Methods of manufacturing semiconductor devices including terminals with internal routing interconnections

- UTAC Thai Limited

A method of fabricating a semiconductor package includes forming a plurality of terminals on a sheet carrier, molding the sheet carrier with a first molding compound, creating electrical paths for a first routing layer, plating the first routing layer, placing dice on the first routing layer, encapsulating the dice with a second molding compound, removing at least a portion of the sheet carrier, and singulating the package from other packages.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application claims benefit of priority under 35 U.S.C. section 119(e) of the U.S. Provisional Patent Application Ser. No. 61/645,569, filed May 10, 2012, entitled “PROTRUDING TERMINAL WITH INTERNAL ROUTING INTERCONNECTION SEMICONDUCTOR DEVICE,” and the U.S. Provisional Patent Application Ser. No. 61/645,560, filed May 10, 2012, entitled “PLATING TERMINAL AND ROUTING INTERCONNECTION SEMICONDUCTOR DEVICE,” which are hereby incorporated by reference in their entireties.

FIELD OF THE INVENTION

The present invention is related to the field of semiconductor device manufacturing. More specifically, the present invention relates to methods of manufacturing semiconductor devices including terminals with internal routing interconnections.

BACKGROUND

There is a growing demand for high-performance semiconductor packages. However, increases in semiconductor circuit density pose interconnect challenges for a packaged chip's thermal, mechanical and electrical integrity. Thus, there is a need for methods of manufacturing a semiconductor package with improved routing capabilities.

SUMMARY OF THE DISCLOSURE

In one aspect, a method of fabricating a semiconductor package includes forming a plurality of terminals on a sheet carrier, such as a copper leadframe strip. In some embodiments, the plurality of terminals is formed by plating a plurality of patterns which becomes the plurality of terminals. In some embodiments, a first side of the sheet carrier is plated thereon with a first portion of the plurality of patterns. In some embodiments, a second side of the sheet carrier is plated thereon with a second portion of the plurality of patterns. In some embodiments, the first portion of patterns aligns with the second portion of patterns

The method also includes molding the sheet carrier with a first molding compound. In some embodiments, the first molding compound surrounds the a portion of the plurality of terminals on the sheet carrier. In some embodiments, a height of the first molding compound is the same as a height of the portion of the plurality of terminals.

The method also includes creating electrical paths for a first routing layer. In some embodiments, the electrical paths are created by using catalytic ink to form the electrical paths during a process, such as, a screen printing process or an inkjet writing process. In some embodiments, the catalytic ink is dropped on the first molding compound, around perimeter of each of the portion of the plurality of terminals and extending planarly therefrom.

The method also includes plating the first routing layer. In some embodiments, the plating is adhered to the electrical paths and to a top surface of each of the portion of the terminals during a process, such as, an electro plating process or an electroless plating process.

The method also includes placing dice on the first routing layer. In some embodiments, the dice are coupled with the first routing layer via one of bond wires and solder balls. In some embodiments, a die is stacked on top of another die within the semiconductor package. Alternatively or in addition, two or more dice are mounted on the first routing layer within the semiconductor package.

The method also includes encapsulating the dice with a second molding compound, removing at least a portion of the sheet carrier, and singulating the package from other packages. In some embodiments, the sheet carrier is removed by performing an etching process.

In some embodiments, the method also includes, after removing at least a portion of the sheet carrier and before singulating the package, minimizing plating package terminal peel off problem. In some embodiments, the minimizing plating package terminal peel off problem includes shaping a portion of the plurality of terminals.

In some embodiments, the method also includes, after the plating for the first routing layer step and before the placing dice on the first routing layer step, creating a via layer and a subsequent routing layer. In some embodiments, the subsequent routing layer is a bondable routing layer.

In some embodiments, the process for creating a via layer and a subsequent routing layer includes forming a plurality of vias on a topmost routing layer, molding the topmost routing layer and the plurality of vias with another molding compound, creating electrical paths for the subsequent routing layer, and plating the subsequent routing layer. In some embodiments, the topmost routing layer is the first routing layer. In some embodiments, the plurality of vias is configured to couple two routing layers. In some embodiments, the plurality of vias is formed by plating the topmost routing layer. In some embodiments, the another molding compound surrounds the plurality of vias and the topmost routing layer.

In some embodiments, the method also includes increasing terminal package stand off. In some embodiments, the terminal package stand off is increased by coupling a plurality of solder balls with the plurality of terminals such that the plurality of solder balls extend away from the semiconductor package.

