, Bryan A. Garner (Ed.), Oxford University Press, 2003, 3 pages.
  • The New Fowler's Modern English Usage, R.W. Burchfield (Ed.) , Oxford University Press, 2000, 3 pages.
  • Wikipedia, the free encyclopedia, “Granularity”, at http://en.wikipedia.org/wiki/Granularity, Jun. 18, 2010, 4 pages.
  • Wordsmyth, The Premier Educational Dictionary—Thesaurus, at http://www.wordsmyth.net , “communication”, Jun. 18, 2010, 1 page.
  • Yahoo! Education, “affect”, at http://education.yahoo.com/reference/dictionary/entry/affect , Jun. 18, 2010, 2 pages.
  • mPulse Living Language, “high-level”, at http://www.macmillandictionary.com/dictionary/american/high-level , Jun. 18, 2010, 1 page.
  • MSN Encarta, “regroup”, at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=regroup, Jun. 17, 2010, 2 pages.
  • MSN Encarta, “synchronize”, at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx!lextype=3&search=synchronize , Jun. 17, 2010, 2 pages.
  • MSN Encarta, “pattern”, at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=pattem, Jun. 17, 2010, 2 pages.
  • MSN Encarta, “dimension”, at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search-dimension, Jun. 17, 2010, 2 pages.
  • MSN Encarta, “communication”, at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search-communication, Jun. 17, 2010, 2 pages.
  • MSN Encarta, “arrangement”, at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3&search=arrangement, Jun. 17, 2010, 2 pages.
  • MSN Encarta, “vector”, at http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=38&search=vector, Jul. 30, 2010, 2 pages.
  • Dictionary.com, “address”, at http://dictionary.reference.com/browse/address , Jun. 18, 2010, 4 pages.
  • P.R . 4-3 Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc et al., E.D. Texas, 2:07-cv-00563-CE, Jul. 19, 2010, pp. 1-50.
  • Order Granting Joint Motion for Leave to File An Amended Joint Claim Construction and Prehearing Statement and Joint Motion to File an Amended Joint Claim Construction and Prehearing Statement Pursuant to Local Patent Rule 4-3, and Exhibit A: P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 2, 2010, 72 pages.
  • P.R. 4-3 Amended Joint Claim Constructions Statement, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 3, 2010, pp. 1-65.
  • Exhibit A—P.R. 4-3 Amended Joint Claim Constructions Statement, PACT APP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Aug. 2, 2010, pp. 1-66.
  • PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-55.
  • Declaration of Harry L. (Nick) Tredennick in Support of PACT's Claim Constructions, PACT XPP Technologies, AG v. Xilinx Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-87.
  • Transcript of Harry (Nick) L. Tredennick III, Ph.D., Oct. 11, 2010, vol. 1, Exhibit 16 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-3.
  • Agreed and Disputed Terms, Exhibit 17 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-16.
  • Oral Videotaped Deposition—Joseph McAlexander dated Oct. 12, 2010, vol. 1, Exhibit 18 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-17.
  • Expert Report of Joe McAlexander Re Claim Construction dated Sep. 27, 2010, Exhibit 19 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-112.
  • Documents from File History of U.S. Appl. No. 09/290,342, filed Apr. 12, 1999, Exhibit 20 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-37.
  • Amendment from File History of U.S. Appl. No. 10/156,397, filed May 28, 2002, Exhibit 25 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-12.
  • Documents from File History U.S. Appl. No. 09/329,132, filed Jun. 9, 1999, Exhibit 27 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-36.
  • Amendment from File History of U.S. Appl. No. 10/791,501, filed Mar. 1, 2004, Exhibit 39 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-9.
  • Amendment from File History of U.S. Appl. No. 10/265,846, filed Oct. 7, 2002, Exhibit 40 of PACT's Opening Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Nov. 1, 2010, pp. 1-12.
  • Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-55.
  • Declaration of Aaron Taggart in Support of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief (Exhibit A), PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-5.
