Abstract: In general, in one aspect, a graphene film is used as a protective layer for current collectors in electrochemical energy conversion and storage devices. The graphene film inhibits passivation or corrosion of the underlying metals of the current collectors without adding additional weight or volume to the devices. The graphene film is highly conductive so the coated current collectors maintain conductivity as high as that of underlying metals. The protective nature of the graphene film enables less corrosion resistant, less costly and/or lighter weight metals to be utilized as current collectors. The graphene film may be formed directly on Cu or Ni current collectors using chemical vapor deposition (CVD) or may be transferred to other types of current collectors after formation. The graphene film coated current collectors may be utilized in batteries, super capacitors, dye-sensitized solar cells, and fuel and electrolytic cells.
Abstract: Various laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional.
Type:
Grant
Filed:
December 30, 2011
Date of Patent:
January 28, 2014
Assignee:
Solexel, Inc.
Inventors:
Mehrdad M. Moslehi, Virendra V. Rana, Pranav Anbalagan, Vivek Saraswat
Abstract: Certain example embodiments of this invention relate to a glass substrate that is patterned and may be at least partially ground down at edge portion(s) thereof, for use as a light incident glass substrate in electronic devices such as photovoltaic devices or the like. In certain example embodiments, the glass may be a low-iron type glass which may be highly oxidized thereby permitting the glass to realize a combination of high visible transmission (Lta or Tvis), high infrared (IR) transmission, and/or high total solar (TS) transmission. In certain example embodiments, edge portion(s) of the patterned side of the glass may be ground down so that a seal may be more securely and/or efficiently attached to device so as to at least partially encapsulate at least part of the electronic device including the front glass substrate thereof.
Abstract: An edge seal extruded onto at least a portion of one or more edges of a photovoltaic module is disclosed. A method for making a photovoltaic module comprising an extruded edge seal is also disclosed.
Type:
Application
Filed:
July 17, 2013
Publication date:
January 23, 2014
Inventors:
Christopher Baker, Casimir Kotarba, Karina Krawczyk, Paul Nawrocki, Nicholas St. John
Abstract: Disclosed is a method for producing a CIS-based thin film based on self-accelerated photoelectrochemical deposition. The method includes 1) mixing precursors of elements constituting a CIS-based compound with a solvent to prepare an electrolyte solution, 2) connecting an electrochemical cell including a working electrode, the electrolyte solution and a counter electrode to a voltage or current applying device to construct an electro-deposition circuit, 3) irradiating light onto the working electrode while at the same time applying a cathodic voltage or current to the working electrode to induce self-accelerated photoelectrochemical deposition, thereby electro-depositing a CIS-based thin film, and 4) annealing the electro-deposited CIS-based thin film under a gas atmosphere including sulfur or selenium.
Type:
Application
Filed:
November 7, 2012
Publication date:
January 23, 2014
Applicant:
KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
Inventors:
Doh-Kwon LEE, Hong Gon KIM, Min Jae KO, Jin Young KIM, Da Woon JEONG, Bong Soo KIM
Abstract: Provided are a silver nanowire conductive film coated with an oxidation protection layer and a method for fabricating the same. A silver nanowire conductive film coated with an oxidation protection layer includes: a substrate; silver nanowires disposed on the substrate; and an oxidation protection layer coated on the silver nanowires, wherein the oxidation protection layer comprises an oxide.
Type:
Application
Filed:
July 17, 2013
Publication date:
January 23, 2014
Inventors:
Hyun Suk JUNG, Dong Jun LEE, Yun Jin AN, Gi Ra YI
Abstract: A solar cell is discussed. The solar cell includes a substrate having a first conductivity type and made of a crystalline semiconductor; an emitter region having a second conductivity type opposite the first conductivity type, and forming a p-n junction with the substrate; a surface field region having the first conductivity type and being separated from the emitter region; a first electrode connected to the emitter region; and a second electrode connected to the surface field region, wherein at least one of the emitter region and the surface field region includes a plurality of semiconductor portions, and at least one of the plurality of semiconductor portion is a crystalline semiconductor portion.
