Aluminum Base Patents (Class 148/415)
  • Patent number: 6696175
    Abstract: The present invention provides aluminum alloys and layers formed in aluminum alloys as well as methods for their manufacture. Aluminum alloys of the present invention are provided with at least one discrete layer of uncrystallized grains formed therein. Alloys of the present invention can be formed, for example, by a process that includes a final partial anneal that permits softening of the material to essentially an O-temper condition. Processes of the present invention recrystallized substantially the entire material by leave a discrete layer of preferably less than 50 microns of the material unrecrystallized. In preferred embodiments, the aluminum material is a core material that is clad on one or both sides and the discrete unrecrystallized layer forms at the boundary between the clad and the core.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: February 24, 2004
    Assignee: Pechiney Rolled Products
    Inventors: Scott L. Palmer, Zayna Connor, H. Scott Goodrich
  • Patent number: 6685782
    Abstract: A suitable alloy of the alloy AlMgSi type employed for the manufacture of components having high capacity to absorb kinetic energy by plastic deformation contains, in wt. %, silicon 0.40 to 0.80 magnesium 0.40 to 0.70 iron max. 0.30 copper max. 0.20 manganese max. 0.15 vanadium 0.05 to 0.20 chromium max. 0.10 titanium max. 0.10 zinc max. 0.10 and further elements each individually at most 0.05, in total at most 0.15 and the remainder aluminium.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: February 3, 2004
    Assignee: Alcan Technology & Management Ltd.
    Inventor: Pius Schwellinger
  • Publication number: 20040011434
    Abstract: An aluminum alloy formed by precipitation hardening in which the eutectic structure present therein has an average area less than 4 m?2. The alloy contains 6.5 to 7.5 wt. % silicon, up to 0.36 wt. % magnesium, and 20 to 70 ppm strontium and is suitable for use as a vehicle wheel. The method for heat treatment of the aluminum alloy formed by precipitation hardening comprises: conducting a solution treatment by causing the work piece to be present in a fluidized bed so that at least 60% of the silicon and/or magnesium forms a solid solution in an a phase; and conducting an aging treatment at a temperature not lower than 150° C. but lower than 200° C. The aluminum alloy thus obtained has well-balanced three mechanical properties, i.e., tensile strength, proof stress, and elongation, and has excellent fatigue strength.
    Type: Application
    Filed: February 10, 2003
    Publication date: January 22, 2004
    Inventor: Takayuki Sakai
  • Publication number: 20040011437
    Abstract: An improved Al—Si—Mg—Mn casting alloy that consists essentially of: about 6.0-9.0 wt. % silicon, about 0.2-0.8 wt. % magnesium, about 0.1-1.2 wt. % manganese, less than about 0.15 wt. % iron, less than about 0.3 wt. % titanium and less than about 0.04 wt. % strontium, the balance aluminum.
    Type: Application
    Filed: February 27, 2003
    Publication date: January 22, 2004
    Inventors: Jen C. Lin, Que-Tsang Fang, Carl E. Garesche, Holger Haddenhorst
  • Patent number: 6679417
    Abstract: An efficient and effective process for manufacturing of hardened aluminum components is achieved by coordinating the material preparation steps with the forming steps. The resulting product is a hardened aluminum component with desirable strength characteristics. The process includes initial heating of sheet material in order to prepare it for further processing. The sheet material is then quenched to promote appropriate material conditioning. A product forming sub-process is then undertaken in a relatively short period of time following the quenching. The product forming is done while the material is in a relatively ductile condition, thus easing forming operations, and avoiding product spring-back problems. Lastly, the component is naturally aged, to provide the final hardening operations. The resulting product has very desirable strength characteristics, due to the combined forming and hardening process.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: January 20, 2004
    Assignee: Tower Automotive Technology Products, Inc.
    Inventors: Lawrence M. Dziadosz, Clarence W. Fulton
  • Patent number: 6676775
    Abstract: A recrystallization-hardenable aluminum cast alloy includes in addition to aluminum the following elements as functional elements: (1) 5 to 10 weight % silicon, (2) 0.2 to 0.35 weight % magnesium, (3) 0.3 to 3 weight % nickel and/or 0.6 to 3 weight % cobalt, and impurities due to manufacturing.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: January 13, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Andreas Barth, Mohamed Douaoui
  • Patent number: 6659331
    Abstract: We have discovered a method of producing a complex-shaped aluminum alloy article, where welding has been employed to form the article, where an anodized aluminum coating is produced over a surface of the article including the weld joint, and where the anodized aluminum coating is uniform, providing improved performance over that previously known in the art for welded articles exposed to a corrosive plasma environment.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: December 9, 2003
    Assignee: Applied Materials, Inc
    Inventors: Senh Thach, Jennifer Y. Sun, Shun Jackson Wu, Yixing Lin, Clifford C. Stow
  • Publication number: 20030183307
    Abstract: An electrical device includes a plurality of integrated circuits respectively fabricated in a first substrate bonded to a second substrate by a bond that deforms above, but not below, a deformation condition. The deformation condition can be a predetermined pressure from opposing surfaces on the first and second substrates or it can be a predetermined combination of temperature and pressure from opposing surfaces on the first and second substrates.
