Polycrystalline Or Amorphous Semiconductor Patents (Class 136/258)
  • Patent number: 8318531
    Abstract: thermal management for large scale processing of CIS and/or CIGS based thin film is described. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, to at least initiate formation of a copper indium diselenide film.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: November 27, 2012
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20120291861
    Abstract: A heterojunction photovoltaic cell includes at least one crystalline silicon oxide film directly placed onto one of the front or rear faces of a crystalline silicon substrate, between said substrate and a layer of amorphous or microcrystalline silicon. The thin film is intended to enable the passivation of said face of the substrate. The thin film is more particularly obtained by radically oxidizing a surface portion of the substrate, before depositing the layer of amorphous silicon. Moreover, a thin layer of intrinsic or microdoped amorphous silicon can be placed between said think film and the layer of amorphous or microcrystalline silicon.
    Type: Application
    Filed: January 26, 2011
    Publication date: November 22, 2012
    Applicant: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventors: Pierre Mur, Hubert Moriceau, Pierre-Jean Ribeyron
  • Publication number: 20120285532
    Abstract: Provided is a transparent color solar cell, which includes a substrate, a first electrode layer disposed on the substrate, a transparent material layer including quantum dots having the same particle size, which absorb visible light provided from the sun through the first electrode layer and having a first wavelength region, and which selectively transmit visible light provided from the sun through the first electrode layer and having a second wavelength region, and a second electrode layer disposed on the transparent material layer.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sun Jin YUN, JungWook LIM, Yoo Jeong LEE
  • Patent number: 8299353
    Abstract: A solar cell including a photovoltaic layer, a first electrode layer, a second electrode layer, an insulating layer and a light-transparent conductive layer is provided. The photovoltaic layer has a first surface and a second surface. The first electrode layer having at least one gap is disposed on the first surface, wherein the at least one gap exposes a portion of the photovoltaic layer. The second electrode layer is disposed on the second surface. The insulating layer having a plurality of pores is located on the photovoltaic layer exposed by the at least one gap, wherein the holes expose a portion of the photovoltaic layer. The light-transparent conductive layer covers the insulating layer and is connected with the first electrode layer. The transparent electrode is connected with the photovoltaic layer through at least a part of the pores. A method of fabricating a solar cell is also provided.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: October 30, 2012
    Assignees: Tatung Company, Tatung University
    Inventors: Chiung-Wei Lin, Yi-Liang Chen
  • Patent number: 8288645
    Abstract: A back contact single heterojunction solar cell and associated fabrication process are provided. A first semiconductor substrate is provided, lightly doped with a first dopant type. The substrate has a first energy bandgap. A second semiconductor is formed over a region of the substrate backside. The second semiconductor has a second energy bandgap, larger than the first energy bandgap. A third semiconductor layer is formed over the first semiconductor substrate topside, moderately doped with the first dopant and textured. An emitter is formed in the substrate backside, heavily doped with a second dopant type, opposite of the first dopant type, and a base is formed in the substrate backside, heavily doped with the first dopant type. Electrical contacts are made to the base and emitter. Either the emitter or base is formed in the second semiconductor.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: October 16, 2012
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Paul J. Schuele, Steven R. Droes
  • Patent number: 8288648
    Abstract: A solar cell comprises a substrate configured to have a plurality of via holes and a first conductive type, an emitter layer placed in the substrate and configured to have a second conductive type opposite to the first conductive type, a plurality of first electrodes electrically coupled to the emitter layer, a plurality of current collectors electrically coupled to the first electrodes through the plurality of via holes, and a plurality of second electrodes electrically coupled to the substrate. The plurality of via holes comprises at least two via holes having different angles.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: October 16, 2012
    Assignee: LG Electronics Inc.