Type:
Grant
Filed:
August 16, 2011
Date of Patent:
January 21, 2014
Assignee:
LG Electronics Inc.
Inventors:
Kwangsun Ji, Heonmin Lee, Junghoon Choi, Hojung Syn
Abstract: A method of controlling stoichiometry in a multicomponent material includes providing a solid sample comprising N elements and having a first composition in a main chamber, which is connected to at most N?1 reservoirs. Each of the reservoirs is configured to contain a vapor comprising one of the N elements, where N?2. The solid sample is heated to a first temperature in the main chamber, and each of the reservoirs is heated to a first reservoir temperature (T1, T2 . . . TN-1) sufficient to achieve a predetermined vapor pressure of the vapor contained therein. The reservoirs are placed in gaseous communication with the main chamber, and thermodynamic equilibrium is achieved between the vapor from each of the reservoirs and the solid sample in the main chamber. Consequently, a stoichiometry of the solid sample is changed to arrive at a second composition thereof.
Type:
Grant
Filed:
December 21, 2012
Date of Patent:
January 21, 2014
Assignee:
UT-Battelle, LLC
Inventors:
Nagraj Sheshgiri Kulkarni, Miroslaw Stefan Gruszkiewicz, Boyd Mccutchen Evans, III
Abstract: A photovoltaic device is described. The photovoltaic device comprises an organic-based antireflection layer. A method of making a photovoltaic device is also described.
Abstract: A photovoltaic device having a high conversion efficiency is produced in a stable manner. The conditions for film deposition of a microcrystalline silicon photovoltaic layer (4) in a photovoltaic device are set based on the Raman peak ratio within a Raman spectrum obtained at the substrate (1) side of the microcrystalline silicon layer (4), and the Raman peak ratio within a Raman spectrum obtained at the opposite side to the substrate (1).
Abstract: There is provided a hydrogen production device high in light use efficiency and capable of producing hydrogen with high efficiency. The hydrogen production device according to the present invention includes a photoelectric conversion part having a light acceptance surface and a back surface, a first gas generation part provided on the back surface, and a second gas generation part provided on the back surface, in which one of the first gas generation part and the second gas generation part is a hydrogen generation part to generate H2 from an electrolytic solution, another one thereof is an oxygen generation part to generate O2 from the electrolytic solution, the first gas generation part is electrically connected to the back surface, and the second gas generation part is electrically connected to the light acceptance surface via a first conductive part.
Abstract: This invention provides an organic-inorganic hybrid material, which can exhibit high proton conductivity in a wide temperature range of a low temperature to a high temperature, a proton conductive material, which has a small particle diameter, that is, has a particle diameter capable of reaching pores of primary particles of carbon powder or the like, and has controlled particle diameters, a catalyst layer containing these materials for a fuel cell and an electrolyte film containing these materials for a fuel cell, and a fuel cell. The proton conductive hybrid material comprises proton conductive inorganic nanoparticles and a proton conductive polymer, wherein the Stokes particle diameter of the proton conductive hybrid material by dynamic light scattering is not more than 20 nm.
Type:
Grant
Filed:
October 3, 2005
Date of Patent:
January 21, 2014
Assignee:
The University of Tokyo
Inventors:
Takeo Yamaguchi, Ju Myeung Lee, Gopinathan Madhavikutty Anilkumar
Abstract: A system for recapturing light emitted by a light source and converting that light into electrical current which can be used to power the same light source or other devices. An exemplary embodiment may use photovoltaic cells to recapture light from ceiling lights and convert it into a source of power for the ceiling light. Another embodiment may be a tanning bed that recaptures light using photovoltaic cells. Some embodiments may recapture light from multiple lighting fixtures. An exemplary embodiment may include a computer and battery for storing energy produced by the photovoltaic cells. Another exemplary embodiment is a method of recapturing light emitted by a light source and converting the light into energy which can be used to power electrical activities.
Abstract: The present invention relates to a binuclear ruthenium complex dye having a higher absorption coefficient and capable of absorbing light of longer wavelength for realizing a photoelectric conversion element and a photochemical cell which may convert solar light into electricity over a wide wavelength range and exhibit high photoelectric conversion efficiency; and a binuclear ruthenium complex dye for realizing a photoelectric conversion element and a photochemical cell which may have high durability.
