Processes Of Growth From Solid Or Gel State (e.g., Solid Phase Recrystallization) Patents (Class 117/4)
-
Patent number: 7591894Abstract: An LuAP scintillation detector and a method for improving the light output and uniformity of an LuAP scintillator crystal is provided, wherein the method includes disposing the scintillator crystal in a predetermined environment at a threshold temperature to generate an initial scintillator crystal, annealing the initial scintillator crystal in the predetermined environment at the threshold temperature to create an annealed scintillator crystal and cooling the annealed scintillator crystal in the predetermined environment to a final temperature.Type: GrantFiled: November 27, 2006Date of Patent: September 22, 2009Assignee: Schlumberger Technology CorporationInventors: Arthur J. Becker, Yanqi Wang, Bradley A. Roscoe, John Simonetti
-
Patent number: 7585360Abstract: An aqueous suspension liquid of finely divided diamond particles comprising 0.05 to 160 parts by weight of a finely divided diamond particles in 1000 parts of water, wherein; (i) the finely divided diamond particles have an element composition consisting mainly of 72 to 89.5% by weight of carbon, 0.8 to 1.5% of hydrogen, 1.5 to 2.5% of nitrogen, and 10.5 to 25.0% of oxygen; (ii) and, almost all of said diamond particles are in the range of 2 nm to 50 nm in diameters thereof (80% or more by number average, 70% or more by weight average), (iii) and, said finely divided diamond particles exhibit a strongest peak of the intensity of the Bragg angle at 43.9° (2?±2°), strong and characteristic peaks at 73.5° (2?±2°)and 95° (2?±2°), a warped halo at 17° (2?±2°), and no peak at 26.5°, by X-ray diffraction (XRD) spectrum analysis using Cu—K? radiation when dried, (iv) and, specific surface area of said diamond particles when dry state powder is not smaller than 1.Type: GrantFiled: January 20, 2006Date of Patent: September 8, 2009Inventors: Tadamasa Fujimura, Masato Sone, Valeri Yu Dolmatov, Shigeru Shiozaki
-
Patent number: 7572332Abstract: One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.Type: GrantFiled: April 26, 2006Date of Patent: August 11, 2009Assignee: Dimerond Technologies, LLCInventor: Dieter M. Gruen
-
Patent number: 7569109Abstract: A method of making a rare earth halide single crystal material is provided. The method includes providing a polycrystalline material having a plurality of grains. The method further includes adding a seed crystal to the polycrystalline material to define a plane of growth for the polycrystalline material. Further, the polycrystalline material having the seed crystal may be subjected to heat-treating, where the heat-treating does not include melting the polycrystalline material.Type: GrantFiled: August 23, 2006Date of Patent: August 4, 2009Assignee: General Electric CompanyInventor: Venkat Subramaniam Venkataramani
-
Patent number: 7569462Abstract: The present invention provides a method of recrystallizing a silicon sheet, and in particular recrystallizing a small grained silicon sheet to improve material properties such as grain size and orientation. According to one aspect, the method includes using rapid thermal processing (RTP) to melt and recrystallize one or more entire silicon sheet(s) in one heating sequence. According to another aspect, the method includes directionally controlling a temperature drop across the thickness of the sheet so as to facilitate the production of a small number of nuclei in the melted material and their growth into large grains. According to a further aspect, the invention includes a re-crystallization chamber in an overall process flow that enables high-throughput processing of silicon sheets having desired properties for applications such as photovoltaic modules.Type: GrantFiled: December 13, 2006Date of Patent: August 4, 2009Assignee: Applied Materials, Inc.Inventors: Virendra V. Rana, Robert Z. Bachrach
-
Publication number: 20090176114Abstract: The present invention provides a base substrate for epitaxial diamond film capable of epitaxially growing a large area of high quality diamond, having a diameter of 1 inch (2.5 cm) or more, on an iridium base by using the CVD method, a method for producing the base substrate for epitaxial diamond film, an epitaxial diamond film produced with the base substrate for epitaxial diamond film and a method for producing the epitaxial diamond film. An iridium (Ir) film is formed by epitaxial growth on a single crystal magnesium oxide (MgO) substrate or a single crystal sapphire (?-Al2O3) substrate by means of a vacuum deposition method or a sputtering method, and a bias nucleus generation process of forming epitaxial diamond nuclei is applied to the surface of the iridium (Ir) base formed as a film by exposing an ion-containing direct current plasma to the surface of the iridium (Ir) base formed as a film.Type: ApplicationFiled: February 5, 2007Publication date: July 9, 2009Inventors: Atsuhito Sawabe, Shintaro Maeda
-