    Type: Application
    Filed: April 1, 2002
    Publication date: October 2, 2003
    Inventors: John Liebeskind, James C. McKinnell, Paul J. Benning, Chien-Hua Chen
  • Patent number: 6623570
    Abstract: A casting alloy of the AlMgSi type comprises Magnesium 3.0 to 7.0 wt. % Silicon 1.7 to 3.0 wt. % Manganese 0.2 to 0.48 wt. % Iron 0.15 to 0.35 wt. % Titanium as desired max. 0.2 wt. % Ni 0.1 to 0.4 wt % and aluminum as the rest along with production related impurities, individually at most 0.02 wt. %, in total at most 0.2 wt. %, with the further provision that the magnesium and silicon are present in the alloy in a Mg:Si weight ratio of 1.7:1, corresponding to the composition of the quasi binary eutectic made up of the solid state phases Al and Mg2Si, whereby the deviation from the exact composition of the quasi-binary eutectic amounts to at most −0.5 to +0.3 wt. % for magnesium and −0.3 to +0.5 wt. % for silicon the finely dispersed precipitates of the intermetallic phase Mg2Si results in high ductility.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: September 23, 2003
    Assignee: Alcan Technology & Management Ltd.
    Inventors: Reinhard Winkler, Gunter Höllrigl, Jürgen Wuest, Klaus Währisch
  • Publication number: 20030136477
    Abstract: An aluminum alloy for a die casting, used as the material of parts of an automotive vehicle. The aluminum alloy consists essentially of Si in an amount ranging from 10 to 12% by weight, Mg in an amount ranging from 0.15 to 0.50% by weight, Mn in an amount ranging from 0.5 to 1.0% by weight, Fe in an amount of not more than 0.15% by weight, Ti in an amount of not more than 0.1% by weight, Sb in an amount ranging from 0.05 to 0.20% by weight, B in an amount ranging from 0.005 to 0.02%, and balance consisting of aluminum and inevitable impurities.
    Type: Application
    Filed: January 6, 2003
    Publication date: July 24, 2003
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Sanji Kitaoka, Yukio Kuramasu, Shinichiro Sumi, Kenji Tsushima, Hiroshi Kambe, Masahiko Shioda
  • Publication number: 20030098103
    Abstract: The high-purity aluminum sputter target is at least 99.999 weight percent aluminum and has a grain structure. The grain structure is at least 99 percent recrystallized and has a grain size of less than 200 &mgr;m. The method forms high-purity aluminum sputter targets by first cooling a high-purity target blank to a temperature of less than −50° C. and then deforming the cooled high-purity target blank introduces intense strain into the high-purity target. After deforming, recrystallizing the grains at a temperature below 200° C. forms a target blank having at least 99 percent recrystallized grains. Finally, finishing at a low temperature sufficient to maintain the fine grain size of the high-purity target blank forms a finished sputter target.
    Type: Application
    Filed: August 16, 2002
    Publication date: May 29, 2003
    Inventors: Andrew C. Perry, Paul S. Gilman, Thomas J. Hunt
  • Publication number: 20030098102
    Abstract: The high-purity aluminum sputter target is at least 99.999 weight percent aluminum and has a grain structure. The grain structure is at least 99 percent recrystallized and has a grain size of less than 125 &mgr;m. The method forms high-purity aluminum sputter targets by first cooling a high-purity target blank to a temperature of less than −50° C. and then deforming the cooled high-purity target blank introduces intense strain into the high-purity target. After deforming, recrystallizing the grains at a temperature below 200° C. forms a target blank having at least 99 percent recrystallized grains. Finally, finishing at a low temperature sufficient to maintain the fine grain size of the high-purity target blank forms a finished sputter target.
    Type: Application
    Filed: November 13, 2001
    Publication date: May 29, 2003
    Inventors: Andrew C. Perry, Paul S. Gilman, Thomas J. Hunt
  • Patent number: 6562154
    Abstract: Aluminum sheet products having highly anisotropic grain microstructures and highly textured crystallographic microstructures are disclosed. The products exhibit improved strength and improved resistance to fatigue crack growth, as well as other advantageous properties such as improved combinations of strength and fracture toughness. The sheet products are useful for aerospace and other applications, particularly aircraft fuselages.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: May 13, 2003
    Assignee: Aloca Inc.