In another aspect, a method of fabricating a semiconductor package includes plating a plurality of patterns on a sheet carrier, molding the first side of the sheet carrier with a first molding compound, forming electrical paths for a first routing layer, plating the first routing layer, creating at least one subsequent routing layer, placing dice on a top-most routing layer, encapsulating the dice with a second molding compound, removing unplated portions of the sheet carrier, and singulating the package from other packages.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the appended claims. However, for purpose of explanation, several embodiments of the invention are set forth in the following figures.

FIG. 1 illustrates an exemplary method of manufacturing a semiconductor package in accordance with the present invention.

FIGS. 2A-2D illustrate an exemplary result produced at each step of the method of FIG. 1.

FIG. 2E illustrates another exemplary semiconductor package in accordance with the present invention.

FIGS. 3A-3B illustrate another exemplary semiconductor package and a method of manufacturing the same in accordance with the present invention.

FIG. 3C illustrates another exemplary semiconductor package in accordance with the present invention.

FIGS. 4A-4C illustrate yet another exemplary semiconductor package and a method of manufacturing the same in accordance with the present invention.

FIG. 5 illustrates an exemplary method of manufacturing a semiconductor package having a complicated routing circuit in accordance with the present invention.

FIGS. 6A-6B illustrate exemplary results produced at selected steps of the method of FIG. 5.

FIG. 6C illustrates another exemplary semiconductor package in accordance with the present invention.

FIG. 7A illustrates a cross-sectional view of an exemplary semiconductor package having three routing layers in accordance with the present invention.

FIG. 7B illustrates a cross-sectional view of another exemplary semiconductor package having three routing layers in accordance with the present invention.

FIG. 8 illustrates an exemplary semiconductor package having a plurality of semiconductor dies in accordance with the present invention.

FIG. 9 illustrates an exemplary semiconductor package having increased terminal package standoff in accordance with the present invention.

FIG. 10 illustrates another exemplary result produced at selected steps of the method of FIG. 1.

DETAILED DESCRIPTION

In the following description, numerous details are set forth for purposes of explanation. However, one of ordinary skill in the art will realize that the invention can be practiced without the use of these specific details. Thus, the present invention is not intended to be limited to the embodiments shown but is to be accorded the widest scope consistent with the principles and features described herein or with equivalent alternatives.

Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts.

Embodiments of the present invention are directed to methods of manufacturing semiconductor devices including terminals with internal routing interconnections. An exemplary semiconductor package includes terminals, and a layer of interconnection routings disposed within the semiconductor package. Each interconnection routing is electrically coupled with a terminal and can extend planarly therefrom. The semiconductor package also includes at least one die coupled with the layer of interconnection routings. In some embodiments, the semiconductor package also includes at least one intermediary layer, each including a via layer and an associated routing layer.

FIG. 1 illustrates an exemplary method 100 of manufacturing a semiconductor package in accordance with the present invention. An exemplary result produced by each step of the method 100 is illustrated in FIGS. 2A-2C. The method 100 begins at a step 105, where a sheet carrier is provided. In some embodiments, the sheet carrier is a pure copper leadframe strip. The leadframe strip can be of other suitable material.

At a step 110, a plurality of terminals is formed on a first side of the sheet carrier. In some embodiments, the plurality of terminals is formed by plating a plurality of patterns with Cu, Ag, NiPdAu, or other suitable material.

Alternatively, at a step 110′ (shown in FIG. 10), a plurality of patterns is formed on both sides (i.e., a first side and a second side) of the sheet carrier. In some embodiments, a first portion of patterns plated on the first side of the sheet carrier aligns with a second portion of patterns plated on the second side of the sheet carrier. The first side is typically the top side of the sheet carrier. The second side is typically the bottom side of the sheet carrier. In some embodiments, the plurality of patterns is plated with Cu, Ag, NiPdAu, or any other suitable material.

The plurality of patterns can be of any shape and size. As illustrated in FIG. 2A, the patterns are cylindrical and equidistantly separated. The plurality of patterns eventually becomes the plurality of terminals.

At a step 115, the first side of the sheet carrier is molded with a first molding compound. The first molding compound surrounds the patterns on the first side of the sheet carrier. The height of the first molding compound is typically the same as the height of the patterns on the first side of the sheet carrier. The first molding compound includes a plastic polymer or resin.

At a step 120, electrical paths are formed for a first routing layer. In some embodiments, the electrical paths are formed by using catalytic ink to form the electrical paths during a process, such as, a screen printing process or an inkjet writing process. The catalytic ink is dropped on the first molding compound according to a product specification. The catalytic ink is dropped around the perimeter of each pattern on the first side of the sheet carrier and can extend planarly therefrom. The catalytic ink is formulated ink for initiating copper plating on the first routing layer. An exemplary catalytic ink is MicroCat manufactured by MacDermid Incorporated.

