Nickel Containing Patents (Class 148/335)
  • Patent number: 7794651
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45% ; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245 (Mo+3 V+1.5 Nb+0.75 Ta)0.30+125 Cr0.20+15.8 Mn+7.4 Ni+18 Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2 W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: September 14, 2010
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Dominique Viale
  • Patent number: 7785531
    Abstract: An alloy for aircraft roller bearings containing: 0.45 to 1.0 wt. % carbon, max 2.0 wt. % manganese, max 1.0 wt. % silicon, 8.5 to 11.5 wt. % chromium, 1.0 to 4.5 wt. % molybdenum, 1.0 to 2.5 wt. % vanadium, max 2.0 wt. % tungsten, max 0.5 wt. % niobium, max 0.5 wt. % tantalum, max 3.0 wt. % nickel, max 0.5 wt. % cobalt, max 0.1 wt. % aluminum, max 0.01 wt. % nitrogen, and the balance being iron and impurities due to production.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: August 31, 2010
    Assignee: Boehler Edelstahl GmbH
    Inventors: Roland Rabitsch, Sven Peissl, Reinhold Ebner, Sabine Eglsaeer
  • Patent number: 7776160
    Abstract: An apparatus (10) includes a low-carbon steel tube (24). The low-carbon steel tube (24) yields plastically more than about 5% before fracturing at temperatures down to about ?40° C. when stress is applied to the low-carbon steel tube sufficient to cause the low carbon steel tube to so yield.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: August 17, 2010
    Assignees: TRW Automotive U.S. LLC, Sumitomo Metal Industries Ltd.
    Inventor: Eric C. Erike
  • Patent number: 7776161
    Abstract: The present invention provides a steel sheet excellent in workability, which may be used for components of an automobile or the like, and a method for producing the same. More specifically, according to one exemplary embodiment of the present invention, a steel sheet excellent in workability, including in mass, 0.08 to 0.25% C, 0.001 to 1.5% Si, 0.01 to 2.0% Mn, 0.001 to 0.06% P, at most 0.05% S, 0.001 to 0.007% N, 0.008 to 0.2% Al, at least 0.01% Fe. The steel sheet having an average r-value of at least 1.2, an r-value in the rolling direction of at least 1.3, an r-value in the direction of 45 degrees to the rolling direction of at least 0.9, and an r-value in the direction of a right angle to the rolling direction of at least 1.2.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: August 17, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Naoki Yoshinaga, Nobuhiro Fujita, Manabu Takahashi, Koji Hashimoto, Shinya Sakamoto, Kaoru Kawasaki, Yasuhiro Shinohara, Takehide Senuma
  • Publication number: 20100193089
    Abstract: Disclosed is a hot-working tool steel having improved toughness and high-temperature strength. Also disclosed is a method for producing the hot-working tool steel. The hot-working tool steel comprises the following components (by mass): C: 0.34-0.40%, Si: 0.3-0.5%, Mn: 0.45-0.75%, Ni: 0-0.5% (exclusive), Cr: 4.9-5.5%, (Mo+1/2W): 2.5-2.9% (provided that Mo and W are contained singly or in combination), and V: 0.5-0.7%, with the remainder being Fe and unavoidable impurities. Preferably, the cross-sectional structure of the hot-working tool steel upon quenching contains a granular structure and an acicular structure, wherein the granular structure (A %) accounts for 45 area % or less, the acicular structure (B %) accounts for 40 area % or less, and the remaining austenite (C %) accounts for 5 to 20 volume %.
    Type: Application
    Filed: September 14, 2007
    Publication date: August 5, 2010
    Applicant: Hitachi Metals, Ltd.
    Inventors: Kouta Kataoka, Hideshi Nakatsu, Yasushi Tamura, Masayuki Nagasawa
  • Publication number: 20100193085
    Abstract: The present invention describes a seamless steel tube for work-over risers comprising in weight percent, carbon 0.23-0.29, manganese 0.45-0.65, silicon 0.15-0.35, chromium 0.90-1.20, molybdenum 0.70-0.90, nickel 0.20 max, nitrogen 0.010 max, boron 0.0010-0.0030, aluminum 0.010-0.045, sulfur 0.005 max, phosphorus 0.015 max, titanium 0.005-0.030, niobium 0.020-0.035, copper 0.15 max, arsenic 0.020 max, calcium 0.0040 max, tin 0.020 max, hydrogen 2.4 ppm max, the rest are iron and inevitable impurities, consisting of a geometry in which ends of the tube have an increased wall thickness and outer diameter and having a yield strength of at least of 620 MPa (90 ksi) throughout the whole length of a tube body and in tube ends. The present invention also describes methods for manufacturing a seamless steel tube for work-over risers having a yield strength at least of 620 MPa (90 ksi) both in a tube body and in tube ends.
    Type: Application
    Filed: April 17, 2008
    Publication date: August 5, 2010
    Inventors: Alfonso Izquierdo Garcia, Héctor Manuel Quintanilla Carmona
  • Patent number: 7763124
    Abstract: Provided are a steel having excellent rolling contact fatigue life and the manufacturing method thereof. The steel consists essentially of 0.7 to 1.1% C, 0.2 to 2.0% Si, 0.4 to 2.5% Mn, 1.6 to 4.0% Cr, 0.1% or more and less than 0.5% Mo, 0.010 to 0.050% Al, bymass, and balance of Fe and inevitable impurities, is treated by quenching and tempering, has residual cementite grain sizes ranging from 0.05 to 1.5 ?m, and has prior-austenite grain sizes of 30 ?m or smaller. When the steel is used to bearing steel, the bearing life extends even under service in more severe environments.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: July 27, 2010
    Assignees: JFE Steel Corporation, Koyo Seiko Co., Ltd.
