Aluminum Base Patents (Class 148/415)
  • Patent number: 5702542
    Abstract: Metal-matrix composites and methods for producing these composites are provided. The manufacturing methods include providing a ceramic preform having a uniform distribution of ceramic particles sintered to one another. The particles include an average particle size of no greater than about 3 microns, and at least one half of the volume of the preform is occupied by porosity. The preform is then disposed into a mold and contacted by molten metal. The molten metal is then forced into the pores of the preform and permitted to solidify to form a solid metal-matrix composite. This composite is machinable with a high-speed steel (HSS) bit for greater than about 1 minute without excessive wear occurring to the bit. This invention preferably employs metal-matrixes including Al, Li, Be, Pb, He, Au, Sn, Mg, Ti, Cu, and Zn. Preferred ceramics include oxides, borides, nitrides, carbides, carbon, or a mixture thereof. Inert gas pressures of less than about 3,000 psi can be used to easily infiltrate the preforms.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: December 30, 1997
    Inventors: Alexander M. Brown, Eric M. Klier
  • Patent number: 5693897
    Abstract: A high strength, heat resistant aluminum-based alloy having a composition represented by the general formula Al.sub.bal Ti.sub.a Fe.sub.b or the general formula Al.sub.bal Ti.sub.a Fe.sub.b M.sub.c, wherein M represents at least one element selected from among V, Cr, Mn, Co, Y, Zr, Nb, Mo, Ce, La, Mm (misch metal), Hf, Ta and W; and a, b and c are, in weight percentage, 7.ltoreq.a.ltoreq.20, 0.2.ltoreq.b.ltoreq.6 and 0<c.ltoreq.6. A compacted and consolidated aluminum-based alloy having high strength and heat resistance is produced by melting a material having the above-specified composition, rapidly solidifying the melt into powder or flakes, compacting the resulting powder or flakes, and compressing, forming and consolidating the compacted powder or flakes by conventional plastic working.
    Type: Grant
    Filed: February 22, 1996
    Date of Patent: December 2, 1997
    Assignee: YKK Corporation
    Inventor: Kazuhiko Kita
  • Patent number: 5676773
    Abstract: Aluminum-based products are disclosed which contain 0.5 to 4.5 wt % lithium and which further contain no more than 1 ppm of each of the alkali metal impurity elements sodium, potassium, rubidium, and cesium. The products are capable of being aged to a peak-aged condition at which they have a grain boundary region substantially free of liquid phase eutectics comprised of sodium and potassium that form embrittlement phases at room temperature, and have a higher fracture toughness than a similar product containing more than 5 ppm in total of the alkali metal impurity elements.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 14, 1997
    Assignee: Comalco Aluminium Limited
    Inventor: Donald Webster
  • Patent number: 5667602
    Abstract: Alloy and cast alloy product ideally suited for use as a component in a vehicle frame or subframe, i.e., body-in-white, comprising an alloy consisting of about 2.00 to 5.00 wt. % magnesium, up to approximately 0.30 wt. % silicon, approximately 0.20 to 1.60 wt. % manganese, up to approximately 1.00 wt. % iron, and between about 0.10 to 0.30 wt. %, zirconium, the balance substantially aluminum and incidental elements and impurities. The aluminum/magnesium alloy is typically solidified into ingot derived working stock by continuous casting or semi-continuous casting into a shape suitable for remelt for casting, which shape is typically an ingot billet. Excellent mechanical properties are obtained from a cast product that is not subjected to high temperature heat treating operations subsequent to casting.
    Type: Grant
    Filed: March 31, 1995
    Date of Patent: September 16, 1997
    Assignee: Aluminum Company of America
    Inventors: Que-Tsang Fang, Steven A. Jones, James R. Van Wert, Roger C. Dickenson
  • Patent number: 5665306
    Abstract: There is claimed a sheet or plate structural member suitable for aerospace applications and having improved combinations of strength and toughness. The member is made from a substantially vanadium-free aluminum-based alloy consisting essentially of: about 4.85-5.3 wt. % copper, about 0.5-1.0 wt. % magnesium, about 0.4-0.8 wt. % manganese, about 0.2-0.8 wt. % silver, about 0.05-0.25 wt. % zirconium, up to about 0.1 wt. % silicon, and up to about 0.1 wt. % iron, the balance aluminum, incidental elements and impurities, the Cu:Mg ratio of said alloy being between about 5 and 9, and more preferably between about 6.0 and 7.5. The invention exhibits a typical tensile yield strength of about 77 ksi or higher at room temperature and can be processed into various lower wing members or into the fuselage skin of high speed aircraft.
    Type: Grant
    Filed: December 26, 1995
    Date of Patent: September 9, 1997
    Assignee: Aluminum Company of America
    Inventor: Lynette M. Karabin
  • Patent number: 5654107
    Abstract: A wear resisting aluminum alloy composite material consisting of 10 to 40% by volume of a hybrid compact and the balance substantially an aluminum alloy matrix, wherein the hybrid compact contains 85 to 95% by weight of an inorganic whisker which is 0.2 to 1.2 .mu.m in diameter and 10 to 30 .mu.m in length, and 5 to 15% by weight of an alumina fiber which is 100 to 300 .mu.m in length, and the aluminum alloy matrix contains 4 to 12% by weight of a silicon having an average grain size of not more than 5 .mu.m. The composite material offers good properties such as anti-seizure property and wear resistance. The composite material is suitable for sliding members. Aluminum borate whisker and potassium titanate whisker may be preferably used as the inorganic whisker.