At a step 125, the first routing layer is plated. The plating is adhered to a portion of the first molding compound that had been initiated by the catalytic ink. In other words, the plating is adhered to the electrical paths. The plating is also adhered to a top surface of each pattern on the first side of the sheet carrier. The first routing layer can be plated using an electro plating process or an electroless plating process. The electrical paths are typically conductive and form routings.

In some embodiments, if the first routing layer is the topmost routing layer, then the routings on the first routing layer are interconnection routings. The interconnection routings are electrically coupled with the terminals. In some embodiments, at least one interconnection routing extends planarly therefrom. In some embodiments, an interconnection routing is electrically coupled with at least another terminal. In some embodiments, a first interconnection routing is electrically coupled with a second interconnection routing. This interconnection routing layer is typically configured for coupling with dice.

At a step 130, dice are placed on the topmost (e.g., first) routing layer. In some embodiments, the dice are coupled with the first routing layer via epoxy. As illustrated, the epoxy is filled in spaces between the interconnection routings, beneath the dice. Other adhesives can be used to couple the dice with the first routing layer. Bond wires couple dice terminals to the interconnection routings. The bond wires can be gold wires, copper wires or any suitable metallic wires.

At a step 135, the dice are encapsulated with a second molding compound, which also encapsulates the interconnection routings and the bond wires. The second molding compound includes a plastic polymer or resin. The second molding compound can be the same as or different from the first molding compound. The first molding compound and the second molding compound become part of a package compound.

At a step 140, unplated portions of the sheet carrier are removed. In some embodiments, the unplated portions of the sheet carrier are removed by performing an etching process, which can be a dip process or a spray process. Other processes for removing the unplated portions of the sheet carrier are possible. As shown in FIG. 2A, the second side of the sheet carrier is not plated. As such, the entire sheet carrier is removed. Once the sheet carrier is removed, the plurality of terminals is exposed at a bottom surface of the sheet carrier, as shown in FIG. 2C.

Alternatively, as discussed above, at the step 110′ shown in FIG. 10, the second side of the sheet carrier is plated. As such, at a step 140a, only the unplated portions of the sheet carrier are removed, while the plated portions of the sheet carrier remain. Once the unplated portions of the sheet carrier are removed, the plurality of terminals protrude from a bottom surface of the sheet carrier, as shown in FIG. 10.

Typically, the molding is minimally or not affected by the removal of the unplated portions of the sheet carrier. For instance, when the sheet carrier comprises copper, and the removal step 140, 140a involves using a chemical etchant, preferably, the etchant and/or plating structure are selected such that the etchant is reactive with (removes) the sheet carrier with minimal effect to the plating and the molding. An example of such an etchant includes cupric chloride.

Referring to the step 140a shown in FIG. 10, when unplated areas of the sheet carrier are removed, a middle section of each protruding terminal is hourglass-shaped. However, the middle section of each protruding terminal can be of other shapes per design.

At an optional step 140b following the step 140a, a plating package terminal peel off problem is minimized. In some embodiments, the plating package terminal peel off problem is minimized by shaping the protruding terminals. A high pressure water jet process or any suitable process can be used to shape the protruding terminals. As illustrated in FIG. 10, each terminal has a tapered tip and a flat end. Other terminal shapes are contemplated.

Referring back to FIG. 2C, at a step 145, a singulation process is performed to separate semiconductor packages from the strip. Singulation can be done using a high-speed saw, a laser, a high-pressure water jet, or some other suitable means. After the step 145, the method 100 ends. The singulated packages are available for additional testing, processing, shipping and/or use.

FIG. 2D illustrates an exemplary singulated semiconductor package manufactured by the method 100, which shows a top side view and a bottom side view of the singulated semiconductor package. The terminals have exposed bottom surfaces that are substantially flush with a bottom surface of the semiconductor package. The terminals do not protrude from the semiconductor package. FIG. 2D also illustrates an x-rayed view of the top side of the semiconductor package, which shows interconnection routings located inside the semiconductor package. A shape of an interconnection routing and a terminal electrically coupled with the interconnection routing and any additional layers therebetween (together referred to as simply “terminal”) is irregular and designed for locking with the package compound, which includes at least the first molding compound and the second molding compound.

FIG. 2E illustrates another exemplary singulated semiconductor package manufactured by the method 100, which shows a top side view and a bottom side view of the singulated semiconductor package. The terminals protrude from a bottom surface of the semiconductor package and are in electrical communication with the interconnection routing layer. A shape of an interconnection routing and a terminal electrically coupled with the interconnection routing and any additional routing layers therebetween (together referred to as simply “terminal”) is irregular and designed for locking with the package compound, which includes at least the first molding compound and the second molding compound. As discussed above, each terminal includes a first plated region and a second plated region formed on opposite sides of a metallic strip. The metallic strip is part of the sheet carrier from which the semiconductor package is built upon. The first plated region is surrounded by the first molding compound. The first plated region is coplanar with the first molding compound. The second plated region and the metallic strip are nonplanar with the first molding compound. In some embodiments, a width of the second plated region of each terminal is nonuniform. In some embodiments, a distal end of each terminal is tapered. A middle portion of each terminal is hourglass-shaped.