    Inventors: Takashi Iwamoto, Akihiro Matsuzaki, Kazuhiko Ohno, Masao Goto, Hisashi Harada, Hisato Nishisaka
  • Patent number: 7763123
    Abstract: Disclosed is a hard-drawn spring which exhibits fatigue strength and sag resistance equal or superior to springs produced using an oil-tempered wire. The hard-drawn spring is produced using a steel wire containing 0.5 to 0.7 mass % of C, 1.0 to 1.95 mass % of Si, 0.5 to 1.5 mass % of Mn and 0.5 to 1.5 mass % of Cr, with the balance being Fe and inevitable impurities. In the steel wire, the number of carbides having circle-equivalent diameters of 0.1 ?m or more is 5 particles/100 ?m2 or less.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: July 27, 2010
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Suncall Corporation
    Inventors: Sumie Suda, Nobuhiko Ibaraki, Nao Yoshihara, Shigetsugu Yoshida, Koji Harada
  • Patent number: 7758707
    Abstract: The invention relates to a martensitic stainless steel to be used for making a razor, surgical and similar blades or other cutting tools, which steel contains 0.40 to 0.55 wt % carbon, 0.8 to 1.5 wt % silicon, 0.7 to 0.85 wt % manganese, 13.0 to 14.0 wt % chromium, 1.0 to 1.5 wt % molybdenum and 0.2 to 0.4 wt % nickel, 0.02 to 0.04 wt % nitrogen, the balance of the steel being iron and inevitable impurities. The invention also relates to a method of manufacturing the said steel.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: July 20, 2010
    Assignee: Outokumpu Oyj
    Inventor: Chris Millward
  • Patent number: 7754029
    Abstract: Steel and steel shaped articles with an excellent delayed fracture resistance and a tensile strength of the 1600 MPa class or more, containing, by mass %, C: 0.20 to 0.60%, Si: 0.50% or less, Mn: over 0.10% to 3%, Al: 0.005 to 0.1%, Mo: over 3.0% to 10%, and, as needed, one or more of W: 0.01 to 10%, V: 0.05 to 1%, Ti: 0.01 to 1%, Nb: 0.01 to 1%, Cr: 0.10 to 2%, Ni: 0.05 to 1%, Cu: 0.05 to 0.5%, and B: 0.0003 to 0.01%, and a balance of Fe and unavoidable impurities and, further, a method of production comprising shaping the above steel to a desired shape (for example, a bolt shape), quenching it, then tempering it at 500 to 750° C. in temperature range.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: July 13, 2010
    Assignees: Nippon Steel Corporation, Honda Motor Co., Ltd.
    Inventors: Manabu Kubota, Suguru Yoshida, Toshimi Tarui, Hideki Matsuda, Koki Mizuno, Tadashi Ohya
  • Patent number: 7754031
    Abstract: The invention concerns weldable steel building components whereof the chemical composition comprises, by weight: 0.10%?C?0.22%, 0.50%?Si?1.50%, AI?0.9%, 0%?Mn?3%, 0%?Ni?5%, 0%?Cr?4%, 0%?Cu?1%, 0%?Mo+W/2?1.5%, 0.0005%?B<0.010%, N?0.025%, optionally at least one element selected among V, Nb, Ta, S et Ca, in contents less than 0.3%, and/or among Ti and Zr in contents not more than 0.5%, the rest being iron and impurities resulting from preparation, the aluminium, boron, titanium and nitrogen contents, expressed in thousandths of %, of said composition further satisfying the following relationship: B??×K+0.5, (1) with K=Min (I*; J*), I*=Max (0; I) and J*=Max (0; J), I=Min (N; N?0.29(Ti?5)), J=Min {N; 0.5 (N 0.52 AI+?j(N 0.52 AI)2+283)}, the silicon and aluminium contents of the composition additionally verifying the following conditions: if C>0.145, then Si+AI<0.95 and whereof the structure is bainitic, martensitic or martensitic/bainitic and further comprises 3 to 20% of residual austenite.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: July 13, 2010
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Jean-Georges Brisson
  • Patent number: 7754030
    Abstract: A high-strength steel sheet has a metal structure consisting of a ferrite phase in which a hard second phase is dispersed and has 3 to 30% of an area ratio of the hard second phase. In the ferrite phase, the area ratio of nanograins of which grain sizes are not more than 1.2 ?m is 15 to 90%, and dS as an average grain size of nanograins of which grain sizes are not more than 1.2 ?m and dL as an average grain size of micrograins of which grain sizes are more than 1.2 ?m satisfy an equation (dL/dS?3).