    Type: Grant
    Filed: October 5, 1995
    Date of Patent: August 5, 1997
    Assignee: Daido Metal Company Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Koichi Yamamoto, Yoshiaki Sato, Eiji Kato
  • Patent number: 5652063
    Abstract: There is claimed a sheet or plate structural member suitable for aerospace applications and having improved combinations of strength and toughness. The member is made from a substantially vanadium-free aluminum-based alloy consisting essentially of: about 4.85-5.3 wt. % copper, about 0.5-1.0 wt. % magnesium, about 0.4-0.8 wt. % manganese, about 0.2-0.8 wt. % silver, about 0.05-0.25 wt. % zirconium, up to about 0.1 wt. % silicon, and up to about 0.1 wt. % iron, the balance aluminum, incidental elements and impurities, the Cu:Mg ratio of said alloy being between about 5 and 9, and more preferably between about 6.0 and 7.5. The invention exhibits a typical tensile yield strength of about 77 ksi or higher at room temperature and can be processed into various lower wing members or into the fuselage skin of high speed aircraft.
    Type: Grant
    Filed: December 26, 1995
    Date of Patent: July 29, 1997
    Assignee: Aluminum Company of America
    Inventor: Lynette M. Karabin
  • Patent number: 5632827
    Abstract: A aluminum alloy in the form of bulk includes an aluminum matrix and carbon particles having an average particle size of 100 nm or less and dispersed in the aluminum matrix in an amount of 1 to 40 atomic % with respect to the total atoms constituting the aluminum alloy. The aluminum alloy is produced by preparing a raw material comprising aluminum and carbon as components and forming an aluminum alloy by inserting the raw material into a cavity formed by a set of dies and applying repeatedly plastic deformation to the raw material while maintaining the temperature of the raw material in the range of from 100 to 400.degree. C.
    Type: Grant
    Filed: May 24, 1995
    Date of Patent: May 27, 1997
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hironori Fujita, Fumio Nonoyama, Atsushi Danno
  • Patent number: 5624632
    Abstract: An aluminum alloy product for use as a damage tolerant product for aerospace applications, including fuselage skin stock. The aluminum alloy composition contains about 3-7 wt % magnesium, about 0.03-0.2 wt % zirconium, about 0.2-1.2 wt % manganese, up to 0.15 wt % silicon and about 0.05-0.5 wt % of a dispersoid-forming element selected from the group consisting of: scandium, erbium, yttrium, gadolinium, holmium and hafnium, the balance being aluminum and incidental elements and impurities.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: April 29, 1997
    Assignee: Aluminum Company of America
    Inventors: Stephen F. Baumann, Edward L. Colvin, Robert W. Hyland, Jr., Jocelyn I. Petit
  • Patent number: 5607523
    Abstract: A high-strength aluminum-based alloy consisting of a composition represented by the general formula: Al.sub.bal Q.sub.a M.sub.b X.sub.c, wherein Q is at least one element selected from the group consisting of Mn and Cr; M is at least one element selected from the group consisting of Co, Ni, and Cu; X is at least one of rare earth elements including Y, or Misch metal (Mm); and a, b and c are, in atomic percentages, 1.ltoreq.a.ltoreq.7, 0.5.ltoreq.b.ltoreq.5, and 0<c.ltoreq.5, the aluminum-based alloy containing quasicrystals in the structure thereof. The quasicrystals may be of an icosahedral phase (I phase), a decagonal phase (D phase), or a crystalline phase akin thereto and the structure may comprise the quasicrystalline phase and a phase formed of any one of an amorphous phase, aluminum, and a supersaturated aluminum solid solution or a composite (mixed phase) thereof.
    Type: Grant
    Filed: January 9, 1995
    Date of Patent: March 4, 1997
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, YKK Corporation
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Junichi Nagahora, Toshisuke Shibata, Kazuhiko Kita
  • Patent number: 5593515
    Abstract: A high strength aluminum-based alloy, which having a composition of the general formula: Al.sub.bal Q.sub.a M.sub.b X.sub.c T.sub.d, wherein Q represents at least one element selected from the group consisting of Mn, Cr, V, Mo and W; M represents at least one element selected from the group consisting of Co, Ni, Cu and Fe; X represents at least one element selected from rare earth elements including Y or Mm; T represents at least one element selected from the group consisting of Ti, Zr and Hf; and a, b, c and d represent the following atomic percentages: 1.ltoreq.a.ltoreq.7, 0>5, 0>c.ltoreq.5 and 0>d.ltoreq.2, and contains quasi-crystals in the structure thereof. The alloy of the present invention is excellent in the hardness and strength at both room temperature and a high temperature, and also in thermal resistance and ductility.
    Type: Grant
    Filed: March 27, 1995
    Date of Patent: January 14, 1997
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Teikoku Piston Ring Co., Ltd., Yamaha Corporation, YKK Corporation
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Hisamichi Kimura, Yoshiyuki Shinohara, Yuma Horio, Kazuhiko Kita
  • Patent number: 5578144
    Abstract: To provide a high-strength, high-ductility cast aluminum alloy, which enables a near-net shape product to be produced by improving the casting structure of an aluminum alloy, particularly by using specific constituents and controlling the cooling rate, and a process for producing the same. The high-strength, high-ductility cast aluminum alloy of the present invention is characterized in that it has a structure comprising fine grains of .alpha.-Al, having an average grain diameter of not more than 10 .mu.m, surrounded by a network of a compound of Al-lanthanide-base metal, the .alpha.-Al grains forming a domain, that the domain comprises an aggregate of .alpha.-Al grains which have been refined, cleaved, and ordered in a single direction and that it has a composition represented by the general formula Al.sub.a Ln.sub.b M.sub.c wherein a, b, and c are, in terms of by weight, respectively 75%.ltoreq.a.ltoreq.95%, 0.5%.ltoreq.b<15%, and 0.5%.ltoreq.c<15%.
