Electrostatic Field Or Electrical Discharge Patents (Class 204/164)
  • Patent number: 8388814
    Abstract: In a method for treatment of a dispersed material in a plasma, in which a plasma-forming gas is introduced into a reaction chamber and ionized and a dispersed material is introduced into the reaction chamber and into the area of the plasma, treated under the action of the plasma, and subsequently removed from the area of the plasma, the introduction of the plasma-forming gas and the introduction of the dispersed material are performed independently of one another and from different directions. In an apparatus for treatment of a dispersed material in a plasma, which comprises a reaction chamber having a plasma generator, a first inlet for a plasma-forming gas, and a second inlet for the dispersed material, the second inlet is situated spatially separated in relation to the first inlet so that the dispersed material is conducted from the outside into the plasma.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: March 5, 2013
    Assignee: Maicom Quarz GmbH
    Inventors: Mikhail Guskov, Hermann Marsch
  • Publication number: 20130053760
    Abstract: A device and method for generating a physical plasma in hoses of long and simultaneously constricted lumen, flexible or rigid dielectric hoses, tubes or other hollow bodies in the low, normal or overpressure range, which are partially or completely filled or flushed by process medium of gas or gas mixtures, one or more liquids, liquids including gas bubbles, liquid-gas mixtures, aerosols and/or foam, for purposes of cleaning, activating, coating, modifying and biologically decontaminating, disinfecting, sterilizing the inner walls of the hoses or the process medium itself. The device includes a high voltage supply and a process medium supply, at least one electrically conductive grounded electrode and at least one electrically conductive high voltage electrode, both embedded in the wall of the hose.
    Type: Application
    Filed: January 26, 2011
    Publication date: February 28, 2013
    Applicant: Leibniz-Institut Fuer Plasmaforschung und Technologie e.V.
    Inventors: Joerg Ehlbeck, Klaus-Dieter Weltmann, Manfred Stieber, Joern Winter, Kim Winterweber
  • Patent number: 8382858
    Abstract: Textured heterogeneous surfaces and related articles as can be used in conjunction with methods for selective sensing and/or separation. When used for selective particle separation such a system can comprise a heterogeneous surface comprising a surface member and a plurality of components extending therefrom, such components spaced about and having a surface density, with heterogeneity comprising different interactions of the surface member and of the extended components with a particle exposed thereto. Various surface heterogeneities and different interactions can be utilized. However, in certain embodiments, competing electrostatic interactions, or a combination of electrostatic and non-electrostatic interactions, with a particle can be utilized. Such a system can utilize a surface member having a charge difference with respect to the components extending therefrom.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: February 26, 2013
    Assignee: University of Massachusetts
    Inventors: Maria M. Santore, Jung Zhang, Vincent Rotello
  • Patent number: 8377280
    Abstract: The present device is a microchannel separator that uses a separation driving force created by an electric field. An ionic fluid flows through the microchannels and is subjected to an electric field by two spaced apart parallel electrodes possessing an electric charge. The ions in the ionic fluid are attracted towards the charged electrodes and thus are concentrated in the region of flow near the charged electrodes and depleted from the central region of flow between the charged electrodes. The charged electrodes are insulated from the ionic fluid by an impermeable barrier which prevents arcing and adherence of the ions to the charged electrodes. After a sufficient length of passage of the ionic fluid through a main channel two blocking plates separate the flow into a central and two outer output channels. The central channel draws a portion of the ionic fluid from the central region of the main channel that has fewer ions than the ionic fluid in the regions near the charged electrodes.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: February 19, 2013
    Assignee: Vecenergy Aegir, LLC
    Inventor: Brendan Johnson
  • Patent number: 8377339
    Abstract: An apparatus and a method to form a thick coat by an in-liquid pulsed electric discharge treatment, the electrode contains 40 volume % or more metallic material that is not carbonized or is hard to be carbonized.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: February 19, 2013
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Akihiro Goto, Masao Akiyoshi, Hiroyuki Ochiai, Mitsutoshi Watanabe
  • Patent number: 8372345
    Abstract: An ozone generating apparatus includes a base container for holding water, and a head assembly connected to the upper edge of the base container, the head assembly containing a plurality of ozone generating cells each having a dielectric tube and an electrode assembly coaxially disposed within the associated dielectric tube. The dielectric tubes and electrode assemblies are disposed and connected such that the tube and/or electrode assembly of each ozone generating cell can be accessed independently of all other ozone generating cells, and such that the possibility of cascade failure of all remaining ozone generating cells upon failure of a single cell is substantially eliminated. The base container is provided with a process back flood prevention structure to protect the ozone generating cells.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: February 12, 2013
    Inventor: Wayne Wolf
  • Patent number: 8367008
    Abstract: The disclosure relates to a method for purifying silicon by exposing liquid silicon to a plasma, wherein the silicon flows continuously into a channel so that the free surface thereof is exposed to the plasma. The disclosure also relates to a device for implementing the method.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: February 5, 2013
    Inventors: Christian Claude Cyprien Trassy, Yves Jean Noël Delannoy
  • Publication number: 20130023404
    Abstract: Catalyst mixtures include at least one Catalytically Active Element and, as a separate constituent, one Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of chemical reactions. These catalysts are useful for a variety of chemical reactions including, in particular, the electrochemical conversion of CO2. Chemical processes employing these catalysts produce CO, OH?, HCO?, H2CO, (HCO2)?, H2CO2, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO?, CH3COOH, C2H6, O2, H2, (COOH)2, or (COO?)2. Devices using the catalysts include, for example, a CO2 sensor.