Abstract: A method for applying a metal on a substrate comprises: a) applying a coating by treatment in a plasma, comprising a compound selected from alkanes up to 10 carbon atoms, and unsaturated monomers, and b1) producing polymers on the surface of said substrate, said polymers comprising carboxylic groups and adsorbed ions of a second metal, reducing said ions to the second metal, or alternatively b2) producing polymers on the surface, bringing the surface of said substrate in contact with a dispersion of colloidal metal particles of at least one second metal, and c) depositing said first metal on said second metal. Advantages include that materials sensitive to for instance low pH or solvents can be coated. Substrates including glass, SiO2 with very few of no abstractable hydrogen atoms as well as polymer materials containing halogen atoms can be coated with good adhesion.
Type:
Application
Filed:
November 16, 2011
Publication date:
January 16, 2014
Applicant:
CUPTRONIC TECHNOLOGY LTD.
Inventors:
Sven Göthe, Björn Atthoff, Karl-Gunnar Larsson
Abstract: Disclosed is an electrode body for a solar cell, which is capable of being used as a component of both an organic thin-film solar cell and a dye-sensitized solar cell, and has excellent heat resistance. This electrode body for a solar cell is provided with a substrate with a conductive part at least on the surface and a conductive polymer layer located on the conductive part of the substrate, in which the conductive polymer layer includes: a polymer which is obtained by polymerizing a monomer selected from the group consisting of 3,4-disubstituted thiophenes; and an anion as a dopant to the polymer generated from at least one organic non-sulfonate compound having an anion with the molecular weight of 200 or more. Since the anion of the organic non-sulfonate compound is included as a dopant in the conductive polymer layer, the heat resistance of the conductive polymer layer is improved.
Type:
Application
Filed:
March 31, 2012
Publication date:
January 16, 2014
Applicant:
NIPPON CHEMI-CON CORPORATION
Inventors:
Mahito Atobe, Koji Nakabayashi, Kenji Machida, Sekihiro Takeda
Abstract: Disclosed is an electrode body for a solar cell, which is capable of being used as a component of both an organic thin-film solar cell and a dye-sensitized solar cell, and has excellent heat resistance. This electrode body for a solar cell is provided with a substrate with a conductive part at least on the surface and a conductive polymer layer located on the conductive part of the substrate, in which the conductive polymer layer includes: a polymer derived from at least one monomer selected from the group consisting of 3,4-disubstituted thiophenes; and an anion as a dopant to the polymer generated from at least one organic non-sulfonate compound having an anion with the molecular weight of 200 or more. Additionally, the density of the conductive polymer layer is in the range of 1.15 to 1.80 g/cm3. The dense conductive polymer layer including the anion as a dopant exhibits excellent heat resistance.
Abstract: In an electrode substrate 1, the surface of a metal circuit layer 12 is covered and insulated by an insulating layer 14. In a photoelectric conversion element that uses this electrode substrate 1, the metal circuit layer is reliably shielded from an electrolyte solution or the like so that corrosion and leak current thereof is effectively prevented, and the photoelectric conversion efficiency can be improved. The insulating layer 14 is preferably made of a material that contains a glass component, and is particularly preferably formed by printing a paste that contains glass frit. The metal circuit layer 12 is preferably formed using a printing method.
Abstract: Novel structures of photovoltaic cells (also known as solar cells) are provided. The Cells are based on the nanometer-scaled wire, tubes, and/or rods, which are made of the electronics materials covering semiconductors, insulator or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells can have also high radiation tolerant capability. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.
Abstract: Exemplary embodiments provide a solar cell device, and method for forming the solar cell device by integrating a switch component into a solar cell element. The solar cell element can include a solar cell, a solar cell array and/or a solar cell panel. The integrated solar cell element can be used for a solar sensor, while the solar sensor can also use discrete switches for each solar cell area of the sensor. Exemplary embodiments also provide a connection system for the solar cell elements and a method for super-connecting the solar cell elements to provide a desired connection path or a desired power output through switch settings. The disclosed connection systems and methods can allow for by-passing underperforming solar cell elements from a plurality of solar cell elements. In embodiments, the solar cell element can be extended to include a battery or a capacitor.
