Heating Patents (Class 205/224)
  • Publication number: 20110266153
    Abstract: A method of improving the material properties of a composite by electrodepositing particular polymers, organic compounds or inorganic compounds onto electrically conductive fibrous substrates, whether individual fibers or as a fabric, to form composites of improved structural properties and having particular physical properties such as being ice phobic, fire resistant, or electrically conductive.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 3, 2011
    Inventors: Norman R. Byrd, Stephen C. Amundson, Robert H. Coker, III
  • Patent number: 8048285
    Abstract: The invention provides a method for producing a corrosion-resistant article, where the article is conductive and subject to hydrogen uptake during electroplating of a coating. The method comprises electroplating a zinc/nickel coating on the article in an aqueous, basic plating solution containing zinc and nickel ions. The method uses an electrolyte in the form of a soluble hydroxide salt with the weight ratio of zinc ions to nickel ions in the solution being sufficient to provide the coating comprising from about 85% to about 95% by weight zinc, and about 5% to about 15% by weight nickel. The plating solution is substantially free of brightening agents which retard hydrogen bake-out.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 1, 2011
    Assignee: The Boeing Company
    Inventors: Luong (Louie) M. Tran, Matthias P. Schriever, John H. Jones
  • Patent number: 7998333
    Abstract: The present invention provides a method of manufacturing a magnetic recording medium having high recording density. The magnetic recording medium manufacturing method of the present invention is directed to a manufacturing method including: disposing at least a silicon layer on a substrate; disposing an uneven structure including regularly arranged projections on the silicon layer; disposing magnetic material on the upper surfaces of the projections and within recessed parts of the uneven structure; and allowing the magnetic material disposed within each recessed part to be changed into silicon compound by heat treatment.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: August 16, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tatsuya Saito, Toru Den
  • Publication number: 20110162972
    Abstract: A method for producing a thin-film battery includes a film-formation step of forming a film of a positive-electrode material to form a positive-electrode active material film and an annealing step of annealing the positive-electrode active material film. After the annealing step, a lithium-ion introduction step of introducing lithium ions into the positive-electrode active material film. After the introduction of the lithium ions, a reverse-sputtering step of edging the positive-electrode active material film by reverse sputtering.
    Type: Application
    Filed: June 26, 2009
    Publication date: July 7, 2011
    Applicant: SONY CORPORATION
    Inventors: Tatsuya Furuya, Katsunori Takahara, Hiroyuki Morioka, Yuichi Sabi
  • Publication number: 20110155580
    Abstract: Multi-layer microscale or mesoscale structures are fabricated with adhered layers (e.g. layers that are bonded together upon deposition of successive layers to previous layers) and are then subjected to a heat treatment operation that enhances the interlayer adhesion significantly. The heat treatment operation is believed to result in diffusion of material across the layer boundaries and associated enhancement in adhesion (i.e. diffusion bonding). Interlayer adhesion and maybe intra-layer cohesion may be enhanced by heat treating in the presence of a reducing atmosphere that may help remove weaker oxides from surfaces or even from internal portions of layers.
    Type: Application
    Filed: February 7, 2011
    Publication date: June 30, 2011
    Inventors: Gang Zhang, Adam L. Cohen, Michael S. Lockard, Ananda H. Kumar, Ezekiel J. J. Kruglick, Kieun Kim
  • Patent number: 7943020
    Abstract: The invention relates to a cathode for electrolytic processes, particularly suitable for hydrogen evolution in chlor-alkali electrolysis, consisting of a nickel substrate provided with a coating comprising a protective zone containing palladium and a physically distinct catalytic activation containing platinum or ruthenium optionally mixed with a highly oxidizing metal oxide, preferably chromium or praseodymium oxide.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: May 17, 2011
    Assignee: Industries de Nora S.p.A.
    Inventors: Antonio Lorenzo Antozzi, Claudia Jennifer Bargioni, Alice Calderara, Luciano Iacopetti, Gian Nicola Martelli, Christian Urgeghe
  • Patent number: 7935385
    Abstract: The object of the present invention is to form a chromium-oxide film excellent in corrosion resistance without containing an oxide film of other metal onto the optional metallic material. The chromium-oxide passivation film excellent in corrosion resistance without containing the oxide film of other metal can be formed inexpensively and in a short time, and a fluid supplying system for supplying fluid hard in corrosivity in safety is able to be provided. This invention comprises a step of forming the passivation film consisting of a chromium oxide by giving heat treatment in an oxidizing atmosphere after coating chromium on metallic material of which surface roughness (Ra) of a coat surface is not more than 1.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: May 3, 2011
    Assignees: Fujikin, Inc.