    Type: Application
    Filed: September 25, 2012
    Publication date: January 24, 2013
    Applicant: DIOXIDE MATERIALS, INC.
    Inventor: Dioxide Materials, Inc.
  • Patent number: 8354030
    Abstract: A system for removing cyanotoxins and excess ions from contaminated water. Contaminated water passes from a storage tank (200), through a sand filter (210), through a reaction chamber (230), and finally through a carbon filter (270). The sand filter removes particulates and bacteria. The reaction chamber first destroys cyanotoxins, algae, and bacteria through the use of high voltage shocks applied between two groups of electrodes (285, 285? then the voltage on the electrodes is lowered and electrolysis is used to sequester free ions in the water in the region near the electrodes. Partially treated water is removed from the upper portion of the reaction chamber and passed through a carbon filter (270) to remove radiation, and improve taste and smell. The water is then potable. The water remaining in the reaction chamber is discarded into a reservoir (265).
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: January 15, 2013
    Inventor: Allen John Schuh
  • Patent number: 8349154
    Abstract: The invention relates to modified electrodes for ER fluids prepared by adding a rough, wear-resisting, and low conductive modified layer on the surface of metallic electrodes. The material for the modified layer can be at least one from diamond, alumina, titanium dioxide, carborundum, titanium nitride, nylon, polytetrafluoroethylene, adhesive, and adhesive film. Through the addition of the modified layer, the adhesion of the ER fluid to electrodes is increased so that the shear stress measured near the plates is close to the intrinsic value, which makes the ER fluid applicable, while reducing the leakage current and increasing the breakdown voltage of the ER fluid equipment.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: January 8, 2013
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Kunquan Lu, Rong Shen, Xuezhao Wang
  • Patent number: 8343372
    Abstract: A surface processing method for a mounting stage, which enables a mounting surface conforming to a substrate to be formed while saving time and effort. The substrate is mounted on a mounting surface of the mounting stage disposed in a housing chamber of a substrate processing apparatus that carries out plasma processing on the substrate. The mounted substrate is thermally expanded.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 1, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Tadashi Aoto, Eiichiro Kikuchi, Masakazu Higuma, Kimihiro Higuchi
  • Patent number: 8338734
    Abstract: In one aspect of the invention, a charger for use in a system for separating particles from a fluid flow is disclosed. In one embodiment, the charger comprises a body including an inlet for receiving the particles, a chamber in which the particles are received, and an outlet for discharging the particles. A rotor having a generally non-permeable surface is positioned in the chamber and rotated for contacting and charging the particles. In another aspect of the invention, grid electrodes with elongated fingers are proposed for use in a novel separation system. Related methods of charging and separating particles are also disclosed.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: December 25, 2012
    Inventors: Dongping Tao, Xinkai Jiang
  • Patent number: 8337766
    Abstract: An apparatus and method for sorting ions in order to produce hydrogen gas from water. A first electric field source is electrically isolated from water by an insulating layer. A first conductive deionization surface is positioned within a field line of said first electric field source. An electric conductor is connected to said first conductive deionization surface and is adapted to discharge charge built up due to attracted ions located on the first conductive deionization surface. Hydrogen is produced on said first conductive deionization surface when said first conductive deionization surface is positioned within the water.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 25, 2012
    Assignee: HPT (Hydrogen Production Technology) AG
    Inventor: David Haitin
  • Publication number: 20120318661
    Abstract: A method for modification of a methane-containing gas stream, comprising the steps of: i) withdrawal of at least one substream from a methane-containing gas stream; ii) treatment of the substream with an electrically generated plasma, generating a modified gas composition which comprises a lower fraction of methane than the methane-containing gas stream used and iii) return of modified gas composition into the methane-containing gas stream. This method makes possible the storage of excess power in a natural gas line grid.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Applicant: Evonik Degussa GmbH
    Inventors: Georg Markowz, Jürgen Erwin Lang, Rüdiger Schütte
  • Publication number: 20120318662