The method 100 is described relative to bond wire type packages. However, the method 100 is also applicable for flip chip type packages. Instead of using bond wires to couple the dice with the first routing layer at the step 130, solder balls are used to couple the dice with the first routing layer including the interconnection routings, as illustrated in FIG. 3A. FIG. 3B illustrates an exemplary completed, singulated flip chip package in accordance with the present invention. FIG. 3C illustrates another exemplary completed, singulated flip chip package in accordance with the present invention. The flip chip package in FIG. 3C has terminals protruding from the bottom surface of the package.

FIGS. 4A-4C illustrate yet another exemplary semiconductor package and a method of manufacturing the same in accordance with the present invention. FIG. 4A illustrates a base copper sheet carrier including package die attach pads and terminals. Similar to the method 100 for base sheet carrier fabrication, die attach pads and terminals are formed instead of interconnection routing terminals for thermal dissipation purposes. The dice are coupled with the die attach pads using an adhesive. Bond wires couple dice terminals with the interconnection routings. The bond wires can be gold wires, copper wires or any suitable metallic wires.

FIG. 4B illustrates a completed, singulated semiconductor package in accordance with the present invention. The semiconductor package in FIG. 4B has terminals and a die attach pad that have exposed bottom surfaces. The exposed bottom surfaces are substantially flush with a bottom surface of the semiconductor package. The terminals and the die attach pad do not protrude from the semiconductor package. The die attach pad of the semiconductor package is configured for thermal dissipation.

FIG. 4C illustrates an x-rayed view of a bottom side of the semiconductor package, which shows the terminals and the die attach pad. A shape of a terminal and a shape of the die attach pad are each irregular and designed for locking with the package compound.

In some instances, a semiconductor die requires a package that has a more complicated routing circuit than that of the embodiments described above, since a single routing layer is insufficient. The concepts of the present invention can also be applied for multilayer routing packages by forming at least one intermediary layer that couples with the first routing layer. The intermediary layer includes a via layer and a subsequent routing layer. The method 100 can be extended to include, after the plating for the first routing layer step (125) and before the placing dice on the sheet carrier step (130) of FIG. 1, a process for creating an intermediary layer. In some embodiments, the subsequent routing layer becomes the topmost routing layer, which behaves as a bondable routing layer configured to couple with the dice using, for example, bond wires or solder balls.

FIG. 5 illustrates an exemplary method 500 of manufacturing a semiconductor package having a complicated routing circuit in accordance with the present invention. FIG. 6A illustrates exemplary results produced at selected steps of the method of FIG. 5. Discussion regarding steps 505-525 of method 500 are omitted for clarity and brevity because they are similar to the steps 105-125 of method 100.

After the step 525, at a step 526, a plurality of vias is formed. The plurality of vias is formed on a topmost routing layer by plating the topmost routing layer. The topmost routing layer can be plated by an electro plating process or an electroless plating process. In some embodiments, the topmost routing layer is the first routing layer. The plurality of vias typically electrically couples with the terminals and extends nonplanarly therefrom. The plurality of vias is configured to electrically couple two routing layers. In some embodiments, the plurality of vias is similarly sized and shaped as the plurality of patterns. In some embodiments, the plurality of vias is aligned vertically and/or horizontally with the plurality of patterns. Alternatively, the plurality of vias is not aligned vertically and/or horizontally with the plurality of patterns, but instead, electrically couples with the plurality of patterns in a staggered manner.

At a step 527, the topmost routing layer and the plurality of vias are molded with another molding compound. The another molding compound surrounds the plurality of vias and the first routing layer. The height of the second molding compound is typically the same as the combined height of the plurality of vias and the first routing layer. The another molding compound includes a plastic polymer or resin.

At a step 528, electrical paths are formed for the subsequent routing layer. In some embodiments, the electrical paths are formed by using catalytic ink to form the electrical paths during a process, such as, a screen printing process or an inkjet writing process. The catalytic ink is dropped on the subsequent molding compound according to another pattern. The catalytic ink is dropped around the perimeter of each terminal and can be extended planarly therefrom. The catalytic ink is formulated ink for initiating copper plating on the subsequent routing layer. An exemplary catalytic ink is MicroCat manufactured by MacDermid Incorporated.