    Inventors: Daehee Jang, Jihoon Ko, Juwan Kang, Jonghwan Kim
  • Patent number: 8288647
    Abstract: A photoelectric conversion device which can improve photoelectric conversion efficiency is provided. The photoelectric conversion device has at least one p-i-n type photoelectric conversion part which includes a first conductivity type layer, a first i-type layer, a second i-type layer and a second conductivity type layer stacked in this order, and it is characterized in that a crystallization ratio of the first i-type layer is lower than that of the second i-type layer and a change rate of a crystallization ratio in a film-thickness direction at an interface between the first i-type layer and the second i-type layer is 0.013 to 0.24 nm?1.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: October 16, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Yoshiyuki Nasuno
  • Publication number: 20120247539
    Abstract: The invention relates to a semiconductor device comprising: a crystalline semiconductor substrate (1) having a front face (1a) and a rear face (1b); a front passivation layer (3) placed on the front face (1a) of the substrate (1); a rear passivation layer (2) placed on the rear face (1b) of the substrate (1); a first metallization zone (10) placed on the rear passivation layer (2) and designed for collecting electrons; a second metallization zone designed for collecting holes, comprising: a surface portion (11) placed on the rear passivation layer (2); and an internal portion (12) passing through the rear passivation layer (2) and forming, in the substrate (1), a region in which the concentration of electron acceptors is greater than the rest of the substrate (1). The invention also relates to a module of photovoltaic cells using this device and to a process for manufacturing this device.
    Type: Application
    Filed: December 10, 2010
    Publication date: October 4, 2012
    Applicants: TOTAL SA, ECOLE POLYTECHNIQUE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventor: Pére Roca i Cabarrocas
  • Patent number: 8278549
    Abstract: The invention relates to a solar photovoltaic energy conversion apparatus. The apparatus consists of a substrate, a buffer layer formed on the substrate layer, a first transparent conductive oxide layer formed on the buffer layer, periodic protrusions containing first silicon layers formed on the first transparent conductive oxide layer, second silicon layers formed on the first silicon layers, a second transparent conductive oxide layer covering the first silicon layers, the second silicon layers and the first transparent conductive oxide layer, and an anti-reflective protective layer. The first silicon layer and the second silicon layer are the electrodes with the opposite type of charge carriers. The first transparent conductive layer and the second transparent conductive layer are the electrodes with the opposite type of charge carriers. This TCO-based hybrid solar photovoltaic energy conversion device not only can allow the transmission of visible sunlight but also can enhance the photovoltaic energy.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: October 2, 2012
    Assignee: Chang Gung University
    Inventors: Hsin-Chun Lu, Kuo-mei Wu, Pen-Hsiu Chang, Chun-Lung Chu, Chi-Yo Lai
  • Patent number: 8273983
    Abstract: A photonic device, a method of making the device and a nano-scale antireflector employ a bramble of nanowires. The photonic device and the method include a first layer of a microcrystalline material provided on a substrate surface and a second layer of a microcrystalline material provided on the substrate surface horizontally spaced from the first layer by a gap. The photonic device and the method further include, and the nano-scale antireflector includes, the bramble of nanowires formed between the first layer and the second layer. The nanowires have first ends integral to crystallites in each of the first layer and the second layer. The nanowires of the bramble extend into the gap from each of the first layer and the second layer.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: September 25, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, R. Stanley Williams, Nobuhiko Kobayashi
  • Publication number: 20120227808
    Abstract: Disclosed is a process for producing a silicon powder, which comprises the steps of: powderizing a silicon ingot having a grade of 99.999% or more into a crude silicon powder having a particle diameter of 3 mm or less by means of high-pressure purified-water cutting; and reducing the crude silicon powder into a silicon powder having a particle diameter ranging from 0.01 to 10 [mu]m inclusive by means of at least one method selected from jet milling, wet granulation, ultrasonic wave disruption and shock wave disruption. The process is a technique for producing a silicon powder rapidly from a silicon ingot without reducing purity.
    Type: Application
    Filed: October 19, 2010
    Publication date: September 13, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Ichiro Nakayama, Hitoshi Yamanishi, Yoshihisa Ooido, Nobuyuki Kamikihara, Tomohiro Okumura
  • Publication number: 20120227790
    Abstract: The assemblies of the present disclosure comprise an electrode, and a polyimide film. The polyimide film comprises a sub-micron filler and a polyimide. The polyimide is derived from at least one aromatic dianhydride component selected from rigid rod dianhydride, non-rigid rod dianhydride and combinations thereof, and at least one aromatic diamine component selected from rigid rod diamine, non-rigid rod diamine and combinations thereof. The mole ratio of dianhydride to diamine is 48-52:52-48 and the ratio of X:Y is 20-80:80-20 where X is the mole percent of rigid rod dianhydride and rigid rod diamine, and Y is the mole percent of non-rigid rod dianhydride and non-rigid rod diamine. The sub-micron filler is less than 550 nanometers in at least one dimension; has an aspect ratio greater than 3:1; is less than the thickness of the film in all dimensions.