Patent number: 7553366Abstract: A laser beam pattern mask includes at least one or more transmitting parts, each transmitting part having a central portion and a pair of edge portions provided to both sides of the central portion, each having a substantially triangular shape defined by a virtual boundary line between the central portion and the corresponding edge portion, an upper outside extending from an upper end of the boundary line at an acute angle, and a lower outside extending from a lower end of the boundary line at the acute angle to meet the upper outside at a rounded corner.Type: GrantFiled: September 28, 2006Date of Patent: June 30, 2009Assignee: LG Display Co., Ltd.Inventor: Yun Ho Jung
-
Patent number: 7544245Abstract: Disclosed is a method for producing a barium titanium oxide single crystal piece with a given structure using a containerless solidification process, which comprises the steps of preparing a material made of a barium titanium oxide, controlling the material to be in a levitated state within a levitation furnace, melting the levitated material using a laser, and solidifying the molten material while maintaining the levitated state. In a specific embodiment, a spherical sample having a composition of BaTiO3 and a weight of about 20 mg is subjected to a rapid solidification and melting process (temperature gradient: about 700 K/sec) 3 times while levitating the sample in 4.5 atm of air atmosphere using an electrostatic levitation furnace. Then, the re-molten sample is maintained at a temperature just below the melting point of the sample for a given time, and then rapidly cooled at a cooling rate of 300 K/sec to obtain a transparent blue barium titanium oxide single crystal.Type: GrantFiled: January 28, 2005Date of Patent: June 9, 2009Assignee: Japan Aerospace Exploration AgencyInventors: Kentei Yono, Paul-Francois Paradis, Takehiko Ishikawa, Shinichi Yoda
-
Patent number: 7520930Abstract: A bulk silicon carbide single crystal of good crystalline quality which includes a minimized number of structural defects and is free from micropipe defects can be produced by crystal growth in a melt of an alloy comprising Si, C, and M (wherein M is either Mn or Ti) and having an atomic ratio between Si and M in which the value of x, when express as Si1-xMx, is 0.1?x?0.7 in the case where M is Mn or 0.1?x?0.25 in the case where M is Ti at a temperature of the melt which is below 2000° C. The C component is preferably supplied into the melt by dissolution of a graphite crucible which contains the melt such that the melt is free from undissolved C. One method of crystal growth is performed by cooling the melt after a seed substrate is immersed in the melt.Type: GrantFiled: October 15, 2004Date of Patent: April 21, 2009Assignee: Sumitomo Metal Industries, Ltd.Inventors: Kazuhiko Kusunoki, Shinji Munetoh, Kazuhito Kamei
-
Patent number: 7520931Abstract: A method of making a single crystal material is provided. The method includes providing a polycrystalline material having a plurality of grains. The method further includes adding a seed crystal to the polycrystalline material to define a plane of growth for the polycrystalline material. Further, the polycrystalline material having the seed crystal may be subjected to heat-treating, where the heat-treating does not include melting the polycrystalline material.Type: GrantFiled: August 23, 2006Date of Patent: April 21, 2009Assignee: General Electric CompanyInventors: Venkat Subramaniam Venkataramani, Wesley Hackenberger, Seongtae Kwon, Paul William Rehrig
-
Patent number: 7507290Abstract: A flux assisted solid phase epitaxy that can make a thin film having a crystalline perfection comparable with that of a bulk crystal and at a reduced cost is provided in which an amorphous film of a mixture of an objective substance to be grown epitaxially and a flux of a substance producing a eutectic with the objective substance but not producing any compound therewith is deposited on a substrate at a temperature less than a eutectic point of the substances, and the substrate is heat-treated at a temperature not less than the eutectic point of the objective and flux substances. A solid phase reaction, namely solid phase diffusion causes the objective and flux substances to be mixed together to form a liquid phase in their eutectic state from which the objective substance precipitates and epitaxially grows on the substrate.Type: GrantFiled: March 22, 2005Date of Patent: March 24, 2009Assignee: Japan Science and Technology AgencyInventors: Hideomi Koinuma, Yuji Matsumoto, Ryota Takahashi
-
Patent number: 7507289Abstract: In a solid solution system of Al2O3 and CAO or SrO, it has been difficult to obtain a material having a high electrical conductivity (>10?4 S·cm?) at room temperature. A compound is provided in which electrons at a high concentration are introduced into a 12CaO.7Al2O3 compound, a 12SrO.7Al2O3 compound, or a mixed crystal compound containing 12CaO.7Al2O3 and 12SrO.7Al2O3. The compound formed by substituting all the free oxygen ions with electrons is regarded as an electride compound in which [Ca24Al28O64]4+(4e?) or [Sr24Al28O64]4+(4e?) serves as a cation and electrons serve as anions. When a single crystal or a hydrostatic pressure press molded material of a fine powder thereof is held at approximately 700° C. in an alkaline metal vapor or an alkaline earth metal vapor, melt of a hydrostatic pressure press molded material of a powder is held at approximately 1,600° C. in a carbon crucible, followed by slow cooling for solidification, or a thin film of the compound held at approximately 600° C.Type: GrantFiled: February 12, 2004Date of Patent: March 24, 2009Assignee: Japan Science and Technology AgencyInventors: Hideo Hosono, Masahiro Hirano, Katsuro Hayashi, Masashi Miyakawa, Isao Tanaka