    Type: Grant
    Filed: June 14, 1995
    Date of Patent: November 26, 1996
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuaki Satou, Yukio Okochi
  • Patent number: 5571347
    Abstract: Disclosed is an improved aluminum base alloy comprising an improved aluminum base alloy comprising 0.2 to 2 wt. % Si, 0.3 to 1.7 wt. % Mg, 0 to 1.2 wt. % Cu, 0 to 1.1 wt. % Mn, 0.01 to 0.4 wt. % Cr, and at least one of the elements selected from the group consisting of 0.01 to 0.3 wt. % V, 0.001 to 0.1 wt. % Be and 0.01 to 0.1 wt. % Sr, the remainder comprising aluminum, incidental elements and impurities. Also disclosed are methods of casting and thermomechanical processing of the alloy.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: November 5, 1996
    Assignee: Northwest Aluminum Company
    Inventor: S. Craig Bergsma
  • Patent number: 5565169
    Abstract: A substantially lithium-free aluminum base alloy product having improved combinations of elongation and fracture toughness in an aged condition, the aluminum alloy product comprising at least 0.5 wt. % magnesium; 0.01 to 1 ppm Na; 0.01 to 1 ppm K; less than 0.1 ppm Rb; and less than 0.1 ppm Cs, the remainder comprising aluminum, the amount of Na, K, Rb and Cs measured by GDMS, the product in an aged condition having a grain boundary region substantially free of liquid phase eutectics comprised of Na and K that form embrittlement phases at room temperature; and an increase in fracture toughness compared to an aluminum magnesium alloy having greater amounts of Na, K, Rb and Cs.
    Type: Grant
    Filed: December 29, 1994
    Date of Patent: October 15, 1996
    Assignee: Comalco Aluminium Limited
    Inventor: Donald Webster
  • Patent number: 5554234
    Abstract: The present invention provides a high strength aluminum alloy suitable for use in the manufacture of a fin, said aluminum alloy containing at most 0.1% by weight of Si, 0.10 to 1.0% by weight of Fe, 0.1 to 0.50% by weight of Mn, 0.01 to 0.15% by weight of Ti, and the balance of Al and unavoidable impurities, intermetallic compounds having a diameter not larger than 0.1 .mu.m being distributed within the metal texture of the alloy in a number density of at least 10/.mu.m.sup.3. The present invention also provides a method of manufacturing a high strength aluminum alloy suitable for use in the manufacture of a fin, comprising the steps of heating to 430.degree. to 580.degree. C. an aluminum alloy ingot of the composition noted above, applying a hot rolling treatment to said aluminum alloy ingot to obtain a plate material before the temperature of the aluminum alloy ingot is lowered by at most 50.degree. C.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: September 10, 1996
    Assignee: Furukawa Aluminum Co., Ltd.
    Inventors: Hiroaki Takeuchi, Hiroshi Kano
  • Patent number: 5547633
    Abstract: The specification describes a ternary alloy of aluminium. The alloy described comprises from 80 to 96% by weight of aluminium and from 4 to 20% by weight of titanium and a third element selected from the group consisting of cobalt, chromium, copper, magnesium, nickel and iron. The weight ratio of titanium to ternary alloying element lies in the range from 1:1 to 6:1. The alloy can be aged at a temperature in the range from 300.degree. to 450.degree. C.
    Type: Grant
    Filed: September 23, 1994
    Date of Patent: August 20, 1996
    Assignee: Monash University
    Inventors: Barry C. Muddle, Jianfeng Nie
  • Patent number: 5527404
    Abstract: An improved elongate aluminum alloy product, and a method of producing such a product, ideally suited for use as a component in a vehicle frame or subassembly, i.e., body-in-white. The alloy consists of essentially 0.45 to 0.7% magnesium, and about 0.35 to 0.6%, silicon, and about 0.1 to 0.35%, vanadium, and, 0.1-0.4% iron, preferably 0.15 to 0.3%, the balance substantially aluminum and incidental elements and impurities.
    Type: Grant
    Filed: July 5, 1994
    Date of Patent: June 18, 1996
    Assignee: Aluminum Company of America
    Inventor: Allison S. Warren
  • Patent number: 5523050
    Abstract: A method is described for preparing a refined or reinforced eutectic or hyper-eutectic metal alloy, comprising: melting the eutectic or hyper-eutectic metal alloy, adding particles of non-metallic refractory material to the molten metal matrix, mixing together the molten metal alloy and the particles of refractory material, and casting the resulting mixture under conditions causing precipitation of at least one intermetallic phase from the molten metal matrix during solidification thereof such that the intermetallics formed during solidification wet and engulf said refractory particles. The added particles may be very small and serve only to refine the precipitating intermetallics in the alloy or they may be larger and serve as reinforcing particles in a composite with the alloy. The products obtained are also novel.