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: July 13, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yoshitaka Okitsu
  • Patent number: 7749339
    Abstract: An airbag inflator bottle member comprising a tubular body having a reduced-diameter portion at an end portion for fitting an initiator or the like thereto in which the reduced-diameter portion has a good low temperature toughness comparable to that of the portion which is not reduced in diameter is manufactured by the following method. A steel tube having a composition comprising C: 0.05-0.20%, Si: 0.1-1.0%, Mn: 0.10-2.0%, Cr: 0.05-2.0%, sol. Al: at most 0.10%, Ca: 0.0003-0.01%, optionally one or more elements selected from Cu: at most 1.0%, Ni: at most 1.5%, Mo: at most 1.0%, V: at most 0.2%, Nb: at most 0.1%, and Ti: at most 0.1%, and a remainder of Fe and impurities in which P: at most 0.025% and S: at most 0.010% is subjected to cold working, then it is cut to a predetermined length, and the cut steel tube is subjected to reducing in at least one end portion thereof and then to quenching and tempering.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: July 6, 2010
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Takashi Takano
  • Patent number: 7749338
    Abstract: The present invention provides high burring, high strength steel sheet excellent in softening resistance of the weld heat affected zone and a method of production of the same, that is, high burring, high strength steel sheet excellent in softening resistance of the weld heat affected zone containing, by wt %, C: 0.01 to 0.1%, Si: 0.01 to 2%, Mn: 0.05 to 3%, P?0.1%, S?0.03%, Al: 0.005 to 1%, N: 0.0005 to 0.005%, and Ti: 0.05 to 0.5% and further containing C, S, N, Ti, Cr, and Mo in ranges satisfying 0%<C?(12/48Ti?12/14N?12/32S)?0.05%, Mo+Cr?0.2%, Cr?0.5%, and Mo?0.5%, the balance being Fe and unavoidable impurities, wherein the microstructure comprises ferrite or ferrite and bainite.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: July 6, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Tatsuo Yokoi, Teruki Hayashida, Masahiro Ohara, Kouichi Tsuchihashi
  • Patent number: 7736447
    Abstract: Ultra-high-strength linepipes having excellent low-temperature toughness manufactured by welding together the edges of steel plates comprising C of 0.03 to 0.07 mass %, Si of not more than 0.6 mass %, Mn of 1.5 to 2.5 mass %, P of not more than 0.015 mass %, S of not more than 0.003 mass %, Ni of 0.1 to 1.5 mass %, Mo of 0.15 to 0.60 mass %, Nb of 0.01 to 0.10 mass %, Ti of 0.005 to 0.030 mass %, Al of not more than 0.06 mass %, one or more of required amounts of B, N, V, Cu, Cr, Ca, REM (rare-earth metals) and Mg, with the remainder consisting of iron and unavoidable impurities and having a (Hv-ave)/(Hv-M) ratio between 0.8 and 0.9 at 2.5?P?4.0, wherein Hv-ave is the average Vickers hardness in the direction of the thickness of the base metal and Hv-M is the martensite hardness depending on C-content (Hv-M=270+1300C) and a tensile strength TS-C between 900 MPa and 1100 MPa; P=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+(1+?)Mo?1+? (?=1 when B?3 ppm and ?=0 when B<3 ppm).
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: June 15, 2010
    Assignees: Nippon Steel Corporation, Exxonmobil Upstream Research Company
    Inventors: Hitoshi Asahi, Takuya Hara
  • Publication number: 20100132855
    Abstract: The present invention provides high temperature strength and fire-resistant steel superior in weld joint reheat embrittlement resistance and toughness which is produced using steel of a room temperature strength of the 400 to 600N/mm2 class containing as main ingredients C: 0.010% to less than 0.05%, Si: 0.01 to 0.50%, Mn: 0.80 to 2.00%, Cr: 0.50% to less than 2.00%, V: 0.03 to 0.30%, Nb: 0.01 to 0.10%, N: 0.001 to 0.010%, and Al: 0.005 to 0.10%, limiting the contents of Ni, Cu, Mo, and B, and satisfying the relationship of 4Cr[%]-5Mo[%]-10Ni[%]-2Cu[%]-Mn[%]>0.
    Type: Application
    Filed: March 24, 2009
    Publication date: June 3, 2010
    Inventors: Yasushi Hasegawa, Masaki Mizoguchi, Yoshiyuki Watanabe, Suguru Yoshida, Tadayoshi Okada
  • Patent number: 7727342
    Abstract: A low carbon microalloyed steel, comprising in weight % about: 0.05-0.30 C; 0.5-1.5 Mn; 0.04 max S; 0.025 max P; 1.0 max Si; 0.5-2.0 Ni; 0.05-0.30 V; 0-2.0 Cu; up to 0.0250 N; up to 0.2 Cb; up to 0.3 Cr; up to about 0.15 Mo; up to about 0.05 Al; balance Fe and minor additions and impurities. The steel has a carbon equivalent value, C.E., ranging between 0.3-0.65, calculated by the formula: C.E.=C+Mn+Si+Cu+Ni+Cr+Mo+V+Cb 6 15 5.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: June 1, 2010
    Assignee: The Timken Company
    Inventors: George M. Waid, John C. Murza, Jeffrey E. Luksa
  • Patent number: 7722727
    Abstract: The invention concerns a steel, particularly a steel for mould tools for plastic moulding, having the following chemical composition in weight-%:0.43-0.60 C from traces to 1.5 Si from traces to 1.5 (Si+Al) 0.1-2.0 Mn 3.0-7.0 Cr 1.5-4.0 (Mo+), however max. 1.0 W 0.30-0.70 V max. 0.1 of each of Nb, Ti and Zr max. 2.0 Co max. 2.0 Ni balance essentially only iron and unavoidable impurities. After hardening and high temperature tempering at 520-560° C., the steel has a hardness of 56-68 HRC.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: May 25, 2010
    Assignee: Uddeholm Tooling Aktiebolag
    Inventor: Odd Sandberg
  • Publication number: 20100116381
    Abstract: An internal high hardness type pearlitic rail that has a composition containing 0.73% to 0.85% by mass C, 0.5% to 0.75% by mass Si, 0.3% to 1.0% by mass Mn, 0.035% by mass or less P, 0.0005% to 0.012% by mass S, 0.2% to 1.3% by mass Cr, and the balance being Fe and incidental impurities, in which the value of [% Mn]/[% Cr] is greater than or equal to 0.3 and less than 1.0, where [% Mn] represents the Mn content, and [% Cr] represents the Cr content, and in which the internal hardness of a rail head that is defined by the Vickers hardness of a portion located from a surface layer of the rail head to a depth of at least 25 mm is greater than or equal to 380 Hv and less than 480 Hv.