-
Patent number: 7503975Abstract: In a crystalline silicon film fabricated by a related art method, the orientation planes of its crystal randomly exist and the orientation rate relative to a particular crystal orientation is low. A semiconductor material which contains silicon as its main component and 0.1-10 atomic % of germanium is used as a first layer, and an amorphous silicon film is used as a second layer. Laser light is irradiated to crystallize the amorphous semiconductor films, whereby a good semiconductor film is obtained. In addition, TFTs are fabricated by using such a semiconductor film.Type: GrantFiled: June 25, 2001Date of Patent: March 17, 2009Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Toru Mitsuki, Kenji Kasahara, Taketomi Asami, Tamae Takano, Takeshi Shichi, Chiho Kokubo
-
Patent number: 7488384Abstract: Colloidal nanocrystals or “quantum dots” of GaN are directly produced by heating amidogallium dimer, i.e., (Ga2[N(CH3)2]6), in the presence of a functional amine. The GaN quantum dots obtained, which comprise isolated particles 2-3 nm in diameter with a relative broad size distribution (e.g., 20% standard deviation) exhibit strong exciton confinement.Type: GrantFiled: May 3, 2006Date of Patent: February 10, 2009Assignee: Ohio UniversityInventors: Paul Gregory Van Patten, Guiquan Pan
-
Patent number: 7481882Abstract: A method for forming a film includes forming the film on a substrate, followed by performing a first annealing of the film at a temperature lower than a crystallization temperature of the film. A second annealing of the film is performed at a temperature higher that the crystallization temperature. Forming the film and the first annealing of the film are performed in situ in a chamber. Alternatively, the first and second annealing are performed in situ in an apparatus.Type: GrantFiled: April 23, 2002Date of Patent: January 27, 2009Assignee: Samsung Electronics Co., Ltd.Inventors: Seok-jun Won, Young-wook Park, Yong-woo Hyung
-
Patent number: 7442250Abstract: A lithium tantalate substrate obtained by working in the state of a substrate a lithium tantalate crystal grown by the Czochralski method is buried in a mixed powder of Al and Al2O3, followed by heat treatment carried out at a temperature kept to from 350 to 600° C, to manufacture a lithium tantalate substrate having volume resistivity which has been controlled within the range of from 106 to 108 ?cm. The substrate obtained has no piezoelectricity, and it can be made colored and opaque from a colorless and transparent state and also sufficiently has the properties required as a piezoelectric material.Type: GrantFiled: October 7, 2004Date of Patent: October 28, 2008Assignee: Sumitomo Metal Mining Co., Ltd.Inventors: Tomio Kajigaya, Takashi Kakuta
-
Patent number: 7438759Abstract: An ambient environment nanowire sensor and corresponding fabrication method have been provided. The method includes: forming a substrate such as Silicon (Si) or glass; growing nanowires; depositing an insulator layer overlying the nanowires; etching to expose tips of the nanowires; forming a patterned metal electrode, with edges, overlying the tips of the nanowires; and, etching to expose the nanowires underlying the electrode edges. The nanowires can be a material such as IrO2, TiO2, InO, ZnO, SnO2, Sb2O3, or In2O3, to mane just a few examples. The insulator layer can be a spin-on glass (SOG) or low-k dielectric. In one aspect, the resultant structure includes exposed nanowires grown from the doped substrate regions and an insulator core with embedded nanowires. In a different aspect, the method forms a growth promotion layer overlying the substrate. The resultant structure includes exposed nanowires grown from the selectively formed growth promotion layer.Type: GrantFiled: November 1, 2005Date of Patent: October 21, 2008Assignee: Sharp Laboratories of America, Inc.Inventors: Fengyan Zhang, Robert A. Barrowcliff, Jong-Jan Lee, Sheng Teng Hsu
-
Patent number: 7422630Abstract: Concentration of metal element which promotes crystallization of silicon and which exists within a crystal silicon film obtained by utilizing the metal element is reduced. A first heat treatment for crystallization is implemented after introducing nickel to an amorphous silicon film 103. Then, laser light is irradiated to diffuse the nickel element concentrated locally. After that, another heat treatment is implemented within an oxidizing atmosphere at a temperature higher than that of the previous heat treatment. A thermal oxide film 106 is formed in this step. At this time, the nickel element is gettered to the thermal oxide film 106. Then, the thermal oxide film 106 is removed. Thereby, a crystal silicon film 107 having low concentration of the metal element and a high crystallinity can be obtained.Type: GrantFiled: June 5, 2006Date of Patent: September 9, 2008Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Satoshi Teramoto, Jun Koyama, Yasushi Ogata, Masahiko Hayakawa, Mitsuaki Osame