    Abstract: The present invention provides a doping technique that forms a stable amorphous silicon film and a stable polycrystalline silicon film at a low temperature and simultaneously that imparts conductivity in an atmospheric pressure environment. A method for producing a compound containing a bond between different elements belonging to Group 4 to Group 15 of the periodic table, the method included: applying, at a low frequency and atmospheric pressure, high voltage to an inside of an electric discharge tube obtained by attaching high-voltage electrodes to a metal tube or an insulator tube or between flat plate electrodes while passing an introduction gas, so as to convert molecules present in the electric discharge tube or between the flat plate electrodes into a plasma; and applying the plasma to substances to be irradiated, the substances to be irradiated being two or more elementary substances or compounds.
    Type: Application
    Filed: December 23, 2010
    Publication date: December 20, 2012
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Hitoshi Furusho, Yuki Nohara, Hisayuki Watanabe, Yuichi Goto
  • Patent number: 8323606
    Abstract: Hetero-nanocapsule, which is a carbon nanocapule containing heteroatoms, comprises a closed graphite layer represented by a chemical formula C(D)x, wherein C is carbon atom exhibiting sp2 hybrid orbital, D is hetero-atom, such as B, N, P, or S atom, bonded to the carbon atom; and X is a molar equivalent ranging from 0.0001 to 0.1, based on the molar equivalent of carbon atom as 1. The hetero-nanocapsules may be hollow or filled with metal or metal compound.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: December 4, 2012
    Assignee: Industrial Technology Research Institute
    Inventor: Gan-Lin Hwang
  • Publication number: 20120285817
    Abstract: A method for synthesizing nano particles, including: moving material in a plasma generating space in a first direction; and synthesizing nano particles by cooling the material moved along the first direction, wherein the synthesizing the nano particles may be performed by cooling the material at gradually lower temperatures during the moving thereof in the first direction.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 15, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Soon Mo Song, Hyo Sub Kim, Gun Woo Kim, Sang Hyuk Kim, Sang Hoon Kwon, Kang Heon Hur
  • Patent number: 8309033
    Abstract: A plasma treated gas permeable material is produced by applying an alternating voltage between spaced electrodes, at least one of which is covered with a dielectric barrier and at least one of which comprises a plurality of discrete electrode segments, to generate plasma microdischarges between the spaced electrodes. A gas permeable material is passed between or adjacent to the spaced electrodes. A gas is moved between the electrode segments into and through the space between the electrodes and through the gas permeable material. The gas flows over plasma generation surfaces of the respective electrode segments and is moved at a rate whereby the gas flow between the spaced electrodes is turbulent and so randomises the plasma microdischarges and disperses plasma products that would otherwise give rise to burning instabilities in the gas permeable material, whereby the randomized plasma microdischarges provide a generally uniform plasma treatment of the gas permeable material.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 13, 2012
    Assignees: Commonwealth Scientific and Industrial Research Organisation, Australian Wool Innovation Limited
    Inventors: Niall Finn, Ladislav Kviz, Jurg Schutz, Anthony Farmer
  • Patent number: 8308914
    Abstract: An electrolytic ozone cell anode spring fastening board structure includes a solid polymer electrolyte membrane (1), an anode electrocatalyst layer (2), a diffusion layer (3), frame body and support parts (5). A diffusion layer counterpiece (4) has one side attached to the diffusion layer (3), the other side of the diffusion layer counterpiece (4) equipped with a centered elevated step, which contacts the center of the convex side of a spherical spring board (6). In addition, the solid polymer electrolyte membrane (1), frame body and support parts (5), diffusion layer (3), diffusion layer counterpiece (4) and spring board (6) are held together by mechanical fastening means. It prevents a decrease in ozone generation rate in electrolytic ozone cell that can occur from the metal board deformation and thinning of the anode electrocatalyst layer.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: November 13, 2012
    Inventor: Mingyung Hsu
  • Publication number: 20120279850
    Abstract: A method of synthesis of a metal fluorophosphate having the following general formula (1): XaMb(PO4)cFd (1), in which: X is an alkaline metal selected among sodium (Na) and lithium (Li) or a mixture of said metals; M is a transition metal selected among the following elements: Co, Ni, Fe, Mn, V, Cu, Ti, Al, Cr, Mo, Nb or a combination of at least two of said metals, 0?a?5; 0.5?b?3; 0.5?c?3; and d is an integer equal to 1, 2 or 3. The method contains an electric-field-activated sintering process for a mixture (1) formed by at least one first phosphate-containing solid precursor and at least one second fluorine-containing solid precursor.