Abstract: A backside illuminated multi junction solar cell module includes a substrate, multiple multi junction solar cells, and a cell interconnection that provides a series connection between at least two of the multi junction solar cells. The substrate may include a material that is substantially transparent to solar radiation. Each multi junction solar cell includes a first active cell, grown over the substrate, for absorbing a first portion of the solar radiation for conversion into electrical energy and a second active cell, grown over the first active cell, for absorbing a second portion of the solar radiation for conversion into electrical energy. At least one of the first and second active cells includes a nitride.
Abstract: A shingle and method is provided, wherein the shingle includes a shingle back having at least one back conductive trace and a shingle front configured to securely include at least one solar cell. The shingle front includes at least one front conductive trace configurable such that when the shingle front includes a solar cell, the solar cell is conductively connected to the at least one front conductive trace in a series fashion. At least one of the back conductive traces is conductively connected to at least one of the front conductive traces. The back conductive traces and the front conductive traces are configured such that when the shingle is associated with a like shingle, the back conductive trace of the like shingle is conductively connected to the at least one front conductive trace of the shingle to be in a series fashion.
Abstract: Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
Abstract: Novel structures of photovoltaic cells (also known as solar cells) are provided. The Cells are based on the nanometer-scaled wire, tubes, and/or rods, which are made of the electronics materials covering semiconductors, insulator or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells can have also high radiation tolerant capability. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.
Abstract: A method of fabricating epitaxial semiconductor devices includes: (a) forming an etch limiting film that includes a sacrificial layer on an epitaxial substrate; (b) growing epitaxially layers of a semiconductor structure on the sacrificial layer; (c) forming on the semiconductor structure a layer of a device substrate that can be magnetized, and a patterned passage unit that extends from the device substrate to a depth as deep as the sacrificial layer such that a plurality of semiconductor units are defined in the semiconductor structure and the device substrate; and (d) separating the semiconductor units from the epitaxial substrate by etching laterally the sacrificial layer through the patterned passage unit while a magnetic attraction force is applied to the device substrate.
Abstract: An electrode for a dye sensitized solar cell, the electrode including platinum having a controlled surface roughness and a specific surface area of platinum, a method of manufacturing the electrode, and a dye sensitized solar cell having excellent photoelectric conversion efficiency by including the electrode.
Abstract: Embodiments of the invention relate to methods for fabricating a passivation layer stack for photovoltaic devices. In one embodiment, the passivation layer stack comprises a first dielectric layer of AlxOy (or SiOx) and a second dielectric layer of SixNy having a refractive index less than 2.1. The passivation layer stack has contact openings formed therethrough by a series of pulsed laser beams having a wavelength of about 300-700 nm and a pulse width of about 0.01 nanosecond to about 3 nanoseconds. Lowering the refractive index of SixNy capping AlxOy (or SiOx) in the passivation layer stack makes pulsed laser beams less selective since the SixNy absorbs less laser energy. Therefore, desired regions of the entire passivation layer stack can be removed smoothly in a single pass of pulsed laser beams at a shorter wavelength without causing damage to the neighborhood of the passivation layer stack.
Type:
Application
Filed:
March 11, 2013
Publication date:
January 2, 2014
Inventors:
Hemant P. MUNGEKAR, Jeffrey L. FRANKLIN, Yi ZHENG, Lin ZHANG, Manoj VELLAIKAL
Abstract: A method of forming a photovoltaic device includes forming a thermal stress relieving layer on top of a substrate and forming a sacrificial back electrode metal layer on the thermal stress relieving layer. A semiconductor photon absorber layer is formed on the sacrificial back electrode metal layer, and the absorber layer is reacted with substantially an entire thickness of the sacrificial back electrode metal layer, thereby forming a back ohmic contact comprising a metallic compound of the sacrificial back electrode metal layer and the absorber layer, in combination with the thermal stress relieving layer.