    Type: Application
    Filed: November 19, 2010
    Publication date: September 13, 2012
    Applicant: E. I DU PONT DE NEMOURS AND COMPANY
    Inventors: Brian C. Auman, Meredith L. Dunbar, Tao He, Kostantinos Kourtakis
  • Patent number: 8263859
    Abstract: An aspect of the present invention provides a stacked photovoltaic device that comprises a first power generating unit including a first semiconductor layer made of a substantially intrinsic non-single crystal semiconductor layer which functions as a photoelectric conversion layer; and a second power generating unit formed above the first power generating unit, the second power generating unit including a second semiconductor layer made of a substantially intrinsic non-crystalline semiconductor layer which functions as a photoelectric conversion layer. In the stacked photovoltaic device, a first density of an element mainly constituting the first semiconductor layer of the first power generating unit is lower than a second density of an element mainly constituting the second semiconductor layer of the second power generating unit.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: September 11, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventor: Masaki Shima
  • Patent number: 8258050
    Abstract: A method of making a crystalline semiconductor structure provides a photonic device by employing low thermal budget annealing process. The method includes annealing a non-single crystal semiconductor film formed on a substrate to form a polycrystalline layer that includes a transition region adjacent to a surface of the film and a relatively thicker columnar region between the transition region and the substrate. The transition region includes small grains with random grain boundaries. The columnar region includes relatively larger columnar grains with substantially parallel grain boundaries that are substantially perpendicular to the substrate. The method further includes etching the surface to expose the columnar region having an irregular serrated surface.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: September 4, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Hans S. Cho, Theodore I. Kamins
  • Publication number: 20120216862
    Abstract: A method of producing a photovoltaic device includes providing a stretchable substrate for the photovoltaic device; and stretching the substrate to produce a stretched substrate. The method further includes depositing a structure comprising hydrogenated amorphous silicon onto the stretched substrate; and subjecting the deposited hydrogenated amorphous silicon structure and the stretched substrate to a compressive force to form a compressively strained photovoltaic device.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Applicant: International Business Machines Corporation
    Inventors: Ahmed Abou-Kandil, Nasser Afify, Wanda Andreoni, Alessandro Curioni, Augustin J. Hong, Jeehwan Kim, Petr Khomyakov, Devendra K. Sadana
  • Patent number: 8252668
    Abstract: Provided is a photoelectric conversion device fabrication method that realizes both high productivity and high conversion efficiency by rapidly forming an n-layer having good coverage. The fabrication method for a photoelectric conversion device includes a step of forming a silicon photoelectric conversion layer on a substrate by a plasma CVD method. In the fabrication method for the photoelectric conversion device, the step of forming the photoelectric conversion layer includes a step of forming an i-layer formed of crystalline silicon and a step of forming, on the i-layer, an n-layer under a condition with a hydrogen dilution ratio of 0 to 10, inclusive.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: August 28, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kengo Yamaguchi, Satoshi Sakai, Yoshiaki Takeuchi
  • Patent number: 8252669
    Abstract: An object of one embodiment of the present invention is to provide a technique for manufacturing a dense crystalline semiconductor film (e.g., a microcrystalline semiconductor film) without a cavity between crystal grains. A plasma region is formed between a first electrode and a second electrode by supplying high-frequency power of 60 MHz or less to the first electrode under a condition where a pressure of a reactive gas in a reaction chamber of a plasma CVD apparatus is set to 450 Pa to 13332 Pa, and a distance between the first electrode and the second electrode of the plasma CVD apparatus is set to 1 mm to 20 mm; crystalline deposition precursors are formed in a gas phase including the plasma region; a crystal nucleus of 5 nm to 15 nm is formed by depositing the deposition precursors; and a microcrystalline semiconductor film is formed by growing a crystal from the crystal nucleus.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: August 28, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Toriumi, Ryota Tajima, Takashi Ohtsuki, Tetsuhiro Tanaka, Ryo Tokumaru, Mitsuhiro Ichijo, Kazutaka Kuriki, Tomokazu Yokoi, Toshiya Endo, Shunpei Yamazaki
  • Publication number: 20120211076
    Abstract: Disclosed is a solar cell wherein generation of internal stress is reduced, thereby reducing crystal defects and recombination loss. Specifically disclosed is a solar cell having an antireflective film and an external lead-out electrode on the light-receiving side of a semiconductor substrate that is provided with a p-n junction, while comprising an electrode layer on the non-light-receiving side of the semiconductor substrate. The solar cell is characterized in that the electrode layer is in the form of a solid layer and has a thickness of not more than 5 ?m. It is preferable that the electrode layer has a sheet resistance of not more than 1×10?4 ?/?.