At a step 529, the subsequent routing layer is plated. The plating is adhered to a portion of the second molding compound that had been initiated by the catalytic ink. In other words, the plating is adhered to the electrical paths. The plating is also adhered to a top surface of each terminal. The subsequent routing layer can be plated using an electro plating process or an electroless plating process. The electrical paths are typically conductive and form routings.

In some embodiments, the routings on the subsequent routing layer are associated routings. Each associated routing is electrically coupled with a terminal and extends planarly therefrom. In some embodiments, an associated routing is electrically coupled with at least another terminal. In some embodiments, a first associated routing is electrically coupled with a second associated routing.

In some embodiments, if the subsequent routing layer becomes the topmost routing layer, then the routings of the subsequent routing layer are interconnection routings. In some embodiments, each interconnection routing is electrically coupled with a terminal and extends planarly therefrom. In some embodiments, an interconnection routing is electrically coupled with at least another terminal. In some embodiments, a first interconnection routing is electrically coupled with a second interconnection routing. This interconnection routing layer is typically configured for coupling with dice.

Typically, the steps 526-529 can be repeated for each additional intermediary layer. A pattern formed by associated routings of a subsequent routing layer can be the same as or different from a pattern formed by interconnection routings of a layer of interconnection routings. Similarly, the pattern formed by the associated routings of the subsequent routing layer can be the same as or different from a pattern formed by interconnection routings of another subsequent routing layer.

The method 500 continues with steps 530-545, which are omitted for the sake of clarity and brevity because they are similar to the steps 130-145 of method 100. After the step 545, the method 500 ends.

FIG. 6B illustrates an exemplary singulated semiconductor package having two routing layers in accordance with the present invention. With the molding compound, die, and bonds wires or solder balls removed, each plating layer is shown in exploded view. A first plating layer includes terminals of the package. A second plating layer includes an associated routing layer. A third plating layer includes vias that link routing layers. A fourth plating layer includes a bondable layer on which the die is placed for a wire bond type package or a flip chip type package. Plating of each layer has width dimensions different from that of adjacent layers. The layers can have the same or different height dimensions. As discussed above, each layer is formed separately from other layers.

FIG. 6C illustrate an exemplary semiconductor package having two routing layers in accordance with the present invention. A first plating layer forms a part of protruding terminals of the package. A second plating layer includes an associated routing layer. A third plating layer includes vias that link routing layers, namely the second plating layer and a fourth plating layer. The fourth plating layer includes a bondable layer on which the die is placed for a wire bond type package or a flip chip type package. Plating of each layer has width dimensions different from that of adjacent layers. The layers can have the same or different height dimensions. As discussed above, each layer is formed separately from other layers.

In case two routing layers are insufficient, the concept illustrated in FIGS. 5-6C of building two routing layers (e.g., steps 526-529) can be repeated for each additional layer. FIG. 7A illustrates a cross-sectional view of an exemplary semiconductor package having three routing layers in accordance with the present invention. A first plating layer includes terminals of the package. A second plating layer includes a first associated routing layer. A third plating layer includes vias that link routing layers, namely the second plating layer and a fourth plating layer. The fourth plating layer includes a second associated routing layer. A fifth plating layer includes vias that link routing layers, namely the fourth plating layer and a sixth plating layer. The sixth plating layer includes a bondable layer on which the die is placed for a wire bond type package or a flip chip type package.

FIG. 7B illustrates a cross-sectional view of another exemplary semiconductor package having three routing layers in accordance with the present invention. A first plating layer forms a part of protruding terminals of the package. A second plating layer includes a first associated routing layer. A third plating layer includes vias that link routing layers, namely the second plating layer and a fourth plating layer. The fourth plating layer includes a second associated routing layer. A fifth plating layer includes vias that link routing layers, namely the fourth plating layer and a sixth plating layer. The sixth plating layer includes a bondable layer on which the die is placed for a wire bond type package or a flip chip type package.

In some embodiments, in any of the aforementioned semiconductor packages, a semiconductor package can also include at least one other die coupled with a die (e.g., stacked dice), at least two dice mounted on the topmost routing layer (e.g., interconnection routing layer), or both within the semiconductor package. FIG. 8 illustrates exemplary semiconductor packages each having a plurality of semiconductor dies in accordance with the present invention.

In some embodiments, in any of the aforementioned semiconductor packages, a semiconductor package can also include solder balls that couple with the terminals. The solder balls extend away from the semiconductor package to thereby increase terminal package standoff. FIG. 9 illustrates an exemplary semiconductor package having increased terminal package standoff in accordance with the present invention.

While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. Thus, one of ordinary skill in the art will understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.