Type:
Application
Filed:
June 27, 2012
Publication date:
January 2, 2014
Applicant:
International Business Machines Corporation
Abstract: A composite film comprising: (i) a heat-stabilised oriented polyester substrate comprising a UV-absorber in an amount of from about 0.1 to about 10% based on the total weight of the polyester substrate, and (ii) on one or both surfaces of the substrate a polymeric coating layer, which has a thickness in the range of from about 10 nm to about 200 nm, and which comprises an ethylene acrylic acid (EAA) copolymer, wherein the composite film exhibits a shrinkage at 150° C. for 30 minutes of less than 0.1% in both the longitudinal and transverse dimensions of the film, and use thereof in the manufacture of photo-voltaic cells.
Type:
Application
Filed:
February 4, 2011
Publication date:
January 2, 2014
Applicant:
DUPONT TEIJIN FILMS U.S. LIMITED PARTNERSHIP
Abstract: A photovoltaic device includes one or more layers of a photovoltaic stack formed on a substrate by employing a high deposition rate plasma enhanced chemical vapor deposition (HDR PECVD) process. Contacts are formed on the photovoltaic stack to provide a photovoltaic cell. Reduced defect zones are disposed adjacent to contact regions in portions of the photovoltaic cell and are formed by an anneal configured to improve overall performance.
Type:
Application
Filed:
July 9, 2012
Publication date:
January 2, 2014
Applicant:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Keith E. Fogel, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
Abstract: A photovoltaic device is presented. The device includes a first semiconductor layer disposed on a second semiconductor layer. The first semiconductor layer includes a compound having a metal species, sulfur, and oxygen. The metal species may include zinc, magnesium, tin, indium, or a combination thereof. Method for making a photovoltaic device is also presented.
Type:
Application
Filed:
June 29, 2012
Publication date:
January 2, 2014
Applicant:
GENERAL ELECTRIC COMPANY
Inventors:
Jinbo Cao, Bastiaan Arie Korevaar, Hongying Peng, Allan Robert Northrup
Abstract: A photovoltaic device includes at least one photovoltaic cell, a flexible glass layer formed over the at least one photovoltaic cell and a transparent and abrasion resistant film which includes an organic-inorganic hybrid material formed over the glass layer.
Abstract: A dye for dye-sensitized solar cells includes an organometallic complex represented by M(L)pX2:(Z)q. In the organometallic complex, M is a Group 8 through Group 10 metallic element, L is a bidentate ligand, X is a co-ligand, and Z is a counter-ion. The ratio of the bidentate ligand (L) to the counter-ion (Z) is about 1.1 to about 1.4. A method of preparing an exemplary dye includes mixing the organometallic complex with tetrabutylammonium thiocyanate and tetrabutylammonium hydroxide to prepare a solution, and purifying the solution at a pH of about 3.8 to about 4.1. A dye-sensitized solar cell includes a first electrode with a light absorbing layer, a second electrode and an electrolyte between the first and second electrodes. The light absorbing layer includes the dye.
Abstract: A solar cell includes a plurality of nanowires arranged such that diameters of the nanowires sequentially increase in a first direction along a path of incident light. In a method of forming nanowires, a catalyst layer is formed on a substrate, a plurality of nanoparticles are formed by thermally processing the catalyst layer, and nanowires are grown from the plurality of nanoparticles. The catalyst layer has a thickness that increases in a first direction, and the plurality of nanoparticles have diameters that increase in the first direction.
Abstract: A method of manufacturing improved thin-film solar cells entirely by sputtering includes a high efficiency back contact/reflecting multi-layer containing at least one barrier layer consisting of a transition metal nitride. A copper indium gallium diselenide (Cu(InXGa1-X)Se2) absorber layer (X ranging from 1 to approximately 0.7) is co-sputtered from specially prepared electrically conductive targets using dual cylindrical rotary magnetron technology. The band gap of the absorber layer can be graded by varying the gallium content, and by replacing the gallium partially or totally with aluminum. Alternately the absorber layer is reactively sputtered from metal alloy targets in the presence of hydrogen selenide gas. RF sputtering is used to deposit a non-cadmium containing window layer of ZnS. The top transparent electrode is reactively sputtered aluminum doped ZnO. A unique modular vacuum roll-to-roll sputtering machine is described.