    Type: Application
    Filed: March 25, 2008
    Publication date: May 13, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Minoru Honjo, Tatsumi Kimura, Shinichi Suzuki, Kimihiro Nishimura, Shinji Mitao, Nobuo Shikanai
  • Patent number: 7699943
    Abstract: The present invention intends to provide a method for manufacturing a high-strength spring, which is capable of generating a higher level of compressive residual stress than that given by conventional methods. This object is achieved as follows: After the final heating process, such as the tempering (in the case of a heat-treated spring) or removing-strain annealing (in the case of a cold-formed spring), a shot peening process is performed on the spring while the surface temperature of the spring is within the range from 265 to 340° C. (preferably from 300 to 340° C.). Subsequently, the spring is rapidly cooled. Preferably, a prestressing process is performed before the shot peening process, or after the shot peening process and before the rapid cooling process. The rapid cooling process may be either a water-cooling process or an oil-cooling process. A forced-air cooling process may be used if the wire diameter of the spring is small.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: April 20, 2010
    Assignee: Chuo Hatsujo Kabushiki Kaisha
    Inventors: Tomohiro Nakano, Takayuki Sakakibara, Masami Wakita
  • Patent number: 7695576
    Abstract: Disclosed is an improved low alloy high speed tool steel, which exhibits constant toughness with small dispersion of the properties after heat treatment and regardless of the size of the products. The steel consists essentially of, by weight %, C: 0.50-0.75%, Si: 0.02-2.00%, Mn: 0.1-3.0%, P: up to 0.050%, S: up to 0.010%, Cr: 5.0-6.0%, W: 0.5-2.0%, V: 0.70-1.25%, Al: up to 0.1%, O: up to 0.01% and N: up to 0.04% and the balance of Fe. In the steel [Mo+0.5W](Mo-eq.) is 2.5-5.0%, [Mo-eq.]/V is 2-4. In the annealed state the steel contains carbides of the types of MC+M6C and/or M23C6(M7C3), and after quenching from a temperature of 1100-1200° C. it contains substantially no remaining carbide or, even contains, almost all the carbides are of MC.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: April 13, 2010
    Assignee: Daido Steel Co., Ltd.
    Inventor: Kozo Ozaki
  • Patent number: 7691213
    Abstract: There is provided an inexpensive rolling element used under high interface pressure such as induction hardened gears, the rolling element being improved in the seizure resistance of its tooth flanks and having a temper hardness of HRC 50 or more at 300° C. To this end, the rolling element is made from a steel material containing at least 0.45 to 1.5 wt % C and one or more alloy elements selected from 0.1 to 0.5 wt % V and 0.3 to 1.5 wt % Cr, and has a rolling contact surface layer having a structure tempered at low temperature in which 2 to 18% by volume cementite disperses in a martensite parent phase formed by induction heating and cooling and containing 0.25 to 0.8 wt % carbon solid-dissolving therein.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: April 6, 2010
    Assignee: Komatsu Ltd.
    Inventors: Takemori Takayama, Masanari Furumoto, Chikara Nakao, Noriko Morioka
  • Patent number: 7691212
    Abstract: Various inexpensive rolling elements for use under high interface pressure such as induction hardened gears are provided, which have improved seizure resistance at tooth flanks and a temper hardness of HRC 50 or more at 300 ° C. To this end, a rolling element is made from a steel material which contains at least 0.5 to 1.5 wt % carbon and 0.2 to 2.0 wt % one or more alloy elements selected from V, Ti, Zr, Nb, Ta and Hf; and in which 0.4 to 4.0% by volume one or more compounds selected from the carbides, nitrides and carbonitrides of the above alloy elements and having an average particle diameter of 0.2 to 5 ?m are dispersed. In such a rolling element, the soluble carbon concentration of a martensite parent phase of a rolling contact surface layer is adjusted to 0.3 to 0.8 wt %, the martensite parent phase having been subjected to induction hardening and low temperature tempering, and one or more of the above carbides, nitrides and carbonitrides are dispersed in an amount of 0.4 to 4.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: April 6, 2010
    Assignee: Komatsu Ltd.
    Inventor: Takemori Takayama
  • Patent number: 7686896
    Abstract: A high-strength steel sheet is useful for applications to automobile steel sheets and the like and has excellent deep drawability, a tensile strength (TS) of as high as 440 MPa or more, and a high r value (average r value ?1.2), and a process for producing the steel sheet. The steel sheet has a composition containing, by % by mass, 0.010 to 0.050% of C, 1.0% or less of Si, 1.0 to 3.0% of Mn, 0.005 to 0.1% of P, 0.01% or less of S, 0.005 to 0.5% of Al, 0.01% or less of N, and 0.01 to 0.3% of Nb, the Nb and C contents in steel satisfying the relation, (Nb/93)/(C/12)=0.2 to 0.7, and the balance substantially including Fe and inevitable impurities. The steel microstructure contains a ferrite phase and a martensite phase at area ratios of 50% or more and 1% or more, respectively, and the average r value is 1.2 or more.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: March 30, 2010
    Assignee: JFE Steel Corporation
    Inventors: Hiromi Yoshida, Kaneharu Okuda, Toshiaki Urabe, Yoshihiro Hosoya
  • Patent number: 7686898
    Abstract: A maraging heat-treatment steel includes 8.5 to 9.5% by weight of Cr, 0.15 to 0.25% by weight of Mn, 2 to 2.7% by weight of Ni, 0.5 to 2.5% by weight of Mo, 0.4 to 0.8% by weight of V, 0.001 to 0.15% by weight of Si, 0.06 to 0.1% by weight of C, 0.11 to 0.15% by weight of N, 0.02 to 0.04% by weight of Nb, maximum 0.007% by weight of P, maximum 0.005% by weight of S, maximum 0.01% by weight of Al, iron and standard impurities, wherein a weight ratio of vanadium to nitrogen V/N is in a range between 4.3 and 5.5.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: March 30, 2010
    Assignee: Alstom Technology Ltd
    Inventors: Mohamed Nazmy, Markus Staubli, Andreas Kuenzler
  • Publication number: 20100037992
    Abstract: The invention relates to a method for transforming steel blanks. The invention in particular relates to a method for transforming a steel blank comprising kneading in order to obtain very good mechanical properties. The obtained products may notably be used for forming a pressure device component.