    Type: Grant
    Filed: March 15, 1993
    Date of Patent: June 4, 1996
    Assignee: Alcan International Limited
    Inventors: David J. Lloyd, Iljoon Jin
  • Patent number: 5520754
    Abstract: A composition and method for producing a low density, high stiffness aluminum alloy which is capable of being processed into structural components having a desired combination of tensile strength, fracture toughness and ductility. The method includes the steps of forming, by spray deposition, a solid Al-Li alloy workpiece consisting essentially of the formula Al.sub.bal Li.sub.a Zr.sub.b wherein "a" ranges from greater than about 2.5 to 7 wt %, and "b" ranges from greater than about 0.13 to 0.6 wt %, the balance being aluminum, said alloy having been solidified at a cooling rate of about 10.sup.2 to 10.sup.4 K/sec. The method further includes several variations of selected thermomechanical process steps for: (1) eliminating any residual porosity which may be present in the workpiece as a result of the spray deposition step; and (2) producing components for a wide range of applications.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: May 28, 1996
    Assignee: Lockheed Missiles & Space Company, Inc.
    Inventors: Deborah L. Yaney, Richard E. Lewis
  • Patent number: 5518558
    Abstract: A high Mg content Al-Mg alloy sheet for press-forming, having superior strength and deep drawing formability. The alloy has intermetallic compounds containing Cr dispersed into the metal structure thereof. The mean grain diameter of the metal structure ranges from about 5 to 30 .mu.m. The process for manufacturing the alloy is also disclosed. The composition of the alloy includes Al, Mg, Be, Cr, Ti, B, Cu Fe, Si and associated inevitable impurities.
    Type: Grant
    Filed: November 16, 1993
    Date of Patent: May 21, 1996
    Assignees: The Furukawa Electric Co., Ltd., Kawasaki Steel Corporation
    Inventors: Ryo Shoji, Yoichiro Bekki
  • Patent number: 5507888
    Abstract: Methods for making an aluminum alloy bicycle frame and for making tubes for such frames including use of an aluminum alloy containing about 0.5 to 1.3% magnesium, about 0.4 to 1.2% silicon, and about 0.6 to 1.2% copper and preferred practices for making extruded and drawn tubing of the alloy and making bicycle frames from the tubing. The preferred practices include extrusion temperature control and other aspects of extrusion and drawing.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: April 16, 1996
    Assignee: Aluminum Company of America
    Inventors: John A. Dickson, Jr., Thomas J. Klemp, Arvid H. Sorensen, Robert L. Clottu
  • Patent number: 5480498
    Abstract: A method of producing aluminum alloy sheet product includes casting a slab, homogenizing the cast slab, and hot rolling the homogenized slab to provide an intermediate gauge product. The temperature and other operating parameters of the hot rolling process are controlled so that the temperature of the intermediate gauge product exiting the hot rolling step is between about 500.degree. F. and 650.degree. F. Preferably, the temperature does not exceed 575.degree. F. The intermediate gauge product is then subjected to a cold reduction of 45% to 70%, annealed, and cold rolled to final gauge. The combination of controlling the hot rolling to provide a desired exit temperature of the intermediate gauge product and annealing prior to cold rolling to final gauge minimizes or eliminates the appearance of ridging or roping line defects in the aluminum sheet product when subjected to further straining in a forming or stamping operation.
    Type: Grant
    Filed: May 20, 1994
    Date of Patent: January 2, 1996
    Assignee: Reynolds Metals Company
    Inventors: Armand J. Beaudoin, J. Daniel Bryant, Alan J. Janousek, Rajeev G. Kamat, H. Edwin Oliver, Robert M. Ramage
  • Patent number: 5464463
    Abstract: Disclosed are heat resistant aluminum alloy powder and alloy including Ni in an amount of from 5.7 to 20% by weight, Si in an amount of from 6.0 to 25% by weight, at least one of Fe in an amount of from 0.6 to 8.0% by weight and Cu in an amount of from 0.6 to 5.0% by weight, and at least one of B in a form of the simple substance in an amount of from 0.05 to 2.0% by weight (or from 0.05 to 10% by weight for the alloy) and graphite particles (especially for the alloy) in an amount of from 0.1 to 10% by weight. The alloy powder and alloy are not only superb in the tensile strength at room temperature and high temperatures but also superior in the sliding characteristic, they can be further upgraded in the wear resistance and the fretting fatigue resistance by dispersing at least one of nitride particles, boride particles, oxide particles and carbide particles in an amount of from 0.
    Type: Grant
    Filed: April 14, 1993
    Date of Patent: November 7, 1995
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminum Kabushiki Kaisha
    Inventors: Hirohisa Miura, Kunihiko Imahashi, Hirohumi Michioka, Yasuhiro Yamada, Jun Kusui, Akiei Tanaka
  • Patent number: 5449421
    Abstract: In an aluminum alloy composite material including an aluminum alloy matrix and a reinforcing material such as fibers, whisker or particles, intermetallic compounds made of Al and at least one selected from a group of Fe, Ni, Co, Cr, Cu, Mn, Mo, V, W, Ta, Nb, Ti and Zr are finely dispersed in the matrix existing among reinforcing material elements so as to maintain rigidity of the matrix alloy necessary to support the reinforcing material elements at high temperature. Optimum shapes and volumetric density of such intermetallic compounds are experimentally obtained.