    Type: Application
    Filed: October 21, 2010
    Publication date: August 23, 2012
    Inventor: Kaoru Okaniwa
  • Publication number: 20120211067
    Abstract: A photoelectric conversion device in which photoelectric conversion in a light-absorption layer is efficiently performed is provided. In the photoelectric conversion device, a light-transmitting conductive film which has a high effect of passivation of defects on a silicon surface and improves the reflectance on a back electrode side is provided between the back electrode and one of semiconductor layers for generation of an internal electric field. The light-transmitting conductive film includes an organic compound and an inorganic compound. The organic compound includes a material having an excellent hole-transport property. The inorganic compound includes a transition metal oxide having an electron-accepting property.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 23, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Fumito Isaka, Jiro Nishida
  • Publication number: 20120211079
    Abstract: A method of forming a photovoltaic device that includes providing an absorption layer of a first crystalline semiconductor material having a first conductivity type, and epitaxially growing a second crystalline semiconductor layer of a second conductivity type that is opposite the first conductivity type. The first conductivity type may be p-type and the second conductivity type may be n-type, or the first conductivity type may be n-type and the second conductivity type may be p-type. The temperature of the epitaxially growing the second crystalline semiconductor layer does not exceed 500° C. Contacts are formed in electrical communication with the absorption layer and the second crystalline semiconductor layer.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoar-Tabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8247254
    Abstract: System and method for forming solar cell structures using a foundry compatible process. According to an embodiment, the present invention provides a method for manufacturing a solar cell. The method includes providing a substrate. The substrate includes a support region. The method also includes transferring a photovoltaic material overlying the support region of the substrate. The photovoltaic material is characterized by a first thickness. The method further includes forming an emitter region on the photovoltaic material by a diffusion process. The emitter region is characterized by a first impurity type. In addition, the method includes forming a mask overlaying the emitter region. The mask exposes at least a first contact region. The method also includes forming the first contact region within the first thickness of the photovoltaic material. Furthermore, the method includes doping the first contact region with a second impurity type.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: August 21, 2012
    Assignee: Silicon China (HK) Ltd.
    Inventor: Chung Chan
  • Patent number: 8242354
    Abstract: A solar cell includes abutting P-type and N-type doped regions in a contiguous portion of a polysilicon layer. The polysilicon layer may be formed on a thin dielectric layer, which is formed on a backside of a solar cell substrate (e.g., silicon wafer). The polysilicon layer has a relatively large average grain size to reduce or eliminate recombination in a space charge region between the P-type and N-type doped regions, thereby increasing efficiency.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 14, 2012
    Assignee: SunPower Corporation
    Inventor: David D. Smith
  • Publication number: 20120199193
    Abstract: Provided is an amorphous silicon solar cell module including a solar cell encapsulant containing a metal deactivator and silane-modified polyethylene, and a metal material adjacent to the solar cell encapsulant and having at least one selected from copper, a lead-free solder alloy and a silver film.
    Type: Application
    Filed: November 10, 2010
    Publication date: August 9, 2012
    Applicant: DU PONT-MITSUI POLYCHEMICALS CO., LTD.