    Inventors: Roberto J. Rioja, Robert W. Westerlund, Anne E. Roberts, Dhruba J. Chakrabarti, Diana K. Denzer, Anthony Morales, Paul E. Magnusen, Gregory B. Venema
  • Publication number: 20030000610
    Abstract: An aluminum alloy piping material for automotive piping excelling in corrosion resistance and workability and a method of fabricating the same. The aluminum alloy piping material comprises an aluminum alloy which comprises 0.3-1.5% of Mn, 0.01-0.20% of Fe, and 0.01-0.20% of Si, wherein the content of Cu as impurities is limited to 0.05% or less, with the balance consisting of Al and impurities, wherein, among Si compounds, Fe compounds, and Mn compounds present in the alloy matrix, the number of compounds with a particle diameter (equivalent circle diameter, hereinafter the same) of 0.5 &mgr;m or more is 3×104 or less per mm2. The aluminum alloy piping material has a tensile strength of 70-130 MPa (temper: O material). An ingot of an aluminum alloy having the composition is hot extruded. The resulting extruded pipe is cold drawn at a working ratio of 30% or more and annealed.
    Type: Application
    Filed: September 17, 2001
    Publication date: January 2, 2003
    Inventors: Takahiro Koyama, Hirokazu Tanaka, Yoshifusa Shoji
  • Publication number: 20020162607
    Abstract: A low creep electrical conducting aluminum cable wire alloy is provided. The wire alloy has about 0.07 to about 0.12 weight percent iron, about 0.04 to about 0.07 weight percent silicon, about 0.03 to about 0.08 weight percent zirconium, and a balance weight percent of aluminum.
    Type: Application
    Filed: November 30, 2001
    Publication date: November 7, 2002
    Inventors: Kenneth E. Chadwick, Fernando N. Pinto, Clint Lasseter, Laura J. Lasseter
  • Publication number: 20020153069
    Abstract: An aluminum alloy foil is formed from an alloy containing about 1.2 to 1.7% by weight iron, about 0.4 to 0.8% by weight silicon and about 0.07 to 0.20% by weight manganese, with the balance aluminum and incidental impurities. The alloy is continuously strip cast, e.g. on a belt caster, to form a strip having a thickness of less than about 25 mm, which is then cold rolled to interanneal gauge followed by interannealing at a temperature of about 280 to 350° C. The interanneal strip is cold rolled to final gauge and further annealed to form the final foil product, having high strength and excellent quality.
    Type: Application
    Filed: February 13, 2001
    Publication date: October 24, 2002
    Inventors: Iljoon Jin, Kevin Gatenby, Christopher Gabryel
  • Publication number: 20020153068
    Abstract: An aluminum alloy foil is formed from an alloy containing about 1.2 to 1.7% by weight Fe and about 0.35 to 0.80% by weight Si, with the balance aluminum and incidental impurities. The alloy is continuously strip cast to form a strip having a thickness less than about 25 mm, which is then cold rolled to interanneal gauge and interannealed at a temperature of at least 400° C. The interannealed strip is cold rolled and further annealed to form the final foil product, having excellent rollability combined with high strength of the final foil.
    Type: Application
    Filed: February 13, 2001
    Publication date: October 24, 2002
    Inventors: Iljoon Jin, Kevin Gatenby, Christopher Gabryel, Toshiya Anami, Takahiko Watai, Ichiro Okamoto
  • Patent number: 6451185
    Abstract: Described is a method for producing a diffusion bonded sputtering target assembly which is thermally treated to precipitation harden the backing plate without compromising the diffusion bond integrity. The method includes heat treating and quenching to alloy solution and artificially age the backing plate material after diffusion bonding to a target. Thermal treatment of the diffusion bonded sputtering target assembly includes quenching by partial-immersion in a quenchant and is performed after diffusion bonding and allows for various tempers in the backing plate.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: September 17, 2002
    Assignee: Honeywell International Inc.
    Inventors: Anthony F. Beier, Janine K. Kardokus, Susan D. Strothers
  • Publication number: 20020112797
    Abstract: A population of extrusion billets has a specification such that every billet is of an alloy of composition (in wt. %): Fe <0.35; Si 0.20-0.6; Mn <0.10; Mg 0.25-0.9; Cu <0.015; Ti <0.10; Cr <0.10; Zn <0.03; balance Al of commercial purity. After ageing to T5 or T6 temper, extruded sections can be etched and anodized to give extruded matt anodized sections having improved properties.