    Type: Application
    Filed: November 4, 2010
    Publication date: November 8, 2012
    Applicants: Centre National De La Recherche Scientifique, Commissariat á l 'Energie Atomique et aux Energies Alternatives
    Inventors: Sébastien Patoux, Carole Bourbon, Erwan Dumont-Botto, Mickael Dolle, Patrick Rozier
  • Patent number: 8303926
    Abstract: In accordance with various embodiments, there are nanostructured materials including WS2 nanostructures and composites of WS2 nanostructures and other materials and methods for synthesizing nanostructured materials. The method can include providing a plurality of precursor materials, wherein each of the plurality of precursor materials can include a tungsten reactant. The method can also include flowing, for a reaction time, a substantially continuous stream of carbon disulfide (CS2) vapor in a carrier gas over the plurality of precursor materials at a temperature in the range of about 700° C. to about 1000 C, wherein the reaction time is sufficient to permit the tungsten reactant to react with carbon disulfide to form a plurality of tungsten disulfide (WS2) nanostructures.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: November 6, 2012
    Assignee: STC.UNM
    Inventors: Claudia C. Luhrs, Marwan Al-Haik, Hugo Zea
  • Publication number: 20120273341
    Abstract: Methods and apparatus for controlling a plasma are provided herein. In some embodiments, a method may include supplying a first RF signal having a first frequency and a first period from an RF power source to a first electrode, wherein the first period is a first integer number of first cycles at the first frequency; supplying a second RF signal having a second frequency and a second period from the RF power source to the first electrode, wherein the second period is a second integer number of second cycles at the second frequency and wherein a first multiplicative product of the first frequency and the first integer number is equal to a second multiplicative product of the second frequency and the second integer number; and controlling the phase between the first and second periods to control an ion energy distribution of the plasma formed in a process chamber.
    Type: Application
    Filed: April 9, 2012
    Publication date: November 1, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ANKUR AGARWAL, AJIT BALAKRISHNA, SHAHID RAUF
  • Publication number: 20120273342
    Abstract: An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.
    Type: Application
    Filed: April 19, 2012
    Publication date: November 1, 2012
    Applicant: Regents of the University of California
    Inventors: Thomas Schenkel, Arun Persaud, Rehan Kapadia, Ali Javey
  • Publication number: 20120267302
    Abstract: A fluid treatment arrangement may include a fluid treatment unit having a multilayer structure. The multilayer structure may include at least one feed layer, at least one permeate layer, and at least one layer of a permeable fluid treatment medium between the feed layer and the permeate layer. The fluid treatment unit may further include a thermoset which holds the layers together and forms at least a portion of a first end surface of the fluid treatment unit. The fluid treatment arrangement may also include a thermoplastic sheet which overlies the first end surface of the fluid treatment unit. The thermoset directly bonds to the thermoplastic sheet.