    Inventors: Koichi Nishijima, Norihiko Sato
  • Publication number: 20120192923
    Abstract: In one aspect of the present invention, a photovoltaic device is provided. The photovoltaic device includes a first semiconductor layer; a p+-type semiconductor layer; and an interlayer interposed between the first semiconductor layer and the p+-type semiconductor layer, wherein the interlayer includes magnesium and tellurium.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bastiaan Arie Korevaar, James William Bray
  • Publication number: 20120186642
    Abstract: A solar cell includes a support (6), a back electrode layer (5), at least a hydrogenated microcrystalline silicon photoelectric device (9), and a top electrode layer (11). The back electrode layer (5) has a rough surface. The solar cell includes, between the back electrode layer (5) and the hydrogenated microcrystalline silicon photoelectric device (9), an asymmetric intermediate layer (8), the intermediate layer (8) being adjacent to the hydrogenated microcrystalline silicon photoelectric device (9) and having a surface, on the side of the back electrode layer (5), having a roughness greater than the roughness of the surface of the intermediate layer (8) on the side of the hydrogenated microcrystalline silicon device (9). Such solar cells allow obtaining optimum Voc and FF parameters, while maintaining high current.
    Type: Application
    Filed: September 22, 2010
    Publication date: July 26, 2012
    Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Christophe Ballif, Franz-Joseph Haug, Sean Sweetnam, Thomas Söderström
  • Publication number: 20120186631
    Abstract: The present invention comprises a solar cell module and a method of encapsulating the module. The solar cell module comprises a rigid or flexible superstrate and/or substrate having one or more solar cells, and an encapsulant which is a cured liquid silicone encapsulant. The encapsulant composition preferably comprises a liquid diorganopolysiloxane having at least two Si-alkenyl groups per molecule, a silicone resin containing at least two alkenyl groups; a cross-linking agent in the form of a polyorganosiloxane having at least two silicon-bonded hydrogen atoms per molecule, in an amount such that the ratio of the number of moles of silicon-bonded hydrogen to the total number of moles of silicon-bonded alkenyl groups is from 0.1:1 to 5:1; and a hydrosilylation catalyst. The continuous solar cell module encapsulation process comprises uniformly applying a predetermined volume of a liquid silicone encapsulant onto a solar cell module and curing said encapsulant.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 26, 2012
    Inventors: Christine Terreau, Jean de la Croi Habimana, Stephen Jenkins
  • Patent number: 8222516
    Abstract: A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: July 17, 2012
    Assignee: SunPower Corporation
    Inventor: Peter John Cousins
  • Publication number: 20120167963
    Abstract: Device structure that facilitates high rate plasma deposition of thin film photovoltaic materials at microwave frequencies. The device structure includes a primer layer that shields the substrate and underlying layers of the device structure during deposition of layers requiring aggressive, highly reactive deposition conditions. The primer layer prevents or inhibits etching or other modification of the substrate or underlying layers by highly reactive deposition conditions. The primer layer also reduces contamination of subsequent layers of the device structure by preventing or inhibiting release of elements from the substrate or underlying layers into the deposition environment. The presence of the primer layer extends the range of deposition conditions available for forming photovoltaic or semiconducting materials without compromising performance. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors from fluorinated precursors in a microwave plasma process.
    Type: Application
    Filed: December 31, 2010
    Publication date: July 5, 2012
    Inventor: Stanford R. Ovshinsky
  • Publication number: 20120167984
    Abstract: Device structure that facilitates high rate plasma deposition of thin film photovoltaic materials at microwave frequencies. The device structure includes a primer layer that shields the substrate and underlying layers of the device structure during deposition of layers requiring aggressive, highly reactive deposition conditions. The primer layer prevents or inhibits etching or other modification of the substrate or underlying layers by highly reactive deposition conditions. The primer layer also reduces contamination of subsequent layers of the device structure by preventing or inhibiting release of elements from the substrate or underlying layers into the deposition environment. The presence of the primer layer extends the range of deposition conditions available for forming photovoltaic or semiconducting materials without compromising performance. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors from fluorinated precursors in a microwave plasma process.