    Type: Application
    Filed: February 1, 2002
    Publication date: August 22, 2002
    Inventors: Nicholas Charles Parson, Barry Roy Ellard, Graeme John Marshall
  • Patent number: 6406567
    Abstract: Stress relieving of an age hardenable aluminium alloy product after solution heat treatment and quenching, is carried out by a permanent cold plastic deformation applied by the steps: (a) applying a stress-relieving cold mechanical stretch to said product, and (b) applying a stress-relieving cold compression to said product. This combined treatment gives improved strength and toughness and at least comparable distortion after machining.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: June 18, 2002
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Alfred Johann Peter Haszler, Alfred Ludwig Heinz, Otmar Martin Müller
  • Patent number: 6364969
    Abstract: A 6XXX series aluminium alloy containing Mg and Si is disclosed. The 6XXX series aluminium alloy is characterized in that the Mg and Si that is available to form MgSi precipitates is present in amounts such that the ratio of Mg:Si, on an atomic weight basis, is between 0.8:1 and 1.2:1.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: April 2, 2002
    Inventor: Malcolm James Couper
  • Publication number: 20020014406
    Abstract: The first Al-based target material for sputtering contains 0.01-10 atomic % of at least one intermetallic compound-forming element, and an intermetallic compound having a maximum diameter of substantially 50 &mgr;m or less. The second Al-based target material for sputtering has a microstructure comprising an alloy phase containing 20 atomic % or less of the intermetallic compound-forming element and Al and an Al matrix phase comprising substantially pure Al, the maximum diameter of the intermetallic compound in the alloy phase being substantially 50 &mgr;m or less. The content of the intermetallic compound forming element based on the whole structure is 0.01-10 atomic %. These target materials are produced by pressure-sintering a rapid solidification powder at 400-600° C. After the pressure sintering, the target material is preferably hot-rolled at 400-600° C.
    Type: Application
    Filed: May 21, 1998
    Publication date: February 7, 2002
    Inventor: HIROSHI TAKASHIMA
  • Patent number: 6337147
    Abstract: Improved shape and strength of the weld in a welded structure are obtained by use of a weldable aluminum product comprising a structural component which is a sheet, a plate or an extruded body and is made of an aluminum alloy containing not more than 1.5 wt % Zn. This component has, adhered on at least one side, a cladding layer made of an AA7xxx-series alloy having a corrosion potential lower than that of the alloy of the structural component. The alloy of the structural component is preferably an AA5xxx-series alloy containing Mg in the range 2 to 6 wt %.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: January 8, 2002
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Alfred Johann Peter Haszler, Klaus Alfons Mechsner
  • Patent number: 6299706
    Abstract: A high-strength aluminum alloy having good porthole extrudability is provided. It has a Vickers hardness Hv of not less than 40 as measured in a homogenized state created by heat treatment before extrusion and a Vickers hardness Hv of not less than 20 imparted by plastic working after the heat treatment.
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: October 9, 2001
    Assignees: Toyota Jidosha Kabushiki Kaisha, Nippon Light Metal, Co., Ltd.
    Inventors: Yoshiharu Miyake, Yoshihisa Serizawa, Yukio Okochi, Tetsuya Suganuma, Hajime Kamio, Takayuki Tsuchida, Hiroshi Nagashima
  • Publication number: 20010023719
    Abstract: A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy.
    Type: Application
    Filed: March 15, 2001
    Publication date: September 27, 2001
    Inventors: Lillianne P. Troeger, Edgar A. Starke, Roy Crooks
  • Patent number: 6294030
    Abstract: Various articles of manufacture, such as electrosurgical scalpels, razor blades, and electronic components, comprise a quasicrystalline AlCuFe alloy film less than about 3000 Å thick, formed by depositing in sequence on a substrate through radio frequency sputtering a stoichiometric amount of each respective alloy material and then annealing those layers to form the film through solid state diffusion.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: September 25, 2001
    Assignee: University of Utah Research Foundation
    Inventors: Orest G. Symko, Thierry Klein, David Kieda
  • Patent number: 6274015
    Abstract: Described is a method for producing a diffusion bonded sputtering assembly which is thermally treated to precipitation harden the backing plate without compromising the diffusion bond integrity. The method includes heat treating and quenching to alloy solution and artificially age the backing plate material after diffusion bonding to a target. Thermal treatment of the diffusion bonded sputtering target assembly includes quenching by partial-immersion in a quenchant and is performed after diffusion bonding and allows for various tempers in the backing plate.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: August 14, 2001
    Assignee: Honeywell International, Inc.