    Type: Application
    Filed: August 2, 2007
    Publication date: February 18, 2010
    Inventors: Gérald Gay, Bruno Gaillard-Allemand, Dominique Thierree
  • Patent number: 7662243
    Abstract: An exemplary hot rolled steel sheet can included, in terms of percent by mass, C of 0.01 to 0.2%; Si of 0.01 to 2%; Mn of 0.1 to 2%; P of ?0.1%; S of ?0.03%; Al of 0.001 to 0.1%; N of ? 0.01%; and as a remainder, Fe and unavoidable impurities. For example, a microstructure can be substantially a homogeneous continuous-cooled microstructure, and an average grain size of the microstructure may be more than 8 ?m and 30 ?m or less. An exemplary method for manufacturing a hot rolled steel sheet can include subjecting a slab having the above composition to a rough rolling so as to obtain a rough rolled bar, subjecting the rough rolled bar to a finish rolling so as to obtain a rolled steel under conditions in which a finishing temperature is (Ar3 transformation point +50° C.) or more; and starting cooling the rolled steel after 0.5 seconds or more pass from the end of the finish rolling at a temperature of the Ar3 transformation point or more.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: February 16, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Tatsuo Yokoi, Tetsuya Yamada, Osamu Kawano
  • Patent number: 7662246
    Abstract: An iron-based alloy for use in a material for high-pressure components. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: February 16, 2010
    Assignees: Boehler Hochdrucktechnik GmbH, Boehler Edelstahl GmbH
    Inventors: Johann Zand, Johannes Schedelmaier, Manfred Pölzl
  • Publication number: 20100024926
    Abstract: High tensile strength steels that have both favorable delayed fracture resistance and a tensile strength of 600 MPa or higher and are suitably used in construction machinery, tanks, penstocks, and pipelines, as well as methods for manufacturing such steels are provided. The safety index of delayed fracture resistance (%) is 100×(X1/X0), where X0: reduction of area of a specimen substantially free from diffusible hydrogen, and X1: reduction of area of a specimen containing diffusible hydrogen.
    Type: Application
    Filed: January 31, 2008
    Publication date: February 4, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Akihide Nagao, Kenji Oi, Kenji Hayashi, Nobuo Shikanai
  • Publication number: 20090283181
    Abstract: Disclosed is a hard-drawn spring which exhibits fatigue strength and sag resistance equal or superior to springs produced using an oil-tempered wire. The hard-drawn spring is produced using a steel wire containing 0.5 to 0.7 mass % of C, 1.0 to 1.95 mass % of Si, 0.5 to 1.5 mass % of Mn and 0.5 to 1.5 mass % of Cr, with the balance being Fe and inevitable impurities. In the steel wire, the number of carbides having circle-equivalent diameters of 0.1 ?m or more is 5 particles/100 ?m2 or less.
    Type: Application
    Filed: July 22, 2009
    Publication date: November 19, 2009
    Applicants: KABUSHIKI KAISHA KOBE SEIKO SHO, SUNCALL Corporation
    Inventors: Sumie SUDA, Nobuhiko Ibaraki, Nao Yoshihara, Shigetsugu Yoshida, Koji Harada
  • Patent number: 7618498
    Abstract: A steel for high-strength springs contains, on the mass basis, 0.35% to 0.65% of C, 1.4% to 2.5% of Si, 0.1% to 1.0% of Mn, 2.0% or less (exclusive of 0%) of Cr, 1.0% or less (exclusive of 0%) of Ni, 1.0% or less (exclusive of 0%) of Cu, 0.020% or less (exclusive of 0%) of P, 0.020% or less (exclusive of 0%) of S, 0.006% or less (exclusive of 0%) of N:, and 0.1% or less (exclusive of 0%) of Al, with the remainder being iron and inevitable impurities, in which Wp(Fe) and W(C) satisfy the following condition: Wp(Fe)>5×W(C), wherein Wp(Fe) is the content of Fe (percent by mass) constituting Fe-containing precipitates in the steel; and W(C) is the carbon content (percent by mass) of the steel. The steel is excellent in cold workability and quality stability.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: November 17, 2009
    Assignee: (Kobe Steel, Ltd.)