    Type: Grant
    Filed: February 20, 1991
    Date of Patent: September 12, 1995
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kaneo Hamajima, Atsuo Tanaka, Tadashi Dohnomoto, Yoshio Fuwa, Hirohumi Michioka
  • Patent number: 5439536
    Abstract: Strength anisotropy of aluminum-lithium alloy wrought products is reduced by subjecting these types of alloys to improved T8 temper practice. The wrought product, after solution heat treating and quenching, is subjected to a combination of cold rolling and stretching steps prior to aging. The cold rolling can range between 1 and 20% reduction with the stretching step ranging between 0.5-10%. The cold rolling step may be performed in one or a multiple of passes. When multiple passes are used, the cold rolling may be done in different directions to further enhance reductions in strength anisotropy for these types of alloys. An aluminum-lithium alloy wrought product subjected to the improved T8 temper practice has an increased minimum tensile yield stress throughout its thickness and in various directions to facilitate commercial application of the product in high strength applications.
    Type: Grant
    Filed: May 2, 1994
    Date of Patent: August 8, 1995
    Assignee: Reynolds Metals Company
    Inventor: Alex Cho
  • Patent number: 5437746
    Abstract: An aluminium alloy sheet for various discs having good platability is described. The alloy consists essentially of 2 to 6 wt % of Mg, 0.1 to 0.5 wt % of Zn, 0.03 to 0.40 wt % of Cu, 0.01 to 0.30 wt % of Fe and the balance of Al.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: August 1, 1995
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Eiki Usui, Masahiro Kawaguchi
  • Patent number: 5422066
    Abstract: Aluminum-base alloys in a peak-aged condition and magnesium-base alloys in the form of cast products and wrought products capable of having improved combinations of yield strength and fracture toughness are disclosed. The aluminum-base alloy products are comprised of 0.5 to 4.5 wt %. lithium, about 0.01 to 1 ppm Na, about 0.01 to 1 ppm K, less than 0.1 ppm Rb, less than 0.1 ppm Cs, and the remainder comprising aluminum. Aluminum-base alloy products in a peak-aged condition have: (i) a grain boundary region substantially free of liquid phase eutectics comprised of Na and K that form embrittlement phases at room temperature; and (ii) an increase in fracture toughness compared to an aluminum-lithium alloy having greater than 5 ppm aggregate alkali metal.
    Type: Grant
    Filed: June 14, 1993
    Date of Patent: June 6, 1995
    Assignee: Comalco Aluminium Limited
    Inventor: Donald Webster
  • Patent number: 5409156
    Abstract: An aluminum sheet for use in spot welding has an anodic oxide film with a thickness of 50 .mu.m or less on at least one surface thereof. The anodic oxide film is preferably overlaid with a plating layer predominantly comprising at least one metal selected from the group consisting of Zn, Cr, Co, Ni, Fe, and Mn. The aluminum sheet can be produced by subjecting an aluminum or aluminum alloy sheet to anodic oxidation in an acidic solution having a pH of 4 or less conditions of from 2 to 200 V in voltage and from 0.2 to 200 seconds in duration, optionally followed by electroplating in an acidic plating bath.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: April 25, 1995
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masanori Tsuji, Yoshihiko Hoboh, Kazuyuki Fujita
  • Patent number: 5405462
    Abstract: A superplastic aluminum-based alloy material consisting of a matrix formed of aluminum or a supersaturated aluminum solid solution, whose average crystal grain size is 0.005 to 1 .mu.m, and particles made of a stable or metastable phase of various intermetallic compounds formed of the main alloying element (i.e., the matrix element) and the other alloying elements and/or of various intermetallic compounds formed of the other alloying elements and distributed evenly in the matrix, the particles having a mean particle size of 0.001 to 0.1 .mu.m. The superplastic aluminum-based alloy material is produced from a rapidly solidified material consisting of an amorphous phase, a microcrystalline phase or a mixed phase thereof by optionally heat treating at a prescribed temperature for a prescribed period of time and then subjecting to a single or combined thermo-mechanical treatment. The superplastic aluminum-based alloy material of the present invention is suited for to superplastic working.
    Type: Grant
    Filed: February 23, 1994
    Date of Patent: April 11, 1995
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Katsumasa Ohtera, Makoto Kawanishi
  • Patent number: 5383986
    Abstract: Strength and ductility for a aluminum-lithium alloy wrought product in the transverse direction is improved by subjecting these types of alloys to improved T8 temper practice. The wrought product, after solution heat treating and quenching is subjected to a multiple step stretching sequence prior to aging, the total percent reduction for the multiple step stretching sequence ranging between 1 and 20 percent reduction. In the multiple step stretching sequence, each of the stretching steps may have the same or different amounts of percent reduction to achieve the desired total percent reduction. An aluminum-lithium alloy wrought product subjected to the improved T8 temper practice has increased tensile yield stress and percent elongation in its transverse direction to facilitate commercial application of the product in high strength applications.
    Type: Grant
    Filed: March 12, 1993
    Date of Patent: January 24, 1995
    Assignee: Reynolds Metals Company
    Inventor: Alex Cho
  • Patent number: 5380377
    Abstract: A new ternary sulfide alloy exhibits a metal-semiconductor phase transition with hysteresis as a function of temperature. One embodiment of the bistable material includes barium, cobalt, nickel and sulfur in amounts in accordance with the formula Ba(Co.sub.1-x Ni.sub.x)S.sub.2-y, and x is between 0 and 1 and y varies from 0 to 2.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: January 10, 1995
    Assignee: The University of Iowa Research Foundation
    Inventors: Lee S. Martinson, John W. Schweitzer, Norman C. Baenziger
  • Patent number: 5376192
    Abstract: An aluminum-based alloy composition having improved combinations of strength and fracture toughness consists essentially of 2.5-5.5 percent copper, 0.10-2.30 percent magnesium, with minor amounts of grain refining elements, dispersoid additions and impurities and the balance aluminum. The amounts of copper and magnesium are controlled such that the solid solubility limit for these elements in aluminum is not exceeded. The inventive alloy composition may also include 0.10-1.00 percent silver for improved mechanical properties. The alloys are useful as high strength, high fracture toughness components for aircraft and aerospace structural parts.