-
Patent number: 7419547Abstract: In a first exemplary embodiment of the present invention, a method is provided for marking a sample of a doped crystalline material. According to a feature of the present invention, the method comprises the steps of causing a controlled alteration to the crystalline material at a preselected spot on the sample of the crystalline material, sufficient to cause a change in a cathodoluminescence spectrum of the crystalline material at the preselected spot and utilizing the altered cathodoluminescence spectrum to mark the crystalline material.Type: GrantFiled: July 26, 2006Date of Patent: September 2, 2008Assignee: American Museum of Natural HistoryInventor: Jacob Louis Mey
-
Patent number: 7416605Abstract: An anneal of an epitaxially grown crystalline semiconductor layer comprising a combination of group-IV elements. The layer contains at least one of the group of carbon and tin. The layer of epitaxially grown material is annealed at a temperature substantially in a range of 1,000 to 1,400 degrees Celsius for a period not to exceed 100 milliseconds within 10% of the peak temperature. The anneal is performed for example with a laser anneal or a flash lamp anneal. The limited-time anneal may improve carrier mobility of a transistor.Type: GrantFiled: January 8, 2007Date of Patent: August 26, 2008Assignee: Freescale Semiconductor, Inc.Inventors: Stefan Zollner, Veeraraghavan Dhandapani, Paul A. Grudowski, Gregory S. Spencer
-
Patent number: 7413604Abstract: The present invention provides a process for producing a polycrystal silicon film which comprises a step of forming a polycrystal silicon film by light irradiation of a silicon film set on a substrate, and a step of selecting substrate samples having an average grain size in a plane of the sample of 500 nm or more. According to the present invention, stable production of a high-performance poly-silicon TFT liquid crystal display becomes possible.Type: GrantFiled: September 17, 2004Date of Patent: August 19, 2008Assignee: Hitachi, Ltd.Inventors: Kazuo Takeda, Masakazu Saito, Yukio Takasaki, Hironobu Abe, Makoto Ohkura, Yoshinobu Kimura, Takeo Shiba
-
Patent number: 7393409Abstract: The method provides CaF2 single crystals with low scattering, small refractive index differences and few small angle grain boundaries, which can be tempered at elevated temperatures. In the method a CaF2 starting material is heat-treated for at least five hours at temperatures between 1000° C. and 1250° C. and then sublimed at a sublimation temperature of at least 1100° C. in a vacuum of at most 5*10?4 mbar to form a vapor. The vapor is condensed at a condensation temperature of at least 500° C., which is at least 20° C. below the sublimitation temperature, to form a condensate. Then a melt formed from the condensate is cooled in a controlled manner to obtain the single crystal, which is subsequently tempered. The method is preferably performed with a CaF2 starting material including waste material and cuttings from previously used melts.Type: GrantFiled: February 22, 2005Date of Patent: July 1, 2008Assignee: Schott AGInventors: Lars Ortmann, Joerg Kandler, Andreas Menzel, Matthias Mueller, Lutz Parthier, Gordon Von der Goenna
-
Patent number: 7374613Abstract: Disclosed is a ceramic or metal single-crystal material having high-density dislocations arranged one-dimensionally on respective straight lines. The single-crystal material is produced by compressing a ceramic or metal single-crystal blank at a high temperature from a direction allowing the activation of a single slip to induce plastic deformation therein, and then subjecting the resulting product to a heat treatment. The single-crystal material can be used in a device for high-speed dislocation-pipe diffusion of ions or electrons. The single-crystal material can further be subjected to a diffusion treatment so as to diffuse a metal element from its surface along the dislocations to provide a single-crystal device with a specific electrical conductivity or a quantum wire device.Type: GrantFiled: April 21, 2003Date of Patent: May 20, 2008Assignee: Japan Science and Technology AgencyInventors: Yuichi Ikuhara, Takahisa Yamamoto
-
Patent number: 7361217Abstract: Method for crystallizing a melamine melt to form melamine particles with a D90 of at most 2 mm by cooling a melamine melt to below the crystallization temperature of the melamine, comprising the formation of a suspension of melamine particles in the cooling medium by spraying the melamine melt with at most 10 wt % of CO2 relative to the sprayed quantity of melamine melt in a space in which a layer of a liquid cooling medium is present that has a temperature below the crystallization temperature of the melamine and under cooling conditions at which at least 50 wt % of the sprayed melamine melt directly turns into suspended melamine particles. Method for the production of melamine from urea in a preferably continuous, high-pressure process, with application of the present method for the crystallization.Type: GrantFiled: January 28, 2004Date of Patent: April 22, 2008Assignee: DSM IP Assets B.V.Inventor: Tjay Tjien M. Tjioe
-