    Inventors: Takuya Kochi, Hiroshi Yaguchi, Nao Yoshihara
  • Patent number: 7611590
    Abstract: This invention related to a high carbon and high molybdenum/tungsten martenisitic type iron base alloy with excellent hot hardness and wear resistance for making valve seat insert. The alloy comprises of 2.05-3.60 wt % carbon, 0.1-3.0 wt % silicon, 0-2.0 wt % manganese, 3.0-10.0 wt % chromium, 11.0-25.0 wt % molybdenum and tungsten, 0.1-6.5 wt % nickel, 0-8.0 wt % vanadium, 0-6.0 wt % niobium, 0-8.0 wt % cobalt, and the balance being iron with impurities.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: November 3, 2009
    Assignee: Alloy Technology Solutions, Inc.
    Inventor: Xuecheng Liang
  • Patent number: 7608156
    Abstract: This disclosure relates to a high strength cold rolled steel sheet composed of ferrite grains having an average grain diameter of 10 ?m or less, in which the average number per unit area of Nb(C, N) precipitates having a diameter of 50 nm or more is 7.0×10?2/?m2 or less, and a zone having a width of 0.2 to 2.4 ?m and an average area density of NbC precipitates of 60% or less of that of the central portion of the ferrite grains is formed along grain boundaries of the ferrite grains, for example, the steel sheet consisting of 0.004 to 0.02% of C, 1.5% or less of Si, 3% or less of Mn, 0.15% or less of P, 0.02% or less of S, 0.1 to 1.5% of sol.Al, 0.001 to 0.007% of N, 0.03 to 0.2% of Nb, by mass, and the balance of Fe and inevitable impurities. The steel sheet is most preferably used for automobile panel parts since it has the TS of 340 MPa or more and the superior surface strain resistance and press formability.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: October 27, 2009
    Assignee: JFE Steel Corporation
    Inventors: Yoshihiko Ono, Yasunobu Nagataki, Yasushi Tanaka, Kozo Harada, Hisanori Ando
  • Patent number: 7601230
    Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: October 13, 2009
    Assignee: Scimed Life Systems, Inc.
    Inventor: Charles Horace Craig
  • Patent number: 7601231
    Abstract: A high-strength steel pipe excellent in weldability on site and a method for producing the steel pipe by improving the reliability of the low temperature toughness of a steel are provided. For example, the steel pipe includes elements to enhance hardenability for furthering high-strengthening and also improving toughness at a weld heat affected zone subjected to double or more layer welding. In the method, the steel is made to consist of a structure composed of bainite and/or martensite by containing prescribed amounts of C, Si, Mn, P, S, Ni, Mo, Nb, Ti, Al and N, and, as occasion demands, one or more of B, V, Cu, Cr, Ca, REM, and Mg, and regulating C, Si, Mn, Cr, Ni, Cu, V and Mo. Such elements enhancing hardenability, by a specific relational expression. The diameter of prior austenite grains may be regulated in a prescribed range.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: October 13, 2009
    Assignee: Nippon Steel Corporation
    Inventors: Takuya Hara, Hitoshi Asahi
  • Patent number: 7597768
    Abstract: Disclosed is a hard-drawn spring which exhibits fatigue strength and sag resistance equal or superior to springs produced using an oil-tempered wire. The hard-drawn spring is produced using a steel wire containing 0.5 to 0.7 mass % of C, 1.0 to 1.95 mass % of Si, 0.5 to 1.5 mass % of Mn and 0.5 to 1.5 mass % of Cr, with the balance being Fe and inevitable impurities. In the steel wire, the number of carbides having circle-equivalent diameters of 0.1 ?m or more is 5 particles/100 ?m2 or less.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: October 6, 2009
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Suncall Corporation
    Inventors: Sumie Suda, Nobuhiko Ibaraki, Nao Yoshihara, Shigetsugu Yoshida, Koji Harada
  • Publication number: 20090236015
    Abstract: There is provided an ultrahigh strength steel sheet containing 0.10 to 0.40 mass % of C, 0.01 to 3.5 mass % of Cr, at least one selected from the group consisting of 0.10 to 2.0 mass % of Mo, 0.20 to 1.5 mass % of W, 0.002 to 1.0 mass % of V, 0.002 to 1.0 mass % of Ti and 0.005 to 1.0 mass % of Nb, 0.02 mass % or less of P and 0.01 mass % or less of S as impurities and the balance being Fe and unavoidable impurities based on the total mass of the steel sheet and having a base structure of lower bainite, a prior austenite grain size of 30 ?m or smaller and a tensile strength of 980 MPa or higher. There is also provided an automotive strength part using the ultrahigh strength steel sheet.
    Type: Application
    Filed: April 3, 2007
    Publication date: September 24, 2009
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hideyuki Sasaoka, Masamoto Ono, Eizaburou Nakanishi, Yoshio Okada, Tadanobu Inoue, Yuuji Kimura, Kotobu Nagai
  • Patent number: 7591909
    Abstract: Steels having a pearlitic structure and containing 0.65 to 0.80 weight percent carbon, 0.90 to 1.10 weight percent silicon, 0.85 to 1.15 weight percent manganese, 0.001 to 0.030 weight percent phosphorus, 0.009 to 0.013 weight percent niobium, 0.05 to 0.15 nickel, 0.20 to 0.30 weight percent molybdenum, 0.10 to 0.30 weight percent vanadium and 0.005 to 0.040 weight percent sulfur with the remainder of said steel being iron and incidental impurities, can be used to make railway wheels that are particularly resistant to rolling contact fatigue and, hence, shelling.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: September 22, 2009
    Assignee: Transportation Technology Center, Inc.