    Type: Grant
    Filed: August 28, 1992
    Date of Patent: December 27, 1994
    Assignee: Reynolds Metals Company
    Inventor: William A. Cassada, III
  • Patent number: 5336341
    Abstract: An infrared radiation element and a process for producing the same. An aluminum alloy material consists essentially of 0.3 to 4.3 weight % of Mn, balance Al, and impurities. The alluminum alloy material is heated for dispersing a precipitate of an Al--Mn intermetallic compound at a density of at a minimum 1.times.10.sup.5 /mm.sup.3 for a size of 0.1 .mu.m to 3 .mu.m. The heated aluminum alloy material is anodized to form an anodic oxide layer thereon.
    Type: Grant
    Filed: August 30, 1991
    Date of Patent: August 9, 1994
    Assignees: Fujikura Ltd., Sky Aluminium Co., Ltd.
    Inventors: Masatsugu Maejima, Koichi Saruwatari, Akihito Kurosaka, Mamoru Matsuo, Hiroyoshi Gunji, Toshiki Muramatsu
  • Patent number: 5334266
    Abstract: High strength, heat resistant aluminum-based alloys have a composition consisting of the following general formula Al.sub.a M.sub.b X.sub.d or Al.sub.a' M.sub.b Q.sub.c X.sub.d, wherein M is at least one metal element selected from the group consisting of Co, Ni, Cu, Zn and Ag; Q is at least one metal element selected from the group consisting of V, Cr, Mn and Fe; X is at least one metal element selected from the group consisting of Li, Mg, Si, Ca, Ti and Zr; and a, a', b, c and d are, in atomic percentages; 80.ltoreq.a.ltoreq.94.5, 80.ltoreq.a'.ltoreq.94, 5.ltoreq.b.ltoreq.15, 0.5.ltoreq.c.ltoreq.3 and 0.5.ltoreq.d.ltoreq.10. In the above specified alloys, aluminum intermetallic compounds are finely dispersed throughout an aluminum matrix and, thereby, the mechanical properties, especially strength and heat resistance, are considerably improved.
    Type: Grant
    Filed: November 23, 1992
    Date of Patent: August 2, 1994
    Assignee: Yoshida Kogyo K.K.
    Inventors: Makoto Kawanishi, Hidenobu Nagahama
  • Patent number: 5332456
    Abstract: A superplastic aluminum-based alloy material consisting of a matrix formed of aluminum or a supersaturated aluminum solid solution, whose average crystal grain size is 0.005 to 1 .mu.m, and particles made of a stable or metastable phase of various intermetallic compounds formed of the main alloying element (i.e., the matrix element) and the other alloying elements and/or of various intermetallic compounds formed of the other alloying elements and distributed evenly in the matrix, the particles having a mean particle size of 0.001 to 0.1 .mu.m. The superplastic aluminum-based alloy material is produced from a rapidly solidified material consisting of an amorphous phase, a microcrystalline phase or a mixed phase thereof by optionally heat treating the material at a prescribed temperature for a prescribed period of time and then subjecting it to a single or combined thermomechanical treatment. The superplastic aluminum-based alloy material of the present invention is suited for superplastic working.
    Type: Grant
    Filed: September 25, 1992
    Date of Patent: July 26, 1994
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Katsumasa Ohtera, Makoto Kawanishi
  • Patent number: 5300157
    Abstract: An Al-based intermetallic compound in which a eutectic crystal type Al-CuMn intermetallic compound dispersion phase is dispersed in an Al-Cu intermetallic compound matrix phase. The content of Mn as a eutectic crystal-forming element contained in the dispersion phase is set in a range of from 5% by weight (inclusive) to 30% by weight (inclusive). In the course of solidification of the Al-Cu-Mn intermetallic compound, an infinite number of dispersion phases are first crystallized, and the matrix phase is then crystallized. This ensures that the matrix phase is formed into a fine crystal structure due to hindrance of the growth thereof by the dispersion phase, leading to increases in hardness and toughness of the resulting Al-based intermetallic compound. In another embodiment, the Al-based intermetallic compound contains peritectic type Al-based intermetallic dispersion phase, such as formed by Ta, dispersed in the intermetallic compound matrix phase.
    Type: Grant
    Filed: January 29, 1992
    Date of Patent: April 5, 1994
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Sinji Okabe, Takashi Iwasa, Naoya Watanabe
  • Patent number: 5292386
    Abstract: In order to achieve damage-tolerant properties and sufficient isotropy of aluminum alloys, particularly of type AlLi 8090, subsequent especially to hot-forming of a bar of said aluminum alloy there is interposed a solution heat treatment and quenching, followed by working and subsequent intermediate annealing within a temperature range of from 250.degree. to 475.degree. C. for a period of from 1 to 85 hours. The intermediate annealing is followed by cold forming and subsequent solution heat treatment with the additional purpose of recrystallization, whereupon the recrystallized material is especially cold-formed to a degree of deformation of only up to 8%. Thereafter the sheets having a sheet thickness of from 0.5 to 10 mm are subjected to artificial aging.