Claims

1. A method of fabricating a semiconductor package comprising:

a. forming a plurality of terminals on a sheet carrier;
b. molding the sheet carrier with a first molding compound;
c. creating electrical paths for a first routing layer, wherein creating electrical paths includes dropping catalytic ink on the first molding compound, around a perimeter of each of a portion of the plurality of terminals and extending planarly therefrom;
d. plating the first routing layer;
e. placing dice on the first routing layer;
f. encapsulating the dice with a second molding compound;
g. removing at least a portion of the sheet carrier; and
h. singulating the semiconductor package from other semiconductor packages.

2. The method of claim 1, wherein the sheet carrier is a copper leadframe strip.

3. The method of claim 1, wherein forming a plurality of terminals includes plating a plurality of patterns which becomes the plurality of terminals.

4. The method of claim 3, wherein a first side of the sheet carrier is plated thereon with a first portion of the plurality of patterns.

5. The method of claim 4, wherein a second side of the sheet carrier is plated thereon with a second portion of the plurality of patterns, wherein the first portion of the plurality of patterns aligns with the second portion of the plurality of patterns.

6. The method of claim 1, wherein the first molding compound surrounds a portion of the plurality of terminals on the sheet carrier.

7. The method of claim 1, wherein a height of the first molding compound is the same as a height of a portion of the plurality of terminals.

8. The method of claim 1, wherein the plating is adhered to the electrical paths and to a top surface of each of a portion of the plurality of terminals.

9. The method of claim 1, wherein placing dice includes coupling the dice with the first routing layer via one of bond wires and solder balls.

10. The method of claim 1, wherein placing dice includes stacking a die on top of another die within the semiconductor package.

11. The method of claim 1, wherein placing dice includes mounting at least two dice on the first routing layer within the semiconductor package.

12. The method of claim 1, wherein removing at least a portion of the sheet carrier includes performing an etching process, wherein the portion of the sheet carrier is unplated.

13. The method of claim 1, further comprising, after removing at least a portion of the sheet carrier and before singulating the semiconductor package, shaping a portion of the plurality of terminals.

14. The method of claim 1, further comprising, after plating for the first routing layer and before placing dice on the first routing layer, creating a via layer and a subsequent routing layer.

15. The method of claim 14, wherein the subsequent routing layer is a bondable routing layer.

16. The method of claim 14, wherein creating a via layer and a subsequent routing layer includes:

a. forming a plurality of vias on a topmost routing layer;
b. molding the topmost routing layer and the plurality of vias with another molding compound;
c. creating electrical paths for the subsequent routing layer; and
d. plating the subsequent routing layer.

17. The method of claim 16, wherein the topmost routing layer is the first routing layer.

18. The method of claim 16, wherein the plurality of vias is configured to couple two routing layers.

19. The method of claim 16, wherein forming a plurality of vias includes plating the topmost routing layer.

20. The method of claim 16, wherein the another molding compound surrounds the plurality of vias and the topmost routing layer.

21. The method of claim 1, further comprising coupling a plurality of solder balls with the plurality of terminals such that the plurality of solder balls extend away from the semiconductor package.

22. A method of fabricating a semiconductor package comprising:

a. plating a plurality of patterns on a sheet carrier which become a plurality of terminals;
b. molding a first side of the sheet carrier with a first molding compound;
c. forming electrical paths for a first routing layer, wherein forming electrical paths includes dropping catalytic ink on the first molding compound, around a perimeter of each of a portion of the plurality of terminals and extending planarly therefrom;
d. plating the first routing layer;
e. creating at least one subsequent routing layer;
f. placing dice on a top-most routing layer;
g. encapsulating the dice with a second molding compound;
h. removing unplated portions of the sheet carrier; and
i. singulating the semiconductor package from other semiconductor packages.

23. A method of fabricating a semiconductor package comprising:

a. forming a plurality of terminals on a sheet carrier;
b. molding the sheet carrier with a first molding compound;
c. creating electrical paths for a first routing layer;
d. plating the first routing layer;
e. creating a via layer and a subsequent routing layer, comprising: i. forming a plurality of vias on a topmost routing layer; ii. molding the topmost routing layer and the plurality of vias with another molding compound; iii. creating electrical paths for the subsequent routing layer; and iv. plating the subsequent routing layer;
f. placing dice on the subsequent routing layer;
g. encapsulating the dice with a second molding compound;
h. removing at least a portion of the sheet carrier; and
i. singulating the semiconductor package from other semiconductor packages.