    Type: Application
    Filed: March 20, 2012
    Publication date: October 25, 2012
    Applicant: PALL CORPORATION
    Inventors: Rachel Forman, Martin J. Weinstein
  • Patent number: 8288164
    Abstract: The present invention provides a highly reliable reaction cuvette in which air bubbles are adhered little and mutual contamination can be prevented among samples and reagents in adjoining reaction cuvettes, a method of surface treatment for a reaction cuvette, and an automatic analyzer with the reaction cuvette mounted therein. The reaction cuvette according to the present invention, in which a sample and a reagent are mixed with each other and its concentration is measured, has an area subjected to hydrophilic treatment by electric discharging on inner and outer surfaces of the reaction cuvette. Further the reaction cuvette has a container-like form with its upper portion opened to provide an opening and its lower portion closed to provide a bottom. The hydrophilic area is present from a bottom of the reaction cuvette up to a midway to the opening.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: October 16, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyuki Mishima, Hiroaki Ishizawa, Masashi Endo
  • Publication number: 20120255854
    Abstract: Internal components of plasma reactors are composed of a toleratable, ceramic filled plasma-useful polymer such as a high temperature engineering thermoplastic, preferably a polyamideimide. The parts exhibit a low erosion rate upon exposure to plasma at low pressure.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: QUADRANT EPP AG
    Inventors: Scott Howard Williams, Richard William Campbell, Stephan Glander
  • Patent number: 8282805
    Abstract: An improved process for treating an electrically conductive surface of a workpiece by cleaning or coating the surface is provided, comprising the steps of deploying the electrically conducting surface of the workpiece to form a cathode in an electrolytic cell; establishing a DC voltage between the cathode and an anode; forming a working gap between the anode and the cathode, and establishing a seal around the working gap to form a sealed treatment zone; delivering into the working gap an electrically conductive medium selected from the group consisting of: (A) an aqueous electrolyte from which a foam is created; (B) a foam; and a mixture of components (A) and (B), so that electrically conductive medium consisting of a foam comprising a gas/vapor phase and a liquid phase fills the working gap, wherein said electrically conductive medium enters the electrolytic cell through tubes having discharge ends oriented at approximately ten degrees from parallel to the workpiece, and wherein turbulence is created within
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: October 9, 2012
    Inventor: Edward O. Daigle
  • Patent number: 8282880
    Abstract: A bottle, a system and a method sterilize a liquid. The bottle has an interior to hold the liquid and an ultraviolet light emitting lamp that extends into the interior. A cord may be attached to the bottle so that pulling the cord may power the ultraviolet light emitting lamp and/or charge a battery used to power the ultraviolet light emitting lamp. The bottle may have a status light that indicates that the ultraviolet light emitting lamp may have an amount of power equal to or greater than a threshold value, such as, for example, an amount of power necessary for the ultraviolet light emitting lamp to operate for ninety seconds. The bottle may have a removable lid located opposite to the ultraviolet light emitting lamp.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: October 9, 2012
    Assignee: Neverest Travel Solutions
    Inventor: Eric James
  • Patent number: 8277616
    Abstract: A surface treating method for treating a tooth surface and a surface treating device thereof are provided. First, a working gas is filled into a tube. Next, a voltage is provided to the working gas for exciting the working gas into plasma. After that, the plasma is discharged through an opening of the tube for contacting the tooth surface.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: October 2, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chi-Hung Liu, Chun-Hung Lin, Chun-Hsien Su, Wen-Tung Hsu
  • Patent number: 8268094
    Abstract: A gas injector including in which a gas is passed through high-voltage/low-current electrical discharges before being discharged into the chamber of a thermal treatment furnace. The electrical activation of the gas accelerates desirable reactions between the gas, gases in the furnace chamber, and the chamber workload. Preferably, a hot electrode is electrically charged and the other parts of the gas injector and the furnace are grounded. Also provided is a method for activating an atmosphere within the reaction chamber of a controlled-atmosphere reactor.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: September 18, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Zbigniew Zurecki, Robert Ellsworth Knorr, Jr., John Lewis Green
  • Publication number: 20120211350
    Abstract: Processes or apparatuses for producing silicon by a carbon reduction in an arc furnace using a raw silica material having an iron content, an aluminum content, a calcium content, and a titanium content of 0.1% by mass or less, respectively and using a carbon material, wherein during the carbon reduction, an overcurrent which flows through an electrode of the arc furnace is mitigated using a power regulation unit or that the arc furnace is operated at a hearth power density PD (W/cm2) of 90 (W/cm2) or higher.