  • Oral Videotaped Deposition Joseph McAlexander (Oct. 12, 2010), Exhibit 1 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-9.
  • Expert Report of Joe McAlexander re Claim Construction, Exhibit 2 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-137.
  • Various Documents from File History of U.S. Appl. No. 09/290,342, filed Apr. 12, 1999), Exhibit 6 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-181.
  • Transcript of Harry (Nick) L. Tredennick III, Ph.D., Oct. 11, 2010, vol. 1, Exhibit 7 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-28.
  • Amendment, Response from File History of U.S. Appl. No. 10/156,397, filed May 28, 2002, Exhibit 15 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-137.
  • Application from File History of U.S. Appl. No. 08/544,435, filed Nov. 17, 1995, Exhibit 20 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-102.
  • Documents from File History of U.S. Appl. No. 09/329,132, filed Jun. 9, 1999, Exhibit 24 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-13.
  • Documents from File History of U.S. Appl. No. 10/791,501, filed Mar. 1, 2004, Exhibit 25 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-14.
  • Amendment from File History of U.S. Appl. No. 11/246,617, filed Oct. 7, 2005, Exhibit 26 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-9.
  • Documents from File History of U.S. Appl. No. 08/947,254, filed Oct. 8, 1997, Exhibit 27 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-38.
  • Documents from File History of U.S. Appl. No. 08/947,254, filed Oct. 8, 1997, specifically, German priority application specification [English translation provided], Exhibit 33 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, 54 pages [including English translation].
  • Documents from File History of U.S. Appl. No. 09/335,974, filed Jun. 18, 1999, Exhibit 28 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-32.
  • Documents from File History of U.S. Patent Reexamination Control No. 90/010,450, filed Mar. 27, 2009, Exhibit 30 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Dec. 6, 2010, pp. 1-71.
  • Documents from File History of U.S. Appl. No. 10/265,846, filed Oct. 7, 2002, Exhibit 32 of Defendants Xilinx, Inc. and Avnet, Inc.'s Responsive Claim Construction Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2: 07-cv-00563-CE, Dec. 6, 2010, pp. 1-23.
  • PACT's Claim Construction Reply Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jan. 7, 2011, pp. 1-20.
  • Defendants Xilinx, Inc. and Avnet, Inc.'s Claim Construction Surreply Brief, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jan. 18, 2011, 142 pages.
  • Markman Hearing Minutes and Attorney Sign-In Sheet, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Feb. 22, 2011, 3 pages; and court transcript, 245 pages.
  • Memorandum Opinion and Order, PACT XPP Technologies, AG v. Xilinx, Inc. and Avnet, Inc. et al., E.D. Texas, 2:07-cv-00563-CE, Jun. 17, 2011, pp. 1-71.
  • Atmel Corporation, Atmel 5-K-50K Gates Coprocessor FPGA and FreeRAM, (www.atmel.com), Apr. 2002 , pp. 1-68.
  • Glaskowsky, Peter N., “PACT Debuts Extreme Processor; Reconfigurable ALU Array Is Very Powerful—and Very Complex” Microprocessor, The Insider's Guide to Microprocessor Hardware, MicroDesign Resources—Microprocessor Report, Oct. 9, 2000 (www.MPRonline.com), 6 pages.
  • Glaskowsky, Peter N., “Analysis' Choice Nominees Named; Our Picks for 2002's Most Important Products and Technologies” Microprocessor, The Insider's Guide to Microprocessor Hardware, MicroDesign Resources—Microprocessor Report, Dec. 9, 2002 (www.MPRonline.com), 4 pages.
  • Lattice Semiconductor Corporation, ispLSI 2000E, 2000VE and 2000 VL Family Architectural Description, Oct. 2001, pp. 1-88.
  • Olukotun, K. et al., “Rationale, Design and Performance of the Hydra Multiprocessor,” Computer Systems Laboratory, Stanford University, CA, Nov. 1994, pp. 1-19.