    Type: Grant
    Filed: April 22, 1992
    Date of Patent: March 8, 1994
    Assignees: Hoogovens Aluminium GmbH, Duetsche Forschungsanstalt fur Luft und Raumfahrt DLR
    Inventors: Werner Schelb, Manfred Peters, Karl Welpmann
  • Patent number: 5290373
    Abstract: A method of evaporable foam casting of metal articles, such as engine blocks for internal combustion engines. An evaporable foam pattern having a configuration proportionally identical to the article to be cast is positioned in a mold and a finely divided flowable material, such as sand, surrounds the pattern and fills the internal cavities of the pattern. A molten hypereutectic aluminum-silicon alloy containing 16% to 19.5% by weight of silicon and containing a magnesium content in excess of the magnesium solid solubility limit, is fed into the mold and into contact with the pattern. The heat of the molten metal vaporizes the pattern, with the vapor being trapped within the sand and the molten metal filling the void created by vaporization of the pattern to provide a cast article. The high magnesium content in the alloy produces in the solid state a Mg.sub.
    Type: Grant
    Filed: April 23, 1993
    Date of Patent: March 1, 1994
    Assignee: Brunswick Corporation
    Inventors: Raymond J. Donahue, Terrance M. Cleary, William G. Hesterberg
  • Patent number: 5286316
    Abstract: An aluminum-based alloy composition having improved corrosion resistance and high extrudability consists essentially of about 0.1-0.5% by weight of manganese, about 0.05-0.12% by weight of silicon, about 0.10-0.20% by weight of titanium, about 0.15-0.25% by weight of iron and the balance aluminum, wherein the aluminum alloy is essentially copper free. The inventive alloy is useful in automotive applications, in particular, heat exchanger tubing and finstock, and foil packaging. The process provided by the invention uses a high extrusion ratio and produces a product having high corrosion resistance.
    Type: Grant
    Filed: April 3, 1992
    Date of Patent: February 15, 1994
    Assignee: Reynolds Metals Company
    Inventor: Kenneth D. Wade
  • Patent number: 5273594
    Abstract: The present invention provides a method for improving aluminum alloy plate product properties by delaying final stretching of the plate product. During processing of the product, a time interval or intentional delay is provided between the final cold rolling step and the final stretching step. By delaying the final stretching procedure, an aluminum alloy plate product is provided with an improved fracture toughness without significant decrease in strength values. The method of intentionally delaying final stretching is particularly adapted for 2000 series aluminum alloys.
    Type: Grant
    Filed: January 2, 1992
    Date of Patent: December 28, 1993
    Assignee: Reynolds Metals Company
    Inventor: William A. Cassada, III
  • Patent number: 5266130
    Abstract: A process for manufacturing an aluminum alloy material having excellent shape fixability and bake hardenability, the process comprising: conducting semicontinuous casting of an aluminum alloy comprising 0.4 to 1.7% (wt.%) Si and 0.2 to 1.4% Mg, optionally further comprising 0.05% or less Ti and 100 pm or less B and optionally further comprising at least one member selected from the group of 1.00% or less Cu, 0.50% or less Mn, 0.20% or less Cr and 0.20% or less V, with the balance consisting of Al and unavoidable impurities, subjecting the cast alloy to conventional hot rolling; conducting solution heat treatment by holding the hot-rolled alloy at a temperature of from 450 to 580.degree. C. for 10 minutes or less; conducting first-stage cooling of the alloy at a cooling rate of 200.degree. C./min or more to a quenched temperature in the range of from 60 to 250.degree. C.; and subjecting the alloy to second-stage cooling at a cooling rate selected within the zone ABCD shown in the attached FIG. 2.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: November 30, 1993
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Hidetoshi Uchida, Hideo Yoshida
  • Patent number: 5240521
    Abstract: The invention provides a method for heat treating aluminum-base alloys. The method increases stress corrosion resistance after heating of the alloy to temperatures between 100.degree. C. and 150.degree. C. A dispersion strengthened aluminum-base alloy containing lithium and magnesium is shaped to form an object of substantially final form. The dispersion strengthened aluminum-base alloy is heated to a temperature between 160.degree. C. and 250.degree. C. for at least 3 hours. The heat treated object has increased stress corrosion resistance after exposure to temperatures between 100.degree. C. and 150.degree. C.
    Type: Grant
    Filed: July 12, 1991
    Date of Patent: August 31, 1993
    Assignee: Inco Alloys International, Inc.
    Inventors: James R. Crum, Robert D. Schelleng, James McEwen, John H. Weber
  • Patent number: 5240519
    Abstract: An aluminum alloy consisting of: 1.0-1.5 wt % Si, 0.4-0.9 wt % Cu, 0.2-0.6 wt % Mn, 0.8-1.5 wt % Mg, 0.3-0.9 wt % Cr, 0.03-0.05 wt % Ti, 0.0001-0.01 wt % B, and the balance consisting of Al and unavoidable impurities; the sum of the Mn and Cr contents being not more than 1.2 wt % and the content of Fe as one of the unavoidable impurities being not more than 0.2 wt %. The alloy may further comprise 0.1-0.2 wt % Zr to facilitate the refinement of crystal grains. The alloy has a tensile strength of 40 kgf/mm.sup.2 or more and an elongation of 15% or more when plastically formed, solution-treated and aged to provide the highest strength.