Publication number: 20080090072Abstract: A semiconducting structure having a glass substrate. In one embodiment, the glass substrate has a softening temperature of at least about 750° C. The structure includes a nucleation layer formed on a surface of the substrate, a template layer deposited on the nucleation layer by one of ion assisted beam deposition and reactive ion beam deposition, at least on biaxially oriented buffer layer epitaxially deposited on the template layer, and a biaxially oriented semiconducting layer epitaxially deposited on the buffer layer. A method of making the semiconducting structure is also described.Type: ApplicationFiled: October 17, 2006Publication date: April 17, 2008Inventor: Alp T. Findikoglu
-
Patent number: 7357838Abstract: A method of forming a strained silicon layer on a relaxed, low defect density semiconductor alloy layer such as SiGe is provided.Type: GrantFiled: March 8, 2005Date of Patent: April 15, 2008Assignee: Taiwan Semiconductor Manufacturing CompanyInventors: Chun Chieh Lin, Yee-Chia Yeo, Chien-Chao Huang, Chao-Hsiung Wang, Tien-Chih Chang, Chenming Hu, Fu-Liang Yang, Shih-Chang Chen, Mong-Song Liang, Liang-Gi Yao
-
Patent number: 7347897Abstract: A crystallization apparatus of the present invention irradiates a non-single-crystal semiconductor film with a luminous flux having a predetermined light intensity distribution to crystallize the film, and comprises a phase modulation device comprising a plurality of unit areas which are arranged in a certain period and which mutually have substantially the same pattern, and an optical image forming system disposed between the phase modulation device and the non-single-crystal semiconductor film. The unit area of the phase modulation device has a reference face having a certain phase, a first area disposed in the vicinity of a center of each unit area and having a first phase difference with respect to the reference face, and a second area disposed in the vicinity of the first area and having substantially the same phase difference as that of the first phase difference with respect to the reference face.Type: GrantFiled: April 5, 2005Date of Patent: March 25, 2008Assignee: Advanced LCD Technologies Development Center Co., Ltd.Inventors: Tomoya Kato, Masakiyo Matsumura, Yukio Taniguchi
-
Patent number: 7341628Abstract: Gallium Nitride layers grown as single crystals by epitaxy such as Hydride Vapor Phase Epitaxy (HVPE) contain large numbers of crystal defects such as hexagonal pits, which limit the yield and performance of opto- and electronic devices. In this method, the Gallium Nitride layer is first coated with an Aluminum layer of approximate thickness of 0.1 microns. Next, Nitrogen is ion implanted through the Aluminum layer so as to occupy mostly the top 0.1 to 0.5 microns of the Gallium Nitride layer. Finally, through a pulsed directed energy beam such as electron or photons, with a fluence of approximately 1 Joule/cm2 the top approximately 0.5 microns are converted to a single crystal with reduced defect density.Type: GrantFiled: December 16, 2004Date of Patent: March 11, 2008Inventor: Andreas A. Melas
-
Patent number: 7338554Abstract: The invention relates to a process for synthesizing nanorods of a carbide of one metal M1 on a substrate, which comprises: a) the deposition, on the substrate, of a layer of nanocrystals of oxide of the metal M1 and nanocrystals of oxide of at least one metal M2 different from metal M1, the M1 metal oxide nanocrystals being dispersed within this layer; b) the reduction of the M1 and M2 metal oxide nanocrystals into corresponding metal nanocrystals; and c) the selective growth of the M1 metal nanocrystals. The invention also relates to a process for growing nanorods of a carbide of one metal M1 on a substrate from nanocrystals of this metal, to the substrates thus obtained and to their applications: fabrication of Microsystems provided with chemical or biological functionalities, in particular the fabrication of biosensors; electron emission sources, for example for flat television or computer screens; etc.Type: GrantFiled: December 4, 2003Date of Patent: March 4, 2008Assignee: Commissariat a L'Energie AtomiqueInventors: Marc Delaunay, Francoise Vinet
-
Patent number: 7332027Abstract: A method for manufacturing an aluminum nitride single crystal is provided, including the steps of preparing a raw material composition containing aluminum oxide and/or an aluminum oxide precursor which is converted into aluminum oxide by heating, and aluminum nitride and/or an aluminum nitride precursor which is converted into aluminum nitride by heating, heating the raw material composition at 1600 to 2400° C. to synthesize aluminum nitride, and causing crystal growth of the aluminum nitride to obtain an aluminum nitride single crystal.Type: GrantFiled: June 30, 2005Date of Patent: February 19, 2008Assignee: NGK Insulators, Ltd.Inventors: Yoshimasa Kobayashi, Toru Hayase, Naohito Yamada
-