    Type: Application
    Filed: April 5, 2012
    Publication date: August 23, 2012
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Keiji Yamahara, Hiromi Fujimoto, Toshiaki Katayama
  • Patent number: 8241651
    Abstract: Multiphasic nano-components (MPNs) having at least two phases and at least one active ingredient are provided. The MPNs can be used in various methods for medical diagnostics or with pharmaceutical, personal care, oral care, and/or nutritional compositions, for example, in oral care, hair, or skin products. The MPNs can be designed to have targeted delivery within an organism, while providing controlled release systems or combining incompatible active ingredients. Further, the MPNs can be used as biomedical coatings (such as anti-microbial coatings), or anti-corrosive coatings, bioimaging probes with combined diagnostic and therapeutic use, and fragrance release systems, among others. The MPNs can be formed by electrified jetting of polymers.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: August 14, 2012
    Assignee: The Regents of the University of Michigan
    Inventor: Joerg Lahann
  • Patent number: 8241580
    Abstract: This invention concerns with the plasma inactivating method and processor that can inactivate the surface of the object without causing the degradation inside of it. The inactivation of toxins on the surface of the object proceeds as removing the toxins by nitriding or oxidizing the toxins by the following triple effects, the sharp pulsed electric field by the supply of the electric pulses, the generated N-radicals (N*) contained inside of the plasma in the surrounding gases composed mainly by N2 gas under the low pressure.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 14, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Naohiro Shimizu, Yuichiro Imanishi
  • Publication number: 20120193215
    Abstract: Treating a synthesis gas includes generating a plasma jet from a non-transferred arc torch having a main axis, the jet having a propagation axis substantially collinear with the torch main axis. The plasma torch is mounted on a feed enclosure. The syngas is received at an inlet port of the feed enclosure, downstream from the plasma torch and feeding the syngas so the flow encounters the plasma jet to mix the syngas and plasma jet in a distribution chamber. The mixture is propagated in a reactor downstream from the feed enclosure to convert the syngas into an outlet gas. The reactor is in communication in its upstream portion with the feed enclosure through a flared segment, and has a longitudinal axis that is substantially collinear with the propagation axis of the plasma jet. The outlet gas is extracted via an outlet port and particles are captured by a submerged conveyor.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 2, 2012
    Applicant: Europlasma
    Inventors: Alice Fourcault, Jean-Paul Robert-Arnouil, Erika Edme
  • Publication number: 20120181164
    Abstract: The silicon purification method uses a silicon purification device including at least a crucible for loading a silicon metal and a plasma torch, and purifies the silicon metal by injecting a plasma gas from the plasma torch toward a melt surface of the silicon metal loaded in the crucible in a state where an angle formed by the melt surface and the plasma gas is set in the range of 20° to 80°.
    Type: Application
    Filed: September 17, 2010
    Publication date: July 19, 2012
    Applicant: ULVAC, INC.
    Inventors: Yasuo Ookubo, Hiroshi Nagata
  • Patent number: 8221593
    Abstract: A reactor, a plant, and a continuous, industrial process carried out therein for preparing high-purity silicon tetrachloride or high-purity germanium tetrachloride by treating the silicon tetrachloride or germanium tetrachloride to be purified, which is contaminated by at least one hydrogen-containing compound, by a cold plasma and isolating purified high-purity silicon tetrachloride or germanium tetrachloride from the resulting treated phase by fractional distillation. The treatment is carried out in a plasma reactor in which longitudinal axes of a dielectric, of a high-voltage electrode, and of a grounded, metallic heat exchanger are oriented parallel to one another and at the same time parallel to the force vector of gravity.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: July 17, 2012
    Assignee: Evonik Degussa GmbH
    Inventors: Juergen Erwin Lang, Rainer Nicolai, Hartwig Rauleder
  • Patent number: 8221679
    Abstract: A free radical decontamination method and system. The system is comprised of a chamber defining a region, and a generator for generating free radical reach effluent from a free radical electric generator and hydrogen peroxide solution with water. A closed loop circulating system is provided for supplying the mixture of free radicals from the electric generator mixed with the hydrogen peroxide solution in the form of the effluent to the chamber.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: July 17, 2012
    Inventor: Czeslaw Golkowski
  • Patent number: 8216440
    Abstract: An object of the present invention is to implement a method for aligning microscopic structures in desired locations and in a desired direction, in order to align microscopic structures, such as nanostructures, with high precision. The method includes a substrate forming step of forming three electrodes to which independent potentials can be applied, a microscopic structure liquid applying step of applying a liquid in which microscopic structures are dispersed to the insulating substrate, and a microscopic structure aligning step of applying respective voltages to the three electrodes to align the microscopic structures in locations defined by the electrodes.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: July 10, 2012
    Assignees: Sharp Kabushiki Kaisha, Nanosys, Inc.