    Inventors: Francisco C. Robles Hernandez, Daniel Hunter Stone
  • Publication number: 20090223609
    Abstract: The present invention provides a new high-strength and Si—Cr containing hot rolled steel plate provided with higher strength as well as excellent workability and a method for manufacturing the steel plate. The high-strength steel plate can be obtained by controlling the particle size of prior austenite to be 10 ?m or less, and properly selecting the coiling temperature. The steel plate obtained includes a retained austenite phase in a volume fraction of 5% to 20%; a martensite phase in a volume fraction equal to or less than 10%; and a bainite phase in the remaining volume fraction. The particle size of the retained austenite particle is 1 ?m or less and the retained austenite particles are dispersed uniformly.
    Type: Application
    Filed: April 7, 2008
    Publication date: September 10, 2009
    Applicant: NAKAYAMA STEEL WORKS, LTD.
    Inventors: Kazuaki Hakomori, Yuuji Kusumoto, Fuyuki Yoshida, Ichiro Chikushi, Takashi Ohtani, Ryurou Kurahashi, Masahiko Oda
  • Publication number: 20090194204
    Abstract: High cleanliness spring steel useful in manufacturing a spring with SiO2-based inclusions being extremely controlled and excellent in fatigue properties is provided. High cleanliness spring steel which is steel containing; C: 1.2% (means mass %, hereafter the same with respect to the component) or below (not inclusive of 0%), Si: 1.2-4%, Mn: 0.1-2.0%, Al: 0.01% or below (not inclusive of 0%), and the balance comprising iron with inevitable impurities, wherein; the total of oxide-based inclusions of 4 or above of L (the large diameter of an inclusion)/D (the short diameter of an inclusion) and 25 ?m or above of D and oxide-based inclusions of less than 4 L/D and 25 ?m or above of L, in the oxide-based inclusions of 25 mass % or above of oxygen concentration and 70% (means mass %, hereafter the same with respect to inclusions) or above of SiO2 content when Al2O3+MgO+CaO+SiO2+MnO=100% is presumed, out of inclusions in the steel, is 20 nos./500 g or below.
    Type: Application
    Filed: May 23, 2007
    Publication date: August 6, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomoko Sugimura, Sei Kimura, Koichi Sakamoto, Atsuhiko Yoshida, Takeshi Inoue
  • Publication number: 20090183802
    Abstract: Disclosed is a forging steel characterized in that prescribed composition of components must be satisfied. In particular, any one of the below-mentioned (I)-(IV) need be complied with in regard to dissolved Ca and dissolved Mg. (I) Dissolved Ca: 2-500 ppb (meaning “mass ppb” hereafter) and dissolved Mg: 0.04-5 ppm (meaning “mass ppm” hereafter); (II) Dissolved Ca: 2-100 ppb and dissolved Mg: 5-ppm; (III) Dissolved Ca: 2 ppb or less (0% not included) and dissolved Mg: 0.04-5 ppm; (IV) Dissolved Ca: 2-500 ppb and dissolved Mg: 0.04 ppm or less (0% not included).
    Type: Application
    Filed: December 29, 2008
    Publication date: July 23, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tetsushi DEURA, Motohiro Nagao, Takashi Abiko
  • Patent number: 7559999
    Abstract: Steels having a pearlitic structure and containing 0.65 to 0.80 weight percent carbon, 0.90 to 1.10 weight percent silicon, 0.85 to 1.15 weight percent manganese, 0.001 to 0.030 weight percent phosphorus, 0.009 to 0.013 weight percent niobium, 0.05 to 0.15 nickel, 0.20 to 0.30 weight percent molybdenum, 0.10 to 0.30 weight percent vanadium and 0.005 to 0.040 weight percent sulfur with the remainder of said steel being iron and incidental impurities, can be used to make railway wheels that are particularly resistant to rolling contact fatigue and, hence, shelling.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: July 14, 2009
    Assignee: Transportation Technology Center, Inc.
    Inventors: Francisco C. Robles Hernandez, Daniel Hunter Stone
  • Patent number: 7559998
    Abstract: A hot press-formed member having stable strength and toughness is manufactured from a high strength steel sheet by hot press forming. In the cooling stage during hot press forming, the cooling rate is at least the critical cooling rate until the Ms point is reached and it is then in the range of 25-150° C./s in the temperature range from the Ms point to 200° C. The Vickers hardness of the hot pressed member is less than the value of (maximum quenching hardness—10) and at least the value of (maximum quenching hardness—100).
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: July 14, 2009
    Assignees: Sumitomo Metal Industries, Ltd., Toyota Jidosha Kabushiki Kaisha, Toyoda Iron Works Co., Ltd.
    Inventors: Toshinobu Nishibata, Masahiro Nakata, Shuntaro Sudo, Akira Obayashi, Masanobu Ichikawa
  • Patent number: 7540711
    Abstract: The invention provides a heat resisting steel having superior high-temperature strength and notch rupture strength, a rotor shaft using the heat resisting steel, a steam turbine using the rotor shaft, and a power plant using the steam turbine. The heat resisting steel is made of a Cr—Mo—V low-alloy steel containing 0.15-0.40% by weight of C, not more than 0.5% of Si, 0.05-0.50% of Mn, 0.5-1.5% of Ni, 0.8-1.5% of Cr, 0.8-1.8% of Mo and 0.05-0.35% of V, and having a (Ni/Mn) ratio of 3.0-10.0.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: June 2, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Arai, Hirotsugu Kawanaka, Kennichi Murata, Hideo Yoda
  • Publication number: 20090107587
    Abstract: The present invention provides a tool steel containing, by mass percent, 0.55 to 0.85% of C, 0.20 to 2.50% of Si, 0.30 to 1.20% of Mn, 0.50% or less of Cu, 0.01 to 0.50% of Ni, 6.00 to 9.00% of Cr, 0.1 to 2.00% of Mo+0.5 W, and 0.01 to 0.40% of V, with the balance of Fe and inevitable impurities, in which, when an area rate of a coarse carbide having a circle equivalent diameter of 2 pm or more in a cross section parallel to a forging direction is represented by L(%) and an area rate of the coarse carbide in a cross section perpendicular to the forging direction is represented by T(%), the area rate L is 0.001% or more, the area rate T is 0.001% or more, and the ratio L/T is within a range from 0.90 to 3.00. The tool steel of the invention exhibits an isotropic size change in quenching and tempering.