Abstract: A photovoltaic device includes at least one photovoltaic cell, a flexible glass layer formed over the at least one photovoltaic cell, and a transparent planarizing hardcoat formed on the glass layer. The planarizing hardcoat may be in compressive stress and the glass layer may be in tension.
Abstract: A photovoltaic cell is made by coating a metal foil substrate with cadmium telluride powder, moving the powder coated foil across a cold plate or series of cooled rollers to prevent the substrate from melting, while melting the cadmium telluride powder by passing the powder coated foil under a microwave energy source. This forms a thin film of cadmium telluride on the foil. The cadmium telluride coated foil is then coated with cadmium sulfide powder, which is melted by passing the powder coated foil under a microwave energy source, thereby creating a P-N junction, and the cadmium sulfide layer is coated with indium, which is fused to the cadmium sulfide layer by microwave heating.
Abstract: A solar cell backsheet, which is arranged in contact with a sealing material of a cell-side substrate on which a photovoltaic element is sealed with the sealing material, the solar cell backsheet including a polyester film base material and at least one polymer layer arranged thereon, wherein the polyester film base material has a carboxyl group content of from 1 eq/ton to 15 eq/ton, a minute endothermic peak temperature Tmeta (° C.) of 220° C. or lower as determined by differential scanning calorimetry, and an average elongation retention ratio of 10% or more as determined after being left to stand for 72 hours under conditions of a temperature of 125° C. and a relative humidity of 100% RH; and the at least one polymer layer comprises at least a fluorocarbon-based polymer, has a crosslinked structure derived from at least one crosslinking agent selected from carbodiimide-based compounds and oxazoline-based compounds and is formed by coating.
Abstract: The present invention provides an aqueous resin composition that can form a cured resin layer that exhibits high adhesion to a base member and high moisture-heat resistance. The present invention relates to a heat-sealing material including an aqueous urethane resin (A), an aqueous polyolefin resin (B), a cross-linking agent (C), and an aqueous medium (D), wherein the cross-linking agent (C) contains an alkylated methylolmelamine resin (c1) and an epoxy compound (c2), the content of the alkylated methylolmelamine resin (c1) is in the range of 5% to 50% by mass, one or both of the aqueous urethane resin (A) and the aqueous polyolefin resin (B) have a functional group [X] that is capable of reacting with an epoxy group, and the molar ratio of the amount of substance having an epoxy group to the total amount of substance having the functional group [X] is 5/1 to 1/5.
Abstract: An electrode including a first layer having a sintered product of a metallic glass and a first conductive material, and a second layer including a second conductive material plated using the first layer as a seed layer, a method of manufacturing the same, and an electronic device including the electrode.
Type:
Application
Filed:
February 7, 2013
Publication date:
December 26, 2013
Applicant:
SAMSUNG ELECTRONICS CO., LTD.
Inventors:
Se-Yun KIM, Eun-Sung LEE, Suk-Jun KIM, Jin-Man PARK, Sang-Soo JEE, In-Yong SONG
Abstract: This metal substrate for a dye-sensitized solar cell includes a clad material including a nonporous first metal layer, arranged on an anode side of a dye-sensitized solar cell element, made of a metal having corrosion resistance against an electrolyte of the dye-sensitized solar cell element and a second metal layer made of a metal having lower electrical resistance than the first metal layer and bonded to a side of the first metal layer opposite to the dye-sensitized solar cell element.
Abstract: A charge-carrier transport layer for an electro-optical component includes an organic charge-carrier transport material. A plurality of first particles having a diameter ranging from 1 nm to 100 nm is incorporated in the organic charge-carrier transport material and contains a first transparent oxide. A plurality of second particles having a diameter between 100 nm and 1000 nm is also incorporated into the organic charge-carrier transport material and contains a second transparent oxide. The index of refraction of the plurality of second particles differs from the index of refraction of the organic charge-transport material.
Type:
Grant
Filed:
August 20, 2010
Date of Patent:
December 24, 2013
Assignee:
Karlsruher Institut fuer Technologie
Inventors:
Uli Lemmer, Julian Hauss, Boris Riedel, Martina Gerken
Abstract: Disclosed are p-n zinc (Zn) oxide nanowires and a methods of manufacturing the same. A p-n Zn oxide nanowire includes a p-n junction structure in which phosphorus (P) is on a surface of a Zn oxide nanowire.