    Inventors: Akihide Shibata, Yasunobu Okada
  • Patent number: 8216433
    Abstract: A plasma generator in which the variation of the impedance in the cavity before and after plasma is ignited is less and hardly affected by the shape of the cavity, and the ignitability of the plasma is improved and a method of generating plasma using the plasma generator are provided. The plasma generator comprises a nonconductive gas flow pipe (1) for introducing a gas (9) for generating plasma and discharging it into the atmosphere and a conductive antenna pipe (2) surrounding the gas flow pipe. A microwave (7) is applied to the antenna pipe to change the gas in the gas flow pipe into plasma. The plasma generator is characterized in that a slit (3) with a predetermined length is formed in the antenna pipe (2) along the axial direction of the gas flow pipe. Preferably, the plasma generator is characterized in that the length of the slit is an integral multiple of the half-wave length of the applied microwave.
    Type: Grant
    Filed: February 17, 2007
    Date of Patent: July 10, 2012
    Assignee: University of the Ryukyus
    Inventor: Akira Yonesu
  • Patent number: 8202500
    Abstract: A process has been developed to selectively dissociate target molecules into component products compositionally distinct from the target molecule, wherein the bonds of the target molecule do not reform because the components are no longer reactive with each other. Dissociation is affected by treating the target molecule with light at a frequency and intensity, alone or in combination with a catalyst in an amount effective to selectively break bonds within the target molecule. Dissociation does not result in re-association into the target molecule by the reverse process, and does not produce component products which have a change in oxidation number or state incorporated oxygen or other additives because the process does not proceed via a typical reduction-oxidation mechanism. Target molecules include ammonia for waste reclamation and treatment, PCB remediation, and targeted drug delivery.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: June 19, 2012
    Assignee: Fahs Stagemyer, LLC
    Inventors: Richard W. Fahs, II, Matthew D. W. Fahs
  • Publication number: 20120148446
    Abstract: A plasma generation apparatus and method, which achieve both sterilization and deodorization of attached bacteria even under the condition that steam or fine droplets of water are present. A pair of electrodes is prepared, plasma discharge is carried out by applying designated voltage between the pair of electrodes, fluid passage holes are provided at corresponding parts of respective electrodes so as to communicate with each other, and steam or fine droplets of water are applied to the fluid passage holes and plasma generated around the fluid passage holes.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 14, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Miyamoto MAKOTO, Nakayama Yoko, Kumagai Yuuki, Takenoshita Kazutoshi
  • Publication number: 20120138450
    Abstract: A coil assembly includes an encapsulation structure having a coil placement region formed therein. One or more access ports are formed through the encapsulation structure to the coil placement region. The coil placement region is hermetically sealed by the encapsulation structure outside of the one or more access ports. A coil device is disposed within the coil placement region within the encapsulation structure. Terminals of the coil device are accessible through the one or more access ports formed through the encapsulation structure. The encapsulation structure is formed of a material suitable for exposure to a plasma. The coil assembly can be disposed inside of a plasma processing chamber and above a support structure, such that the coil assembly is in exposure to a plasma generated between the coil assembly and the support structure by radiofrequency power supplied to the coil device within the coil assembly.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 7, 2012
    Applicant: Lam Research Corporation
    Inventor: Matthew Davis
  • Patent number: 8182754
    Abstract: The apparatus is proposed for termination of radioactive and other wastes particularly for physical processing of radioactive waste with simultaneous production of hydrogen, oxygen, and electric energy. It includes an ion divider, a plasma chamber communicated with the ion divider, a controllable hydrogen-oxygen dispenser introducing hydrogen and oxygen into the plasma chamber, transformer pipe coils, a transformer chamber surrounded by the transformer coils, the transformer chamber communicated with the plasma chamber, equipment for supplying water and steam into the transformer coils, cooling equipment for receiving ionized steam from the transformer coils and cooling the steam, a sprayer receiving the ionized steam from the cooling equipment and introducing the steam into the ion divider; and dispenser equipment for introducing radio-active wastes and/or worked-out rocket fuels into the transformer chamber, wherein the radio-active wastes and/or worked-out rocket fuels are terminated.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: May 22, 2012
    Inventors: Yuriy Yatsenko, Boris Avramchuk, Siarhei Zmitkovich, Roman Pankiv, Vadim Yatsenko
  • Publication number: 20120118232
    Abstract: A system, apparatus and method for increasing ion source lifetime in an ion implanter are provided. Oxidation of the ion source and ion source chamber poisoning resulting from a carbon and oxygen-containing source gas is controlled by utilizing a hydrogen co-gas, which reacts with free oxygen atoms to form hydroxide and water.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 17, 2012
    Applicant: Axcelis Technologies, Inc.