    Type: Application
    Filed: December 31, 2010
    Publication date: July 5, 2012
    Inventor: Stanford R. Ovshinsky
  • Patent number: 8207444
    Abstract: A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: June 26, 2012
    Assignee: SunPower Corporation
    Inventor: Peter John Cousins
  • Publication number: 20120152345
    Abstract: Disclosed are aluminum paste compositions, processes to form solar cells using the aluminum paste compositions, and the solar cells so-produced. The aluminum paste compositions comprise 0.003% to 9%, by weight of boron nitride; 27% to 89%, by weight of an aluminum powder, such that the weight ratio of aluminum powder to boron nitride is in the range of 9:1 to 9909:1; and 0.1% to 9%, by weight of an optional glass frit-free additive, the optional glass frit-free additive comprising amorphous silicon dioxide, crystalline calcium oxide organometallic compounds, metal salts, or mixtures thereof; and 10% to 70%, by weight of an organic vehicle, wherein the amounts in % by weight are based on the total weight of the aluminum paste composition.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: Raj G. Rajendran
  • Publication number: 20120145239
    Abstract: A photoelectric conversion device is provided wherein variance of photoelectric conversion efficiency within a panel plane is reduced. A method of manufacturing a photoelectric conversion device having a microcrystalline silicon photoelectric conversion unit (104) which has a layered structure including a p-type layer (40), an i-type layer (42) including a microcrystalline silicon layer which serves as a power generating layer, and an n-type layer (44) is provided, the method comprising a step of forming the i-type layer (42), wherein a first i-type layer (42a) is formed and a second i-type layer (42b) is formed over the first i-type layer (42a) under a condition that a crystallization percentage is higher than that of the first i-type layer (42a) and an in-plane distribution of the crystallization percentage is lower than that of the first i-type layer.
    Type: Application
    Filed: November 24, 2010
    Publication date: June 14, 2012
    Applicant: Sanyo Electric Co., Ltd.
    Inventors: Toshie Kunii, Mitsuhiro Matsumoto
  • Publication number: 20120145240
    Abstract: A multilayer article having a cell substrate; a thin-film photovoltaic cell disposed on the cell substrate; an encapsulant layer disposed on the photovoltaic cell; and at least one plastic substrate coated on at least one side with one or more transparent, amorphous barrier layers disposed on the encapsulant layer. The invention extends to the process of making the article.
    Type: Application
    Filed: August 24, 2010
    Publication date: June 14, 2012
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventor: Peter Francis Carcia
  • Patent number: 8198629
    Abstract: To provide a photoelectric conversion device with improved photoelectric conversion characteristics and cost competitiveness. A photoelectric conversion device including a semiconductor junction has a semiconductor layer in which a needle-like crystal is made to grow over an impurity semiconductor layer. The impurity semiconductor layer is formed of a microcrystalline semiconductor and includes an impurity imparting one conductivity type. An amorphous semiconductor layer is deposited on a microcrystalline semiconductor layer by setting the flow rate of a dilution gas (typically silane) to 1 time to 6 times the flow rate of a semiconductor source gas (typically hydrogen) at the time of deposition. Thus, a crystal with a three-dimensional shape tapered in a direction of the deposition of a film, i.e., in a direction from the microcrystalline semiconductor layer to the amorphous semiconductor layer is made to grow.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: June 12, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Toriumi, Tomokazu Yokoi, Makoto Furuno
  • Patent number: 8193443
    Abstract: The present invention relates to a photovoltaic cell, a method of manufacturing such photovoltaic cell, and to uses of such cell.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 5, 2012
    Assignees: Sony Deutschland GmbH, Sony Corporation
    Inventors: Michael Duerr, Gabriele Nelles, Akio Yasuda, Masahiro Morooka, Yusuke Suzuki, Kazuhiro Noda
  • Patent number: 8188364
    Abstract: The invention concerns a photovoltaic cell comprising a heterojunction between a crystalline semiconductor substrate (210) of first conductivity type and a first amorphous layer (220) in the same semiconductor material and of a second conductivity type opposite the first type and having a dopant concentration of between 1.1019 and 1.1022 atoms/cm3. The photovoltaic cell further comprises a second amorphous layer (225) of same conductivity type as the first layer and having a dopant concentration of between 1.1016 and 1.1018 atoms/cm3, said second layer being deposited directly on a first face of the substrate and being coated with said first layer. Finally, on a second face of the substrate opposite the first face, the cell comprises a third amorphous layer (260), in the same material as the substrate and of same conductivity type with a dopant concentration of between 1.1019 and 1.1022 atoms/cm3.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: May 29, 2012