Patent number: 7311771Abstract: A crystallization apparatus according to the present invention includes a first irradiation system which irradiates a predetermined area on a glass substrate having an irradiation target, i.e., an a-Si thin film with light beams having a substantially homogeneous light intensity distribution, and a second irradiation system which irradiates the predetermined area with light beams having a light intensity distribution with an inverse peak pattern that a light intensity is increased toward the periphery from an area in which the light intensity is minimum.Type: GrantFiled: March 18, 2004Date of Patent: December 25, 2007Assignee: Advanced LCD Technologies Development Center Co., Ltd.Inventors: Yukio Taniguchi, Masakiyo Matsumura
-
Patent number: 7309476Abstract: Novel diamondoid-based components that may be used in nanoscale construction are disclosed. Such components include rods, brackets, screws, gears, rotors, and impellers. Subassemblies (or subsystems) may comprise one or more diamondoid components. Exemplary subassemblies include atomic force microscope tips, molecular tachometers and signal waveform generators, and self-assembling cellular membrane pores and channels.Type: GrantFiled: July 16, 2003Date of Patent: December 18, 2007Assignee: Chevron U.S.A. Inc.Inventors: Robert M. Carlson, Jeremy E. Dahl, Shenggao Liu
-
Patent number: 7306673Abstract: The invention is directed to a method for growing metal fluoride crystals suitable for use in below 200 nm optical lithography systems, the method comprising including at least the step of heating a crystal growth furnace to a temperature in the range of 1400-2000° C. to purify the furnace by removal of sulfur and chlorine prior to using the furnace for growing metal fluoride single crystals.Type: GrantFiled: October 22, 2004Date of Patent: December 11, 2007Assignee: Corning IncorporatedInventors: Michelle M. L. Fredholm, Jeffrey T. Kohli, Nicholas LeBlond, Alexandre M. Mayolet, Viktoria Pshenitsyna, Pawan Saxena, Paul M. Schermerhorn
-
Patent number: 7306671Abstract: Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, thermally conductive films in integrated circuit packaging, low-k dielectric layers in integrated circuit multilevel interconnects, thermally conductive adhesive films, thermally conductive films in thermoelectric cooling devices, passivation films for integrated circuit devices (ICs), and field emission cathodes. The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, peritamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane.Type: GrantFiled: February 24, 2004Date of Patent: December 11, 2007Assignee: Chevron U.S.A.. Inc.Inventors: Jeremy E. Dahl, Robert M. Carlson, Shenggao Liu
-
Patent number: 7303627Abstract: A method is described for making an especially not-(111)-oriented low-stress large-volume crystal having a glide plane with reduced stress birefringence and more uniform refractive index. The method includes growing and tempering the crystal while heating and/or cooling to form a temperature gradient in order to relax stresses arising along the glide plane. During the tempering the heating and/or cooling occurs by heat transfer in a heat transfer direction and the heat transfer direction or temperature gradient is oriented at an angle of from 5° to 90° to the glide plane. Crystals with a uniform refractive index with variations of less than 0.025×10?6 (RMS value) are produced by the method.Type: GrantFiled: February 22, 2005Date of Patent: December 4, 2007Assignee: Schott AGInventors: Lutz Parthier, Joerg Staeblein, Gunther Wehrhan, Christian Kusch
-
Patent number: 7303626Abstract: Photonic crystal units (10a, 10b, and 10c) are formed by an optical molding process using a photocurable resin, and partitions (11) are provided at the boundaries therebetween. The voids in each photonic crystal unit are filled with a second substance containing ceramic particles dispersed therein to form a filled portion 2. A plurality of three-dimensional periodic structure units containing the first and second substances distributed with three-dimensional periodicity are arranged so as to have different ratios between the dielectric constants of the first and second substances. Therefore, present invention provides a three-dimensional periodic structure having a wide photonic band gap which could not be obtained in a conventional three-dimensional periodic structure.Type: GrantFiled: April 20, 2004Date of Patent: December 4, 2007Assignee: Murata Manufacturing Co., Ltd.Inventors: Soshu Kirihara, Yoshinari Miyamoto, Takuji Nakagawa, Katsuhiko Tanaka
-
Patent number: 7300516Abstract: When a laser beam is radiated on a semiconductor film under appropriate conditions, the semiconductor film can be crystallized into single crystal-like grains connected in a scanning direction of the laser beam (laser annealing). The most efficient laser annealing condition is studied. When a length of one side of a rectangular substrate on which a semiconductor film is formed is b, a scanning speed is V, and acceleration necessary to attain the scanning speed V of the laser beam relative to the substrate is g, and when V=(gb/5.477)1/2 is satisfied, a time necessary for the laser annealing is made shortest. The acceleration g is made constant, however, when it is a function of time, a time-averaged value thereof can be used in place of the constant.Type: GrantFiled: October 13, 2004Date of Patent: November 27, 2007Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Koichiro Tanaka
-