    Type: Grant
    Filed: August 17, 1992
    Date of Patent: August 31, 1993
    Assignees: Nippon Light Metal Company, Ltd., Nikkei Techno-Research
    Inventors: Hajime Kamio, Toru Yamada, Kenji Tsuchiya
  • Patent number: 5240522
    Abstract: The present invention provides a method of producing a hardened aluminum alloy sheet having superior thermal stability, the method comprising the steps of: homogenizing an ingot of an aluminum alloy consisting essentially of, in weight percentage, 3.0 to 6.0% Mg and 0.4 to 0.8% Mn, with the balance being Al and incidental impurities; hot rolling the homogenized ingot to a sheet; cold rolling the hot-rolled sheet at a rolling reduction of at least 20%; intermediate heat treating the cold-rolled sheet at 200.degree. to 250.degree. C. for one hour or more; and final cold rolling the intermediate heat-treated sheet at a reduction of at least 50%. In this process, the aluminum ingot may further contain from 0.05 to 0.4% Cu with or without 0.05 to 0.5% Si, 0.1 to 0.5% Fe, 0.01 to 0.05% Ti and 0.0001 to 0.0010% B. Further, the above homogenizing and hot rolling steps may be replaced by the steps of homogenizing, hot rolling to a sheet thickness of 2 to 6 mm, cold rolling and annealing for recrystallization.
    Type: Grant
    Filed: March 26, 1992
    Date of Patent: August 31, 1993
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Hiroki Tanaka, Shin Tsuchida
  • Patent number: 5238883
    Abstract: Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron donor material and carbon donor material. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing a wide ranging varying volume percentage of ceramic, metal, and porosity.
    Type: Grant
    Filed: July 12, 1990
    Date of Patent: August 24, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, William B. Johnson
  • Patent number: 5236525
    Abstract: Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.
    Type: Grant
    Filed: February 3, 1992
    Date of Patent: August 17, 1993
    Assignee: Rockwell International Corporation
    Inventor: Claire E. Anton
  • Patent number: 5234759
    Abstract: A brazing sheet having an Al alloy core material one or each of whose surfaces is clad with a brazing material, the brazing sheet being excellent in vacuum brazing ability suitable for the manufacture of aluminum heat exchangers that have a hollow structure. The brazing material is an Al--Mg--Si alloy brazing material comprising 0.6 to 1.8 wt % of Mg, 6.0 to 20.0 wt % of Si, and the balance of Al and inevitable impurities, and having, in its metal texture, 1,000/mm.sup.2 or more Mg.sub.2 Si particles 2 to 5 .mu.m in diameter, with the particles being assumed to be spheres, and 3,000/mm.sup.2 or more Si particles 6 .mu.m or less in diameter, with the particles being assumed to be spheres.
    Type: Grant
    Filed: October 31, 1991
    Date of Patent: August 10, 1993
    Assignee: Furukawa Aluminum Co., Ltd.
    Inventors: Yoshihito Inabayashi, Takeyoshi Doko, Kazunori Ishikawa
  • Patent number: 5226983
    Abstract: The present invention provides a process for making high strength, high ductility, low density rapidly solidified aluminum-base alloys, consisting essentially of the formula Al.sub.bal Zr.sub.a Li.sub.b X.sub.c, wherein X is at least one element selected from the group consisting of Cu, Mg, Si, Sc, Ti, U, Hf, Be, Cr, V, Mn, Fe, Co and Ni, "a" ranges from about 0.2-0.6 wt %, "b" ranges from about 2.5-5 wt %, "c" ranges from about 0-5 wt % and the balance is aluminum. The alloy is given multiple aging treatments after being solutionized. The microstructure of the alloy is characterized by the precipitation of a composite phase in the aluminum matrix thereof.
    Type: Grant
    Filed: November 1, 1991
    Date of Patent: July 13, 1993
    Assignee: Allied-Signal Inc.
    Inventors: David J. Skinner, Santosh K. Das, Richard L. Bye
  • Patent number: 5223050
    Abstract: An extrusion ingot of an Al-Mg-Si alloy, has substantially all the Mg present in the form of particles having an average diameter of at least 0.1 microns of beta'-phase Mg.sub.2 Si in the substantial absence of bet-phase Mg.sub.2 Si. The ingot may be made by casting an ingot of the alloy, homogenizing the ingot, cooling the homogenized ingot to a holding temperature of 250.degree. C. to 425.degree. C. at a cooling rate of at least 400.degree. C./h, holding the ingot for 0.25 to 3 hours, and cooling. The ingot has improved extrusion properties.
    Type: Grant
    Filed: June 23, 1992
    Date of Patent: June 29, 1993
    Assignee: Alcan International Limited
    Inventors: Anthony J. Bryant, David J. Field, Ernest P. Butler
  • Patent number: 5217547
    Abstract: The present invention relates to an aluminum alloy for fins of heat exchangers such as of automobile radiators and evaporators comprising 0.3 to 1.0% by weight of silicon, 0.3 to 3.0% by weight of iron, and the balance of aluminum and unavoidable impurities, which is readily workable for a fin (or readily corrugated), and is less deformed by brazing heat, and yet has improved thermal conductivity after the brazing.
    Type: Grant
    Filed: May 17, 1991
    Date of Patent: June 8, 1993
    Assignees: Furukawa Aluminum Co., Ltd., Nippondenso Co., Ltd.
    Inventors: Kazunori Ishikawa, Mituo Hashiura, Yoshiharu Hasegawa