    Inventors: Anthony F. Beier, Janine K. Kardokus, Susan D. Strothers
  • Patent number: 6267829
    Abstract: The present invention is a method for producing an iron-containing hypoeutectic alloy free from primary platelet-shaped beta-phase of the Al5FeSi in the solidified structure by the steps (a) providing an iron-containing aluminum alloy having a composition within the following limits, in weight percent, 6-10% Si, 0.05-1.0% Mn, 0.4-2% Fe, at least one of 1) 0.01-0.8% Ti and/or Zr 2) 0.005-0.5% Sr and/or Na and/or Ba, 0-6.0% Cu, 0-2.0% Cr, 0-2.0% Mg, 0-6.0% Zn, 0-0.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: July 31, 2001
    Assignee: Opticast AB
    Inventors: Lennart Bäckerud, Lars Arnberg, Guocai Chai
  • Patent number: 6258463
    Abstract: The invention relates to a process for producing anodic coatings with superior corrosion resistance and other properties on aluminum and aluminum alloy surfaces by cryogenically treating the aluminum prior to anodizing. The invention also relates to the anodic coatings and to the anodically coated articles produced by the process. The anodized coating has a thickness of 0.001 to 0.5 mm and a time to penetration of at least 5 hours for aqueous solutions of HCl.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: July 10, 2001
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: Michael Kevin Corridan
  • Patent number: 6224987
    Abstract: A conductive substrate of an electrophotographic photoconductor has magnesium suicide precipitated therein as an impurity compound. The conductive substrate has an aluminum oxide film of minimum thickness deviation, and an aluminum base which exhibits a light scattering effect. An electrophotographic photoconductor using such a conductive substrate suppresses interference fringes caused by the interference action of a semiconductor laser light. Furthermore, irregular printing density and the formation of black spots is eliminated. A method for making such a conductive substrate includes annealing an aluminum base doped with silicon and magnesium to precipitate out Ms2Si, followed by anodizing a surface of the aluminum base to form an aluminum oxide film. A charge generation layer and a charge transport layer are formed on the aluminum oxide film to complete the electrophotographic photoconductor.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: May 1, 2001
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Hidetaka Yahagi
  • Patent number: 6221515
    Abstract: A bimetallic strip for a sliding bearing having a sliding strip of an aluminum alloy which is adhered to a steel supporting strip and method of manufacture. The composition of the sliding strip is from 3 to 30% of tin; from 1 to 6% of silicon and the remainder being of aluminum and impurities, and the sliding strip has at least 95% of the silicon hard particles smaller than 3.5 microns and an aluminum grain average size of about 6 microns. The sliding strip is produced by roll casting the alloy and attaching the sliding strip to the steel supporting strip to form the bimetallic strip which is heat treated between 200° and 380° C. to obtain a metallurgical bonding between the strips; subjecting the bimetallic strip to a solubilizing process of the intermetallic compounds of the aluminum alloy by heating at 380-500° C., followed by cooling; and subjecting the bimetallic strip to a precipitation treatment at a temperature from 150° to 250° C.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: April 24, 2001
    Assignee: Metal Leve S/A Industria E Comercio
    Inventors: Joaquim de Oliveira Ramos Júnior, Denys da Cuhna Flores, Carlos Henrique Gaspar dos Santos
  • Patent number: 6168067
    Abstract: A method for reducing material property degradation during friction stir welding. More specifically, the method includes the steps of solution heat treating first and second structural members at a first predetermined temperature schedule. The first and second structural members are then quenched to a predetermined temperature at which the structural members are in a nonequilibrium state and have an incomplete temper. The first structural member is then positioned adjacent to the second structural member, thereby defining an interface therebetween. Thereafter, the first and second structural members are joined to form a structural assembly by friction stir welding the material along the interface prior to precipitation heat treating the structural assembly. The structural assembly is then aged, such as by precipitation heat treating, at a second predetermined temperature schedule to stabilize the material properties of the resulting structural assembly, thereby completing the temper of the material.
    Type: Grant
    Filed: June 23, 1998
    Date of Patent: January 2, 2001
    Assignee: McDonnell Douglas Corporation
    Inventors: Douglas J. Waldron, Richard G. Pettit
  • Patent number: 6127047
    Abstract: High temperature alloys resistant to degradation and oxidation are provided. In accordance with preferred embodiments, alloys comprising from about 0.1 to about 50 atomic percent silicon, from about 10 to about 80 atomic percent aluminum, and at least one metal selected from the group consisting of chromium, iridium, rhenium, palladium, platinum, rhodium, ruthenium, osmium, molybdenum, tungsten, niobium and tantalum are formed. Shaped bodies and structural members comprising such alloys are also described as are methods for their fabrication.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: October 3, 2000
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Wayne L. Worrell, Kang N. Lee
  • Patent number: 6120621