24. The method of claim 23, wherein the topmost routing layer is the first routing layer.

Referenced Cited
U.S. Patent Documents
3611061 October 1971 Segerson
4411719 October 25, 1983 Lindberg
4501960 February 26, 1985 Jouvet et al.
4801561 January 31, 1989 Sankhagowit
4855672 August 8, 1989 Shreeve
5105259 April 14, 1992 McShane et al.
5195023 March 16, 1993 Manzione et al.
5247248 September 21, 1993 Fukunaga
5248075 September 28, 1993 Young et al.
5281851 January 25, 1994 Mills et al.
5396185 March 7, 1995 Honma et al.
5397921 March 14, 1995 Karnezos
5479105 December 26, 1995 Kim et al.
5535101 July 9, 1996 Miles et al.
5596231 January 21, 1997 Combs
5843808 December 1, 1998 Karnezos
5990692 November 23, 1999 Jeong et al.
6072239 June 6, 2000 Yoneda et al.
6111324 August 29, 2000 Sheppard et al.
6159770 December 12, 2000 Tetaka et al.
6177729 January 23, 2001 Benenati et al.
6197615 March 6, 2001 Song et al.
6208020 March 27, 2001 Minamio et al.
6229200 May 8, 2001 Mclellan et al.
6242281 June 5, 2001 Mclellan et al.
6250841 June 26, 2001 Ledingham
6284569 September 4, 2001 Sheppard et al.
6285075 September 4, 2001 Combs et al.
6294100 September 25, 2001 Fan et al.
6304000 October 16, 2001 Isshiki et al.
6326678 December 4, 2001 Karnezos et al.
6329711 December 11, 2001 Kawahara et al.
6353263 March 5, 2002 Dotta et al.
6376921 April 23, 2002 Yoneda et al.
6392427 May 21, 2002 Yang
6414385 July 2, 2002 Huang et al.
6429048 August 6, 2002 McLellan et al.
6451709 September 17, 2002 Hembree
6455348 September 24, 2002 Yamaguchi
6489218 December 3, 2002 Kim et al.
6498099 December 24, 2002 McLellan et al.
6507116 January 14, 2003 Caletka et al.
6545332 April 8, 2003 Huang
6545347 April 8, 2003 McClellan
6552417 April 22, 2003 Combs
6552423 April 22, 2003 Song et al.
6566740 May 20, 2003 Yasunaga et al.
6573121 June 3, 2003 Yoneda et al.
6585905 July 1, 2003 Fan et al.
6586834 July 1, 2003 Sze et al.
6635957 October 21, 2003 Kwan et al.
6667191 December 23, 2003 McLellan et al.
6683368 January 27, 2004 Mostafazadeh
6686667 February 3, 2004 Chen et al.
6703696 March 9, 2004 Ikenaga et al.
6723585 April 20, 2004 Tu et al.
6724071 April 20, 2004 Combs
6734044 May 11, 2004 Fan et al.
6734552 May 11, 2004 Combs et al.
6737755 May 18, 2004 McLellan et al.
6764880 July 20, 2004 Wu et al.
6781242 August 24, 2004 Fan et al.
6800948 October 5, 2004 Fan et al.
6812552 November 2, 2004 Islam et al.
6818472 November 16, 2004 Fan et al.
6818978 November 16, 2004 Fan
6818980 November 16, 2004 Pedron, Jr.
6841859 January 11, 2005 Thamby et al.
6876066 April 5, 2005 Fee et al.
6893169 May 17, 2005 Exposito et al.
6894376 May 17, 2005 Mostazadeh et al.
6897428 May 24, 2005 Minamio et al.
6927483 August 9, 2005 Lee et al.
6933176 August 23, 2005 Kirloskar et al.
6933594 August 23, 2005 McLellan et al.
6940154 September 6, 2005 Pedron et al.
6946324 September 20, 2005 McLellan et al.
6964918 November 15, 2005 Fan et al.
6967126 November 22, 2005 Lee et al.
6979594 December 27, 2005 Fan et al.
6982491 January 3, 2006 Fan et al.
6984785 January 10, 2006 Diao et al.
6989294 January 24, 2006 McLellan et al.
6995460 February 7, 2006 McLellan et al.
7008825 March 7, 2006 Bancod et al.
7009286 March 7, 2006 Kirloskar et al.
7045883 May 16, 2006 McCann et al.
7049177 May 23, 2006 Fan et al.
7052935 May 30, 2006 Pai et al.
7060535 June 13, 2006 Sirinorakul et al.
7071545 July 4, 2006 Patel et al.
7091581 August 15, 2006 McLellan et al.
7101210 September 5, 2006 Lin et al.
7102210 September 5, 2006 Ichikawa
7125747 October 24, 2006 Lee et al.
7205178 April 17, 2007 Shiu et al.
7224048 May 29, 2007 McLellan et al.