    Assignee: Commissariat a L'Energie Atomique
    Inventor: Pierre Jean Ribeyron
  • Patent number: 8178778
    Abstract: A photovoltaic conversion element includes a one conductivity-type crystalline Si semiconductor; an opposite conductivity-type semiconductor which is joined to the crystalline Si semiconductor to form a pn junction therebetween; an electrode provided on the opposite conductivity-type semiconductor; and a depletion region formed from the side of the one conductivity-type crystalline Si semiconductor to the side of the opposite conductivity-type semiconductor across the pn junction formed therebetween. The depletion region has a first depletion region located inside the crystalline Si semiconductor and under the electrode, and the first depletion region has an oxygen concentration of 1E18 [atoms/cm3] or less.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: May 15, 2012
    Assignee: Kyocera Corporation
    Inventors: Koichiro Niira, Tomonari Sakamoto, Norihiko Matsushima
  • Patent number: 8173474
    Abstract: When a layered structure of a transparent electrode layer and a metal layer is formed as a back side electrode layer over a surface on a side opposite to a side of incidence of light of a thin film solar battery, a time when formation of the transparent electrode layer is completed and a time when formation of the metal layer is started are made to coincide for one substrate.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: May 8, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Kazushige Kaneko
  • Patent number: 8173477
    Abstract: Apparatuses and methods are provided for the continuous formation of solar cell material including an isolation chamber that reduces cross contamination between adjacent formation zones that are at different pressures.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: May 8, 2012
    Assignee: Xunlight Corporation
    Inventors: Xinmin Cao, Bradley S. Mohring
  • Patent number: 8173484
    Abstract: A method of fabricating a solar cell includes: forming a first electrode on a substrate; forming a first impurity-doped semiconductor layer on the first electrode; forming a first intrinsic semiconductor layer of amorphous silicon on the first impurity-doped semiconductor layer; forming a second impurity-doped semiconductor layer over the first impurity-doped semiconductor layer, forming a second electrode over the second impurity-doped semiconductor layer; and irradiating a first microwave to form a second intrinsic semiconductor layer of microcrystalline silicon by crystallizing the first intrinsic semiconductor layer.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: May 8, 2012
    Assignee: Jusung Engineering Co., Ltd.
    Inventor: Gun-Mook Lim
  • Publication number: 20120103417
    Abstract: A solar cell with graded bandgap is provided to increase the efficiencies of using the solar energy by a solar cell. The solar cell with graded bandgap above sequentially comprises a transparent conductive layer, a polysilicon layer, and conductive layer on a substrate. The polysilicon layer has a gradually increased bandgap from a first interface contacting the transparent conductive layer to the second interface contacting the conductive layer.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: Du Pont Apollo Limited
    Inventors: Kuang-Chen YEH, Chu-Wan HUANG, Jr-Hong CHEN
  • Patent number: 8168883
    Abstract: An adjustable solar powerer having photovoltaic cells made of either silicon, polycrystalline or single-crystalline located on a stabilizing base converts solar power or artificial light into electric energy. This solar powerer is made up of unilateral flat and movable elements, each having unilaterally installed photovoltaic cells, these elements being connected with each other by a yoke and catch at one end, the yoke and pivot being connected to a tripod.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: May 1, 2012
    Inventor: Moses Clark
  • Publication number: 20120097246
    Abstract: A solar cell includes a crystalline semiconductor substrate; a first crystalline semiconductor layer; an amorphous semiconductor layer; a first metal electrode layer and a second metal electrode layer. The crystalline semiconductor substrate has a first surface and a second surface, and the crystalline semiconductor substrate has a first doped type. The first crystalline semiconductor layer is disposed on the first surface of the crystalline semiconductor substrate, where the first crystalline semiconductor layer has a second doped type contrary to the first doped type. The amorphous semiconductor layer is disposed on the first crystalline semiconductor layer, and the amorphous semiconductor layer has the second doped type. The first metal electrode layer is disposed on the amorphous semiconductor layer. The second metal electrode layer is disposed on the second surface of the crystalline semiconductor substrate.