    Abstract: An aluminum alloy strip useful for can stock having a thickness of less than or equal to about 30 mm, and containing large (Mn,Fe)Al.sub.6 intermetallics as principal intermetallic particles in said strip. The intermetallic particles have an average surface size at a surface of the strip and an average bulk size in a bulk of the strip, the average surface size being greater than the average bulk size. The strip article may be produced by supplying a molten aluminum alloy having a composition consisting, in addition to aluminum, essentially by weight of: Si between 0.05 and 0.15%; Fe between 0.3 and 0.6%; Mn between 0.6 and 1.2%; Mg between 1.1 and 1.8%; Cu between 0.2 and 0.6%; and other elements: less than or equal to 0.05% each element with a maximum of 0.2% for the total of other elements; and casting the molten alloy in a continuous caster having opposed moving mold surfaces to an as-cast thickness of less than or equal to 30 mm.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: September 19, 2000
    Assignee: Alcan International Limited
    Inventors: Iljoon Jin, John Fitzsimon
  • Patent number: 6113711
    Abstract: Disclosed is a method of making lithium-containing aluminum base alloy extrusion having at least a section thereof having a low aspect ratio or which is generally axisymmetrical, the extrusions having improved properties in sections thereof having the low aspect ratio or which are axisymmetrical. The method comprises providing a body of a lithium-containing aluminum alloy, pressing a portion of the body which is to form the axisymmetrical or low aspect ratio section through a tortuous path and extruding an axisymmetrical or a low aspect ratio extrusion section. The axisymmetrical or low aspect ratio section of the extrusion has a tensile strength of at least 60 ksi and an ultimate yield strength at least 4.5 ksi greater than the tensile yield strength.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: September 5, 2000
    Assignee: Aluminum Company of America
    Inventors: Kevin P. Armanie, Roberto J. Rioja, Diana K. Denzer, Charles E. Brooks, Walter D. Coker, Daniel K. Gadbery, Robert Newell
  • Patent number: 6096438
    Abstract: The invention provides an Al alloy film for use as an electrode of a semiconductor device and also provides an Al alloy sputtering target used to produce such an Al alloy film wherein the Al alloy film has not only a low resistivity equal to or less than 5 .mu..OMEGA.cm and a high hillock resistance (property of hillock suppression) but also a high dielectric strength when it is anodized into an anodic oxide film and wherein the Al alloy film has a composition such that the Ni content is equal to or greater than 0.3 at % and the Y content is equal to or greater than 0.3 at % and such that 0.22 C.sub.Ni +0.74 C.sub.Y <1.6 at % where C.sub.Ni denotes the Ni content (at %) and C.sub.Y denotes the Y content (at %) and further wherein, in order to deposit the Al alloy film by sputtering, a spray forming Al alloy target containing Ni and Y is used.
    Type: Grant
    Filed: April 13, 1998
    Date of Patent: August 1, 2000
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Katsutoshi Takagi, Takashi Onishi
  • Patent number: 6063210
    Abstract: A superplastically formable, aluminum alloy product which consists essentially of about 2-10 wt. % magnesium; at least one dispersoid-forming element selected from the group consisting of: up to about 1.6 wt. % manganese, up to about 0.2 wt. % zirconium, and up to about 0.3 w. % chromium; at least one nucleation-enhancing element for recrystallization selected from: up to about 1.0 wt. % silicon, up to about 1.5 wt. % copper, and combinations thereof. Said alloy product has greater than about 300% elongation at a strain rate of at least about 0.0003/sec and a superplastic forming temperature between about 1000-1100.degree. F. due, in part, to the preferred thermomechanical processing steps subsequently applied thereto. A related method of manufacture is also disclosed herein.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: May 16, 2000
    Assignee: Aluminum Company of America
    Inventors: Dhruba J. Chakrabarti, Roger D. Doherty
  • Patent number: 6056835
    Abstract: The present invention relates to a process for producing a superplastic aluminum alloy capable of being used for plastic working such as extrusion, forging and rolling. An object of the present invention is to provide an ingot-made high speed superplastic aluminum alloy in which superplasticity is developed at a strain rate higher than that of conventional static recrystallization type superplastic aluminum alloys, and a process for producing the same. The superplastic aluminum alloy of the invention has structure which is obtained by adding to a basic alloy containing from at least 4.0 to 15% by weight of Mg and from 0.1 to 1.0% by weight of one or more elements selected from the group consisting of Mm, Zr, V, W, Ti, Ni, Nb, Ca, Co, Mo and Ta, and further selective elements of Sc, Cu. Li, Sn, In and Cd, which contains from 0.1 to 4.0% by volume fraction of spheroidal precipitates of intermetallic compounds having a particle size from 10 to 200 nm, and which has a mean grain size from 0.1 to 10 .mu.m.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: May 2, 2000
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiharu Miyake, Tetsuya Suganuma
  • Patent number: 6045636
    Abstract: Age-hardened aluminum alloy sheet can be subjected to a shearing operation, such as trimming or piercing, with reduced sliver formation by first heating the region to be sheared to a temperature above about 250.degree. C., immediately quenching the heated region to soften the region, and then performing the shearing operation in the softened region before age-hardening occurs.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: April 4, 2000
    Assignee: General Motors Corporation
    Inventor: Paul Edward Krajewski
  • Patent number: 6033542
    Abstract: Disclosed is an electrode for semiconductor devices capable of suppressing the generation of hillocks and reducing the resistivity, which is suitable for an active matrixed liquid crystal display and the like in which a thin film transistor is used; its fabrication method; and a sputtering target for forming the electrode film for semiconductor devices. The electrode for semiconductor devices is made of an Al alloy containing the one or more alloying elements selected from Fe, Co, Ni, Ru, Rh and Ir, in a total amount from 0.1 to 10 At %, or one or more alloying elements selected from rare earth elements, in a total amount from 0.05 to 15 at %.