7247526 July 24, 2007 Fan et al.
7253503 August 7, 2007 Fusaro et al.
7259678 August 21, 2007 Brown et al.
7274088 September 25, 2007 Wu et al.
7314820 January 1, 2008 Lin et al.
7315077 January 1, 2008 Choi et al.
7315080 January 1, 2008 Fan et al.
7342305 March 11, 2008 Diao et al.
7344920 March 18, 2008 Kirloskar et al.
7348663 March 25, 2008 Kirloskar et al.
7358119 April 15, 2008 McLellan et al.
7371610 May 13, 2008 Fan et al.
7372151 May 13, 2008 Fan et al.
7381588 June 3, 2008 Patel et al.
7399658 July 15, 2008 Shim et al.
7408251 August 5, 2008 Hata et al.
7411289 August 12, 2008 McLellan et al.
7449771 November 11, 2008 Fan et al.
7459345 December 2, 2008 Hwan
7482690 January 27, 2009 Fan et al.
7495319 February 24, 2009 Fukuda et al.
7507603 March 24, 2009 Berry et al.
7595225 September 29, 2009 Fan et al.
7608484 October 27, 2009 Lange et al.
7709857 May 4, 2010 Kim et al.
7714418 May 11, 2010 Lim et al.
7943434 May 17, 2011 Fjelstad
8035207 October 11, 2011 Camacho et al.
8089159 January 3, 2012 Park et al.
20020109214 August 15, 2002 Minamio et al.
20030006055 January 9, 2003 Chien-Hung et al.
20030045032 March 6, 2003 Abe
20030071333 April 17, 2003 Matsuzawa
20030143776 July 31, 2003 Pedron, Jr. et al.
20030178719 September 25, 2003 Combs et al.
20030201520 October 30, 2003 Knapp et al.
20030207498 November 6, 2003 Islam et al.
20030234454 December 25, 2003 Pedron et al.
20040014257 January 22, 2004 Kim et al.
20040026773 February 12, 2004 Koon et al.
20040046237 March 11, 2004 Abe et al.
20040046241 March 11, 2004 Combs et al.
20040070055 April 15, 2004 Punzalan et al.
20040080025 April 29, 2004 Kashahara et al.
20040110319 June 10, 2004 Fukutomi et al.
20050003586 January 6, 2005 Shimanuki et al.
20050077613 April 14, 2005 McLellan et al.
20050236701 October 27, 2005 Minamio et al.
20050263864 December 1, 2005 Islam et al.
20060071351 April 6, 2006 Lange
20060170081 August 3, 2006 Gerber et al.
20060192295 August 31, 2006 Lee et al.
20060223229 October 5, 2006 Kirloskar et al.
20060223237 October 5, 2006 Combs et al.
20060273433 December 7, 2006 Itou et al.
20070001278 January 4, 2007 Jeon et al.
20070013038 January 18, 2007 Yang
20070029540 February 8, 2007 Kajiwara et al.
20070200210 August 30, 2007 Zhao et al.
20070235217 October 11, 2007 Workman
20080048308 February 28, 2008 Lam
20080150094 June 26, 2008 Anderson
20090152691 June 18, 2009 Nguyen et al.
20090152694 June 18, 2009 Bemmert et al.
20090230525 September 17, 2009 Chang Chien et al.
20090236713 September 24, 2009 Xu et al.
20100133565 June 3, 2010 Cho et al.
20100149773 June 17, 2010 Said
20110198752 August 18, 2011 Nondhasitthichai et al.
20110201159 August 18, 2011 Mori et al.
20130069221 March 21, 2013 Lee et al.
Other references
  • Office Action dated Jul. 30, 2014, U.S. Appl. No. 13/851,007, filed Mar. 26, 2013, Saravuth Sirinorakul.
  • Final Office Action mailed Dec. 3, 2014. U.S. Appl. No. 13/851,822, filed Mar. 27, 2013, Saravuth Sirinorakul.
Patent History
Patent number: 9029198
Type: Grant
Filed: Mar 26, 2013
Date of Patent: May 12, 2015
Patent Publication Number: 20130302944
Assignee: UTAC Thai Limited (Bangna Bangkok)
Inventors: Saravuth Sirinorakul (Bangkok), Suebphong Yenrudee (Bangkok)
Primary Examiner: Andres Munoz
Application Number: 13/850,994
Classifications
Current U.S. Class: Substrate Dicing (438/113); Encapsulating (438/127); With Contact Or Lead (257/690); Encapsulated (257/787)
International Classification: H01L 21/00 (20060101); H01L 23/498 (20060101); H01L 23/48 (20060101); H01L 21/78 (20060101); H01L 23/00 (20060101); H01L 23/31 (20060101);