    Inventors: Neil K. Colvin, Tseh-Jen Hsieh
  • Patent number: 8178341
    Abstract: A system for exposing a target material to small particles. The system includes an exposure chamber that receives the target material. A stream of charged particles is directed via an inlet into the exposure chamber toward the target material. One or more electrodes are located relative to the target material and the inlet, and are electrically charged, so as to cause at least some of the charged particles to impact upon the target material. The system can be used to expose the target material to small, for example, nanoscale, particles in a gas environment.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: May 15, 2012
    Assignee: The University of Vermont and State Agricultural College
    Inventor: Giuseppe A. Petrucci
  • Patent number: 8177943
    Abstract: The invention is directed to mixtures of polysilanes macroscopically solid at ambient temperature wherein the individual components of the composition SinH2n and/or SinH2n+2 of which decompose before they are boiling at an applied process pressure and which are produced from the hydrogenation of plasmachemically generated largely chlorinated polysilane mixtures. These mixtures of polysilanes are especially suited to be applied onto surfaces as solutions or dispersions and to obtain silicon-based structures or layers in subsequent process steps. Furthermore, they are especially safe in handling and can be additionally made up into transport forms in suitable transport containers.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: May 15, 2012
    Assignee: Spawnt Private S.A.R.L.
    Inventors: Norbert Auner, Sven Holl, Christian Bauch, Gerd Lippold, Rumen Deltschew
  • Publication number: 20120114764
    Abstract: A produce wash is provided that significantly reduces the amount of chlorine used in treating produce and inhibits the growth of micro-organisms on pre-harvest and post-harvest produce. A method of using the produce wash extends the shelf life of harvested produce.
    Type: Application
    Filed: September 22, 2011
    Publication date: May 10, 2012
    Applicant: Contact Marketing Solutions, LLC
    Inventors: David H. Creasey, Barry W. Cummins
  • Patent number: 8173075
    Abstract: The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: May 8, 2012
    Assignee: Drexel University
    Inventors: Alexander F. Gutsol, Alexander Fridman, Kenneth Blank, Sergey Korobtsev, Valery Shiryaevsky, Dmitry Medvedev
  • Patent number: 8168129
    Abstract: An apparatus and method are for disinfection and purification of a liquid, gaseous or solid phase, or a mixture thereof. The apparatus includes: a central electrode, a dielectric layer adjacent to the electrode, a first area adjacent to the dielectric layer, and is configured to introduce a first medium into the first area, a second area adjacent to the first area. The apparatus is also configured to introduce a second medium into the second area, and for creating a plasma in the first medium, while the first medium is present in the first area, by applying a voltage between the first electrode and a second electrode. An injector injects the plasma into the second area, in order to be mixed with the second medium.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: May 1, 2012
    Assignee: Vlaamse Instelling Voor Technologisch Onderzoek (Vito)
    Inventors: Dirk Vangeneugden, Robby Jozef Martin Rego, Danny Havermans, Herman Blok
  • Publication number: 20120090984
    Abstract: A method for purifying a silicon-based load to obtain extra-pure silicon, includes: a) directing a plasma jet from an initial non-transferred arc torch onto a solid wall of a volume having an outlet to generate a homogeneous plasma flow, b) continuously injecting a silicon-based load having particles and/or grains, or crushed, into the homogeneous plasma flow to obtain an assembly, c) continuously directing the assembly from the outlet towards a melting pot having heating elements and stirring the crushed load into a molten state, d) once the entire crushed load has been injected and a molten bath formed inside the melting pot, directing the plasma jet from at least a second non-transferred arc torch onto the surface of the bath, e) removing the slag on the surface of the bath, and possibly repeating steps d) and e) to volatilize some of the bath impurities brought to the surface due to stirring.
    Type: Application
    Filed: April 16, 2010
    Publication date: April 19, 2012
    Applicant: SILIMELT
    Inventor: Maxime Labrot