Publication number: 20070264806Abstract: Embodiments of a mask for sequential lateral solidification are disclosed herein. In some embodiments, a mask of the present disclosure comprises a transmission region including a first slit column having a plurality of first slits separated from one another by a predetermined interval, and a second slit column having a plurality of second slits separated from one another by a predetermined interval and disposed adjacent to and offset from the first slit column. An irradiated laser beam is substantially completely transmitted through the transmission region. In some embodiments, the mask includes a semi-transmission region including a first opening pattern disposed at least partially between adjacent first slits and having a plurality of first openings formed into a desired shape, and a second opening pattern disposed at least partially between adjacent second slits and having a plurality of second opening formed into a desired shape.Type: ApplicationFiled: October 5, 2006Publication date: November 15, 2007Inventor: Cheol Ho Park
-
Patent number: 7291218Abstract: A method of fabricating an orientation film for a liquid crystal display device is provided. An orientation film is formed on a substrate. An ion-beam irradiation apparatus having an ion generation element is provided. The substrate is placed on a stage in a vacuum chamber. The angle of the substrate is controlled such that the orientation film has a predetermined angle with respect to an ion beam of the ion-beam irradiation apparatus. An ion beam from the ion-beam irradiation apparatus irradiates a surface of the orientation film. The ion beam has an energy intensity of about 300 eV to about 800 eV and a predetermined dose.Type: GrantFiled: April 25, 2005Date of Patent: November 6, 2007Assignee: LG. Philips LCD Co., Ltd.Inventor: Yong-Sung Ham
-
Patent number: 7276222Abstract: Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, thermally conductive films in integrated circuit packaging, thermally conductive adhesive films, and thermally conductive films in thermoelectric cooling devices. The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, pentamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane. The diamondoid-containing material may be fabricated as a diamondoid-containing polymer, a diamondoid-containing sintered ceramic, a diamondoid ceramic composite, a CVD diamondoid film, a self-assembled diamondoid film, and a diamondoid-fullerene composite.Type: GrantFiled: July 14, 2004Date of Patent: October 2, 2007Assignee: Chevron U.S.A. Inc.Inventors: Jeremy E. Dahl, Robert M. Carlson, Shenggao Liu
-
Patent number: 7273598Abstract: Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, passivation films for integrated circuit devices (ICs). The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, pentamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane. The diamondoid-containing material may be fabricated as a diamondoid-containing polymer, a diamondoid-containing sintered ceramic, a diamondoid ceramic composite, a CVD diamondoid film, a self-assembled diamondoid film, and a diamondoid-fullerene composite.Type: GrantFiled: July 14, 2004Date of Patent: September 25, 2007Assignee: Chevron U.S.A. Inc.Inventors: Jeremy E. Dahl, Robert M. Carlson, Shenggao Liu
-
Patent number: 7273525Abstract: A method of forming a phosphorus- and/or boron-containing silica layer, such as a PSG, BSG, or BPSG layer, on a substrate, such as a semiconductor substrate or substrate assembly.Type: GrantFiled: May 13, 2003Date of Patent: September 25, 2007Assignee: Micron Technology, Inc.Inventor: Brian A Vaartstra
-
Patent number: 7250081Abstract: Methods for repair of single crystal superalloys by laser welding and products thereof have been disclosed. The laser welding process may be hand held or automated. Laser types include: CO2, Nd:YAG, diode and fiber lasers. Parameters for operating the laser process are disclosed. Filler materials, which may be either wire or powder superalloys are used to weld at least one portion of a single crystal superalloy substrate.Type: GrantFiled: December 4, 2003Date of Patent: July 31, 2007Assignee: Honeywell International, Inc.Inventors: Yiping Hu, William F. Hehmann, Murali Madhava
-
Patent number: 7226504Abstract: A method of forming a SiGe layer having a relatively high germanium content and a relatively low threading dislocation density includes preparing a silicon substrate; depositing a layer of SiGe to a thickness of between about 100 nm to 500 nm, wherein the germanium content of the SiGe layer is greater than 20%, by atomic ratio; implanting H+ ions into the SiGe layer at a dose of between about 1·1016 cm?2 to 5·1016 cm?2, at an energy of between about 20 keV to 45 keV; patterning the SiGe layer with photoresist; plasma etching the structure to form trenches about regions; removing the photoresist; and thermal annealing the substrate and SiGe layer, to relax the SiGe layer, in an inert atmosphere at a temperature of between about 650° C. to 950° C. for between about 30 seconds and 30 minutes.Type: GrantFiled: January 31, 2002Date of Patent: June 5, 2007Assignee: Sharp Laboratories of America, Inc.Inventors: Jer-Shen Maa, Douglas James Tweet, Tingkai Li, Jong-Jan Lee, Sheng Teng Hsu
-