    Type: Grant
    Filed: December 19, 1995
    Date of Patent: March 7, 2000
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Seigo Yamamoto, Katsutoshi Takagi, Eiji Iwamura, Kazuo Yoshikawa, Takashi Oonishi
  • Patent number: 5980604
    Abstract: Spray atomization of molten metal and/or intermetallic matrix composites reinforced with ceramic particles is practiced by atomizing the matrix into micron sized droplets and depositing the semisolid droplets in a bulk deposition upon a temperature controlled substrate. The semiliquid droplets are injected with refinement particles while in a range of 0 to 40% by volume solid phase and deposited on the substrate surface while in a 40 to 90% by volume solid phase. Refined grain morphology, increased solid solubility, nonequilibrium phases, absence of macro segregation, and elimination of the need to handle fine reactive particles are all achieved by performing the spray deposition process under a controlled atmosphere. Materials fabricated by the process exhibit unusual combinations of properties, such as spatially varying properties.
    Type: Grant
    Filed: June 13, 1996
    Date of Patent: November 9, 1999
    Assignee: The Regents of the University of California
    Inventor: Enrique J. Lavernia
  • Patent number: 5948185
    Abstract: An improved method of forming a severe bend or a hem in a sheet of wrought aluminum age-hardened and age-hardenable alloy includes heating the region to be bent or hemmed to a temperature above about 250.degree. C. for a period of seconds and then quenching the heated region to remove the age-hardening effect and thereafter accomplishing the bend or hem before age hardening of the heated region occurs.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: September 7, 1999
    Assignee: General Motors Corporation
    Inventors: Paul Edward Krajewski, Edward Frank Ryntz
  • Patent number: 5925314
    Abstract: It is an object of the invention to provide high-ductility alloy which is improved both in casting characteristics and elongation without lowering strength by selecting a good combination of ingredients and a proportion thereof. It is another object of the invention to provide a casting which has an good elongation without being heat-treated. It is a further object of the invention to provide a method of manufacturing integral parts having some portions with specific construction which make it impossible for a set of molding dies to be separated after finishing casting by means of in-one-piece molding. Those objects can be accomplished bay providing an high ductility aluminum alloy which contains manganese ingredient, iron ingredient, magnesium ingredient and slice of unavoidable impurity, wherein a content of the iron usually regarded as impurity is set within specified limits, magnesium content is relatively less and manganese content is relatively more than that in a conventional aluminum alloy.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: July 20, 1999
    Assignee: Mazda Motor Corporation
    Inventors: Katsuya Nishiguchi, Yukio Yamamoto, Yukihiro Sugimoto
  • Patent number: 5911845
    Abstract: A high-strength extruded article of an age-hardening aluminum alloy capable of educing an achromatic dark gray color after the anodizing treatment thereof and a method for the production thereof are disclosed. The method comprises subjecting an alloy billet comprising 0.9 to 3.0% by weight of Si, 0.3 to 0.6% by weight of Mg, less than 0.3% by weight of Fe, and the balance of Al and unavoidable impurities or an alloy billet comprising 0.005 to 0.1% by weight of Ti either alone or in combination with 0.001 to 0.02% by weight of B besides the components mentioned above to a soaking treatment at a temperature in the range of from 350 to 480.degree. C. for 2 to 12 hours, extruding the soaked alloy billet at a billet temperature in the range of from 380 to 450 .degree. C., and subjecting the extruded alloy to an aging treatment at a temperature in the range of from 170 to 200.degree. C. for 2 to 8 hours.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: June 15, 1999
    Assignee: YKK Corporation
    Inventors: Kazuyuki Fukagawa, Shoso Yamamoto, Hiroshi Chiba, Mitsunao Satomura, Kengo Kawase
  • Patent number: 5876525
    Abstract: In order to simplify the production of a nigh-resistance bobbin body made of an aluminum alloy, the following process steps are performed: (a) extruding or flow extruding an essentially cylindrical bobbin blank; (b) cutting the bobbin blank to a length including the desired bobbin body length plus an overlength sufficient to form end flanges on the bobbin body; (c) shaping end flanges at both ends of the bobbin body from the overlength portion; hardening the bobbin body; and age-hardening (aging) the bobbin body. Various process parameters are described.