    Type: Application
    Filed: October 30, 2008
    Publication date: April 30, 2009
    Applicant: DAIDO TOKUSHUKO KABUSHIKI KAISHA
    Inventor: Takayuki Shimizu
  • Patent number: 7520943
    Abstract: A low yield ratio, high toughness steel plate which can be manufactured at high manufacturing efficiency and low cost, without increasing material cost by adding large amount of alloy elements and the like, and without degrading toughness of a welding heat affected zone, a low yield ratio, high strength and high toughness steel pipe using the steel plate, and a method for manufacturing those are provided. Specifically, the steel plate and the steel pipe contain C of 0.03% to 0.1%, Si of 0.01 to 0.5%, Mn of 1.2 to 2.5% and Al of 0.08% or less, wherein a metal structure is a substantially three-phase structure of ferrite, bainite and island martensite, and an area fraction of the island martensite is 3 to 20%, in addition, a complex carbide is precipitated in the ferrite phase.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: April 21, 2009
    Assignee: JFE Steel Corporation
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Shigeru Endo, Ryuji Muraoka
  • Publication number: 20090092516
    Abstract: The present invention provides spring use heat treated steel which is cold coiled, can achieve both sufficient atmospheric strength and coilability, has a tensile strength of 2000 MPa or more, and can improve the performance as a spring by heat treatment after spring fabrication, that is, high strength spring-use heat treated steel characterized by containing, by mass %, C: 0.45 to 0.9%, Si: 1.7 to 3.0%, and Mn: 0.1 to 2.0%, restricting N: to 0.007% or less, having a balance of Fe and unavoidable impurities, and satisfying, in terms of the analyzed value of the extracted residue after heat treatment, [amount of Fe in residue on 0.2 ?m filter/[steel electrolysis amount]×100?1.1.
    Type: Application
    Filed: March 29, 2007
    Publication date: April 9, 2009
    Inventors: Masayuki Hashimura, Tatsuro Ochi, Takayuki Kisu, Hiroshi Hagiwara
  • Patent number: 7510614
    Abstract: The present invention provides a high strength bolt excellent in delayed fracture resistance able to advantageously prevent hydrogen embrittlement as represented by the delayed fracture phenomenon occurring along with an increase in strength and causing a particular problem, and a method of production of the same, containing, by mass %, C: 0.2 to 0.6%, Si: 0.05 to 0.5%, Mn: 0.1 to 2%, Mo: 0.5 to 6%, and Al: 0.005 to 0.5%, having a tensile strength of 1400 MPa or more, and having a compressive residual stress of the surface layer of the thread root of 10 to 90% of the tensile strength. Further, a surface layer part of the thread root from the surface down to at least 50 ?m has pre-austenite grains with an aspect ratio of the axial direction and radial direction of 2 or more and that part has a hardness of Hv 460 or more. Further, the method of production comprises using the steel material having the above ingredients to shape the bolt head and shaft, then heat the bolt to 900 to 1100° C.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: March 31, 2009
    Assignees: Nippon Steel Corporation, Honda Motor Co., Ltd.
    Inventors: Suguru Yoshida, Toshimi Tarui, Manabu Kubota, Hideki Matsuda, Tadashi Ohya, Koki Mizuno
  • Patent number: 7503984
    Abstract: The present invention provides a high-strength thin steel sheet drawable and excellent in a shape fixation property and a method of producing the same. For the steel sheet, on a plane at the center of the thickness of a steel sheet, the average ratio of the X-ray strength in the orientation component group of {100}<011> to {223}<110> to random X-ray diffraction strength is 2 or more and the average ratio of the X-ray strength in three orientation components of {554}<225>, {111}<112> and {111}<110> to random X-ray diffraction strength is 4 or less. The arithmetic average of the roughness Ra of at least one of the surfaces is 1 to 3.5 ?m; the surfaces of the steel sheet are covered with a composition having a lubricating effect; and the friction coefficient of the steel sheet surfaces at 0 to 200° C. is 0.05 to 0.2.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: March 17, 2009
    Assignee: Nippon Steel Corporation
    Inventors: Tatsuo Yokoi, Teruki Hayashida, Natsuko Sugiura, Takaaki Nakamura, Takehiro Nakamoto
  • Publication number: 20090050243
    Abstract: A high-strength hot-rolled steel sheet containing C: 0.05 to 0.15%, Si: no more than 1.50% (excluding 0%), Mn: 0.5 to 2.5%, P: no more than 0.035% (excluding 0%), S: no more than 0.01% (including 0%), Al: 0.02 to 0.15%, and Ti: to 0.2%, which is characterized in that its metallographic structure is composed of 60 to 95 vol % of bainite and solid solution-hardened or precipitation-hardened ferrite (or ferrite and martensite) and its fracture appearance transition temperature (vTrs) is no higher than 0° C. as obtained by impact tests.
    Type: Application
    Filed: March 22, 2006
    Publication date: February 26, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel Ltd.)
    Inventors: Motoo Satou, Tetsuo Soshiroda