Patent number: 7217319Abstract: A crystallization apparatus includes an illumination system which illuminates a phase shifter having a phase shift portion, and irradiates a polycrystal semiconductor film or an amorphous semiconductor film with a light beam having a predetermined light intensity distribution in which a light intensity is minimum in a point area corresponding to the phase shift portion of the phase shifter, thereby forming a crystallized semiconductor film, the phase shifter has four or more even-numbered phase shift lines which intersect at a point constituting the phase shift portion. An area on one side and an area on the other side of each phase shift line have a phase difference of approximately 180 degrees.Type: GrantFiled: December 1, 2003Date of Patent: May 15, 2007Assignee: Advanced LCD Technologies Development Center Co., Ltd.Inventors: Masakiyo Matsumura, Yukio Taniguchi
-
Patent number: 7214266Abstract: The present invention provides an automated method of optimising crystallisation conditions for macromolecules comprising forming a trial comprising a sample comprising a gel forming component and the macromelecule to be crystallized, wherein at least one component of the trial is dispensed using an automatic liquid dispensing system.Type: GrantFiled: October 2, 2003Date of Patent: May 8, 2007Assignee: Imperial Innovations LimitedInventor: Naomi E. Chayen
-
Patent number: 7214903Abstract: An apparatus and method for heating materials or substances in an oven at an oven temperature below their melting and/or vaporization points to either melt and/or vaporize the substance. Substances are inserted into a substantially spherical envelope. The envelope is sealed at a preset pressure. The solid is heated in an oven at an oven temperature substantially below the melting or vaporization temperature of the substance at the preset pressure for a time sufficient to either melt or vaporize the substance.Type: GrantFiled: November 23, 2005Date of Patent: May 8, 2007Assignee: CZ Technologies, Inc.Inventor: Susana Curatolo
-
Patent number: 7208041Abstract: An effective, simple and low-cost a method for growing single crystals of perovskite oxideshaving primary and secondary abnormal grain growths according to temperature condition higher than a determined temperature or an atmosphere of heat treatment, involves a perovskite seed single crystal being adjoined to a polycrystal of perovskite oxides and heating the adjoined combination whereby the seed single crystal grows into the polycrystal at the interface therebetween repressing secondary abnormal grain growths inside the polycrystal. 1) The composition ratio of the polycrystal is controlled and/or the specific component(s) of the polycrystal is(are) added in an excess amount compared to the amount of the component(s) of the original composition of the polycrystal, 2) the heating is performed in the temperature range which is over primary abnormal grain growths completion temperature and below secondary abnormal grain growths activation temperature, whereby the seed single crystal grows continuously.Type: GrantFiled: May 14, 2004Date of Patent: April 24, 2007Assignee: Ceracomp Co., Ltd.Inventors: Ho-Yong Lee, Jong-Bong Lee, Tae-Moo Hur
-
Patent number: 7192479Abstract: A mask with sub-resolution aperture features and a method for smoothing an annealed surface using a sub-resolution mask pattern are provided. The method comprises: supplying a laser beam having a first wavelength; supplying a mask with a first mask section having apertures with a first dimension and a second mask section with apertures having a second dimension, less than the first dimension; applying a laser beam having a first energy density to a substrate region; melting a substrate region in response to the first energy density; crystallizing the substrate region; applying a diffracted laser beam to the substrate region; and, in response to the diffracted laser beam, smoothing the substrate region surface. In some aspects of the method, applying a diffracted laser beam to the substrate area includes applying a diffracted laser beam having a second energy density, less than the first energy density, to the substrate region.Type: GrantFiled: April 17, 2002Date of Patent: March 20, 2007Assignee: Sharp Laboratories of America, Inc.Inventors: Yasuhiro Mitani, Apostolos T. Voutsas, Mark A. Crowder
-
Patent number: RE39778Abstract: A method is provided for preparing, with high reproducibility, a carbon-doped group III-V compound semiconductor crystal having favorable electrical characteristics and having impurities removed therefrom, and in which the amount of doped carbon can be adjusted easily during crystal growth. This method includes the steps of: filling a crucible with compound raw material, solid carbon, and boron oxide; sealing the filled crucible within an airtight vessel formed of a gas impermeable material; heating and melting the compound raw material under the sealed state in the airtight vessel; and solidifying the melted compound raw material to grow a carbon-doped compound semiconductor crystal.Type: GrantFiled: April 3, 2001Date of Patent: August 21, 2007Assignee: Sumitomo Electric Industries, Ltd.Inventors: Tomohiro Kawase, Masami Tatsumi