    Type: Grant
    Filed: November 30, 1993
    Date of Patent: March 2, 1999
    Assignee: Hilebrandt-Spolen-Bobbins GmbH
    Inventors: Michael Prechtel, Davorin Lenarcic
  • Patent number: 5843247
    Abstract: A high-strength extruded article of an age-hardening aluminum alloy capable of educing an achromatic dark gray color after the anodizing treatment thereof and a method for the production thereof are disclosed. The method comprises subjecting an alloy billet comprising 0.9 to 3.0% by weight of Si, 0.3 to 0.6% by weight of Mg, less than 0.3% by weight of Fe, and the balance of Al and unavoidable impurities or an alloy billet comprising 0.005 to 0.1% by weight of Ti either alone or in combination with 0.001 to 0.02% by weight of B besides the components mentioned above to a soaking treatment at a temperature in the range of from 350.degree. to 480.degree. C. for 2 to 12 hours, extruding the soaked alloy billet at a billet temperature in the range of from 380.degree. to 450.degree. C., and subjecting the extruded alloy to an aging treatment at a temperature in the range of from 170.degree. to 200.degree. C. for 2 to 8 hours.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: December 1, 1998
    Assignee: YKK Corporation
    Inventors: Kazuyuki Fukagawa, Shoso Yamamoto, Hiroshi Chiba, Mitsunao Satomura, Kengo Kawase
  • Patent number: 5800927
    Abstract: There is claimed a sheet or plate structural member suitable for aerospace applications and having improved combinations of strength and toughness. The member is made from a substantially vanadium-free, lithium-free, aluminum-based alloy consisting essentially of: about 4.85-5.3 wt. % copper, about 0.5-1.0 wt. % magnesium, about 0.4-0.8 wt. % manganese, about 0.2-0.8 wt. % silver, about 0.05-0.25 wt. % zirconium, up to about 0.1 wt. % silicon, and up to about 0.1 wt. % iron, the balance aluminum, incidental elements and impurities, the Cu:Mg ratio of said alloy being between about 5 and 9, and more preferably between about 6.0 and 7.5. The invention exhibits a typical tensile yield strength of about 77 ksi or higher at room temperature and can be processed into various lower wing members or into the fuselage skin of high speed aircraft.
    Type: Grant
    Filed: June 19, 1996
    Date of Patent: September 1, 1998
    Assignee: Aluminum Company of America
    Inventor: Lynette M. Karabin
  • Patent number: 5766546
    Abstract: An alloy suitable for manufacturing components out of a hollow body by high internal pressure forming contains, in wt. %,______________________________________ Silicon 0.3 to 1.6 Magnesium 0.3 to 1.3 Iron max. 0.5 Copper max. 0.9 Manganese max. 0.5 Vanadium 0.05 to 0.3 Cobalt max. 0.3 Chromium max. 0.3 Nickel max.0.8 Zirconium max. 0.3 ______________________________________and other alloying elements, individually at most 0.05, in total at most 0.15, the remainder aluminum.
    Type: Grant
    Filed: March 13, 1997
    Date of Patent: June 16, 1998
    Assignee: Alusuisse Technology & Management Ltd.
    Inventor: Pius Schwellinger
  • Patent number: 5759302
    Abstract: There is provided Al alloys which have improved and excellent fracture toughness and fatigue characteristic and improved formability, and which can be suitably used for transportation machines, such as aircraft, railway vehicles, general mechanical parts and the like. The Al alloy contains 1 to 8% (% by weight, the same is true for the following) of Cu, containing one or more selected from a group comprising 0.4 to 0.8% of Mn, 0.15 to 0.3% of Cr, 0.05 to 0.1% of Zr and 0.1 to 2.5% of Mg, Fe and Si each being less than 0.1%, a distance between constituents being more than 85 .mu.m, and having a micro-structure fulfilling at least one of the following (a) to (c):(a) the size of Al--Mn dispersoids is 4000 .ANG. or more,(b) the size of Al--Cr dispersoids is 1000 .ANG. or more, and(c) the size of Al--Zr dispersoids is 300 .ANG. or more.
    Type: Grant
    Filed: August 10, 1995
    Date of Patent: June 2, 1998
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Manabu Nakai, Takehiko Eto
  • Patent number: 5714018
    Abstract: A high-strength and high-toughness aluminum-based alloy having a composition represented by the general formula: Al.sub.a Ni.sub.b X.sub.c M.sub.d Q.sub.e, wherein X is at least one element selected from the group consisting of La, Ce, Mm, Ti and Zr; M is at least one element selected from the group consisting of V, Cr, Mn, Fe, Co, Y, Nb, Mo, Hf, Ta and W; Q is at least one element selected from the group consisting of Mg, Si, Cu and Zn; and a, b, c, d and e are, in atomic percentage, 83.ltoreq.a.ltoreq.94,3, 5.ltoreq.b.ltoreq.10, 0.5.ltoreq.c.ltoreq.3, 0.1.ltoreq.d.ltoreq.2, and 0.1.ltoreq.e.ltoreq.2. The aluminum-based alloy has a high strength and an excellent toughness and can maintain the excellent characteristics provided by a quench solidification process even when subjected to thermal influence at the time of working. In addition, it can provide an alloy material having a high specific strength by virtue of minimized amounts of elements having a high specific gravity to be added to the alloy.
    Type: Grant
    Filed: October 27, 1992
    Date of Patent: February 3, 1998
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Hidenobu Nagahama, Takeshi Terabayashi, Makoto Kawanishi