Type:
Grant
Filed:
January 13, 2010
Date of Patent:
December 24, 2013
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Seung-nam Cha, Byong-gwon Song, Jae-eun Jang
Abstract: A low softening point glass composition, which is substantially free from lead, bismuth and antimony and comprises oxides of vanadium, phosphorous, tellurium and iron, a softening point of the composition being 380° C. or lower.
Abstract: A method of high reverse current burn-in of solar cells and a solar cell with a burned-in bypass diode are described herein. In one embodiment, high reverse current burn-in of a solar cell with a tunnel oxide layer induces low breakdown voltage in the solar cell. Soaking a solar cell at high current can also reduce the difference in voltage of defective and non-defective areas of the cell.
Type:
Application
Filed:
September 26, 2012
Publication date:
December 19, 2013
Inventors:
Michael J. Defensor, Xiuwen Tu, Junbo Wu, David Smith
Abstract: An atmospheric pressure chemical vapor deposition method for producing an N-type semiconductive metal sulfide thin film on a heated substrate includes converting an indium-containing precursor to at least one of a liquid phase and a gaseous phase. The indium-containing precursor is mixed with an inert carrier gas stream and hydrogen sulfide in a mixing zone so as to form a mixed precursor. A substrate is heated to a temperature in a range of 100° C. to 275° C. and the mixed precursor is directed onto the substrate. The hydrogen sulfide is supplied at a rate so as to obtain an absolute concentration of hydrogen sulfide in the mixing zone of no more than 1% by volume. The In-concentration of the indium containing precursor is selected so as to produce a compact indium sulfide film.
Type:
Grant
Filed:
March 14, 2009
Date of Patent:
December 17, 2013
Assignee:
Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH
Inventors:
Nicholas Allsop, Christian-Herbert Fischer, Sophie Gledhill, Martha Christina Lux-Steiner
Abstract: A solar cell module includes a plurality of solar cells. M first bus bar electrodes are disposed on a first surface of each of the solar cells. N second bus bar electrodes are disposed on a second surface of each of the solar cells. M is a natural number that is equal to or larger than 1, and N is a natural number that is larger than M.
Type:
Grant
Filed:
April 19, 2012
Date of Patent:
December 17, 2013
Assignee:
AU Optronics Corporation
Inventors:
Chun-Han Tai, Yi-Chia Chen, Chia-Hsun Tsai
Abstract: A thin film solar cell with a graded bandgap structure comprises a front contact, a first light absorption layer, a transition layer, a second light absorption layer and a back contact. The first light absorption layer is formed on the front contact, the transition layer is formed on the first light absorption layer, the second light absorption layer is formed on the transition layer, and the back contact is formed on the second light absorption layer, wherein the transition layer has a graded bandgap, which is made by alternating a layer of the first superlattice layers, having a first bandgap, with a layer of the second superlattice layers, having a second bandgap, in a tandem arrangement, based on the condition that the thickness of each layer of the first and the second superlattice layers is varied increasing, decreasing or increasing first and then decreasing.
Abstract: The present invention relates to compounds of the formulae Ia and Ib in which the variables R, n, A, B, R1 and R2 are each as defined in the description. The present invention further relates to the use of compounds of the formula Ia or Ib or mixtures of compounds of the formulae Ia and Ib and/or isomers or mixtures of the isomers of the compounds of the formulae Ia and Ib as photosensitizers in solar cells and photodetectors, and to solar cells and photodetectors which comprise such compounds of the formula Ia or Ib or mixtures of compounds of the formulae Ia and Ib and/or isomers or mixtures of the isomers of the compounds of the formulae Ia and Ib as photosensitizers.
Type:
Grant
Filed:
December 20, 2011
Date of Patent:
December 17, 2013
Assignee:
BASF SE
Inventors:
Neil Gregory Pschirer, Jan Schoeneboom, Felix Eickemeyer, Helmut Reichelt, Ruediger Sens, Ingmar Bruder