  • PACT Corporate Backgrounder, PACT company release, Oct. 2008, 4 pages.
  • Page, Ian., “Reconfigurable processor architectures,” Oxford University Computing Laboratory, Oxford UK, Elsevier Science B.V., Microprocessors an Microsystems 20 (1996) pp. 185-196.
  • Singh, Hartej et al., “Morpho-Sys: A Reconfigurable Architecture for Multimedia Applications,” Univ. of California, Irvine, CA and Federal University of Rio de Janiero, Brazil, at http://www.eng.uci.edu/morphosys/docs/sbcci98.html 10 pages.
  • Theodoridis, G. et al., “Chapter 2—A Survey of Coarse-Grain Reconfigurable Architectures and Cad Tools, Basic Definitions, Critical Design Issues and Existing Coarse-grain Reconfigurable Systems,” from S. Vassiliadis, and D. Soudris (eds.) Fine- and Coarse-Grained Reconfigurable Computing, Springer 2007, pp. 89-149.
  • Weinhardt, Markus et al., “Using Function Folding to Improve Silicon Efficiency of Reconfigurable Arithmetic Arrays,” PACT XPP Technologies AG, Munich, Germany, IEEE 2004, pp. 239-245.
  • Xilinx, XC6200 Field Programmable Gate Arrays, Advance Product Specification, Jun. 1, 1996 (Version 1.0), pp. 4-255 through 4-286.
  • Xilinx, Virtex-II Platform FPGA User Guide, UG002 (V2.1) Mar. 28, 2007, pp. 1-502 [Parts 1-3].
  • Xilinx, XC4000E and SC4000X Serial Field Programmable Gate Arrays, Product Specification (Version 1.6), May 14, 1999, pp. 1-107.
  • Culler, D.E; Singh, J.P., “Parallel Computer Architecture,” p. 17, 1999, Morgan Kaufmann, San Francisco, CA USA, XP002477559.
  • Short, Kenneth L., Microprocessors and Programmed Logic, Prentice Hall, Inc., New Jersey 1981, p. 34.
  • Webster's Ninth New Collegiate Dictionary, Merriam-Webster, Inc., 1990, p. 332 (definition of “dedicated”).
  • Ramanathan et al., “Reconfigurable Filter Coprocessor Architecture for DSP Applications,” Journal of VLSI Signal Processing, 2000, vol. 26, pp. 333-359.
  • Shanley, Tom, Pentium Pro and Pentium II System Architecture, MindShare, Inc., Addition Wesley, 1998, Second Edition, pp. 11-17; Chapter 7; Chapter 10; pp. 209-211, and p. 394.
  • Shoup, Richard, “Programmable Cellular Logic Arrays,” Dissertation, Computer Science Department, Carnegie-Mellon University, Mar. 1970, 193 pages.
  • Zucker, Daniel F., “A Comparison of Hardware Prefetching Techniques for Multimedia Benchmarks,” Technical Report: CSL-TR-95-683, Dec. 1995, 26 pages.
  • “On High-Bandwidth Data Cache Design for Multi-Issue Processors,” Jude A. Rivers, et al., Published in the Proceedings of Micro-30, Dec. 1-3, 1997.
Patent History
Patent number: 8819505
Type: Grant
Filed: Jun 30, 2009
Date of Patent: Aug 26, 2014
Patent Publication Number: 20090300445
Assignee: Pact XPP Technologies AG (Munich)
Inventors: Martin Vorbach (Karlsruhe), Robert Münch (Karlsruhe)
Primary Examiner: Cynthia Britt
Application Number: 12/495,465
Classifications
Current U.S. Class: Digital Logic Testing (714/724); Memory Testing (714/718); Error Mapping Or Logging (714/723); Testing Specific Device (714/742)
International Classification: G01R 31/28 (20060101); G11C 13/00 (20060101); G06F 11/20 (20060101); G01R 31/3185 (20060101); G01R 31/319 (20060101); G11C 29/00 (20060101); G06F 11/00 (20060101);