    Type: Application
    Filed: March 29, 2011
    Publication date: April 26, 2012
    Inventors: Chee-Wee Liu, Wei-Shuo Ho, Yen-Yu Chen, Chun-Yuan Ku, Zhen-Cheng Wu, Shuo-Wei Liang, Jen-Chieh Chen, Chung-Wei Lai, Tsung-Pao Chen
  • Publication number: 20120090675
    Abstract: A solar cell include a polycrystalline semiconductor substrate of a p-type, an emitter region of an n-type and forming a p-n junction with the polycrystalline semiconductor substrate, a first electrode connected to the emitter region, and a second electrode connected to the polycrystalline semiconductor substrate, wherein the polycrystalline semiconductor substrate has a pure p-type impurity concentration of substantially 7.2×1015/cm3 to 3.5×1016/cm3.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 19, 2012
    Inventors: Seunghwan Shim, Jinah Kim, Jeongbeom Nam, Indo Chung, Juhong Yang, Hyungwook Choi, Ilhyoung Jung, Hyungjin Kwon
  • Patent number: 8148180
    Abstract: A method of forming ohmic contacts on a light emitting diode that features a surface treatment of a substrate includes exposing a surface of a p-type gallium nitride layer to an acid-containing solution and a buffered oxide etch process. A quantum well is formed in a gallium nitride substrate and a layer of p-type gallium nitride is deposited over the quantum well. The surface of the p-type gallium nitride is exposed to an acid-containing solution and then a buffered oxide etch process is performed to provide an etched surface. A metal stack including a layer of silver disposed between layers of platinum is then deposited.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: April 3, 2012
    Assignee: Sorra, Inc.
    Inventors: Andrew J. Felker, Nicholas Andrew Vickers
  • Patent number: 8148625
    Abstract: The present invention provides a solar cell sealing film having enhanced transparency. A composition for a solar cell sealing film contains an ethylene-polar monomer copolymer, a crosslinker and a compound having an alkyleneoxy group. Thereby a solar cell sealing film having excellent all light beam transmittance and enhanced transparency can be formed.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: April 3, 2012
    Assignee: Bridgestone Corporation
    Inventor: Hisataka Kataoka
  • Publication number: 20120073650
    Abstract: Methods of fabricating emitter regions of solar cells are described. Methods of forming layers on substrates of solar cells, and the resulting solar cells, are also described.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventors: David Smith, Helen Liu, Tim Dennis, Jane Manning, Hsin-Chiao Luan, Ann Waldhauer, Genevieve A. Solomon, Brenda Pagulayan Malgapu, Joseph Ramirez
  • Publication number: 20120073651
    Abstract: A photoelectric conversion element according to an embodiments includes: a first metal layer; a semiconductor layer formed on the first metal layer; a second metal layer formed on the semiconductor layer, the second metal layer comprising a porous thin film with a plurality of openings each having a mean area not smaller than 80 nm2 and not larger than 0.8 ?m2 or miniature structures having a mean volume not smaller than 4 nm3 and not larger than 0.52 ?m3; and a wavelength converting layer formed between the semiconductor layer and the second metal layer, at least a refractive index of a portion of the wavelength converting layer being lower than a refractive index of a material of the semiconductor layer, the portion being at a distance of 5 nm or shorter from an end portion of the second metal layer.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 29, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Akira Fujimoto, Eishi Tsutsumi, Tsutomu Nakanishi, Kumi Masunaga, Kenji Nakamura, Koji Asakawa
  • Publication number: 20120073649
    Abstract: A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Craig A. Blue, Art Clemons, Chad E. Duty, David C. Harper, Ronald D. Ott, John D. Rivard
  • Publication number: 20120073652
    Abstract: The invention relates to a composite structure comprising a photovoltaic cell adhering to an injected polymer (1), in which the photovoltaic cell exhibits an active face (2) adhering to a base (3), characterized in that the photovoltaic cell is continuous and its face directed away from the injected polymer (1) is caused to adhere to an encapsulating polymer (4) with a linear thermal expansion coefficient which does not differ by more than 65% from that of the injected polymer (1) and with a minimum melting point which allows it to withstand the injection of the latter and which promotes adhesion to the injected polymer (1), or in that the photovoltaic cell is openwork; a simple or multiple and monolithic or laminated window comprising such a structure.
    Type: Application
    Filed: April 2, 2010
    Publication date: March 29, 2012
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Beatrice Mottelet, Adele Verrat-Debailleul