    Inventors: Tadahiro Ohmi, Yasuyuki Shirai, Nobukazu Ikeda, Eiji Ideta, Akihiro Morimoto, Tetsutaro Ogushi, Takehisa Konishi
  • Publication number: 20110088771
    Abstract: A new process of manufacturing a transparent conductive oxide (TCO) substrate with light trapping feature and the device thereof is described. The process comprises: forming a metal layer on a substrate, annealing the metal layer so that metal elements are self-aggregated, thereby forming a plurality of island-structure metal protrusions; and forming a transparent conductive oxide layer on the island-structure metal protrusions and the substrate.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 21, 2011
    Applicant: DU PONT APOLLO LTD.
    Inventors: Yuting LIN, Shihche HUANG, Wenkai HSU
  • Publication number: 20110030788
    Abstract: This invention relates to methods for making materials using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to methods for making CA(I,G,A)S, CAIGAS, A(I,G,A)S, AIGAS, C(I,G,A)S, and CIGAS materials by providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.
    Type: Application
    Filed: August 26, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta
  • Publication number: 20110030800
    Abstract: This invention relates to methods for making materials using compounds, polymeric compounds, and compositions for semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to methods for making a CAIGS, CAIS or CAGS material by providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.
    Type: Application
    Filed: August 26, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Patent number: 7854788
    Abstract: A filter membrane includes a substrate, a polymer layer provided on the substrate and a plurality of filter openings each having a width of from about 2 nanometers to about 5 nanometers provided in the polymer layer. A method of controlling pore size of a filter membrane and a method of decontaminating a filter membrane are also disclosed.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: December 21, 2010
    Assignee: The Boeing Company
    Inventors: Norman R. Byrd, James P. Huang, Gwen Gross
  • Publication number: 20100307800
    Abstract: The invention provides an anodised aluminium product for use in a metal core printed circuit board which in which the anodised layer forms a dielectric, and the resultant metal core printed circuit board has a sandwich structure having a thermal conductivity higher than and a thermal resistance lower than conventional metal core printed circuit boards using alternative dielectric layers, and with improved electrical insulation properties. The invention has application in manufacture of rigid and flexible printed circuit boards which have a metal substrate, manufacture of a heat conductive substrate for semiconductor devices, and electronic devices. While the use of the invention is described in relation to metal core printed circuit boards, the anodising process and anodised aluminium of the invention may have other applications beyond this technology. The invention also provides a method of manufacturing such an anodised aluminium product.
    Type: Application
    Filed: February 10, 2006
    Publication date: December 9, 2010
    Applicant: OPULENT ELECTRONICS INTERNATIONAL PTE LTD
    Inventors: Kai Fook Francis Wee, Jian Hua Xu, Jian Hong Dai
  • Patent number: 7833401
    Abstract: A method of forming a component capable of being exposed to a plasma in a process chamber comprises forming a structure comprising a surface and electroplating yttrium, and optionally aluminum or zirconium, onto the surface. Thereafter, the electroplated layer can be annealed to oxide the yttrium and other electroplated species.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: November 16, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Nianci Han, Li Xu, Hong Shih, Yang Zhang, Danny Lu, Jennifer Y. Sun
  • Patent number: 7833403
    Abstract: This invention involves the technological field of electroplating, chemical plating, specially involves a method for partially plating aluminum and aluminum copper radiators. A radiator is conducted partial chemical oxidation and enclosure before undergoing galvanization. Firstly oxidize the non-plate surface of the radiator by chemical oxidation, then utilize a sealing compound to fill up tiny holes of the porous layer to make a film thereon against the erosion of acid and alkali, and then process common chemical plating or electroplating. Only plate a weldable nickel-phosphorus alloy on the touching parts at where the aluminum radiator or the aluminums and copper radiator connect with the main frame.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: November 16, 2010
    Assignee: TWD Metal Production Co., Ltd.
    Inventors: Wenzhen Xie, Donglin Li
  • Publication number: 20100230287
    Abstract: Gold is subjected to anodic oxidation in an aqueous solution of a carboxylic acid or carboxylate. The carboxylic acid can be selected from formic acid, acetic acid, propionic acid, lactic acid, oxalic acid, malonic acid, succinic acid, maleic acid, malic acid, tartaric acid, and citric acid. The carboxylate can be selected from salts of the above-described acids. A potential applied to a gold electrode can be in the range of about +1.5 to about 11 V with respect to a potential of a standard hydrogen electrode. Thereby, a uniform porous gold film having a pore size of several nanometers to several hundreds of nanometers is formed.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 16, 2010
    Applicant: Tokyo Metropolitan University
    Inventors: Kazuyuki NISHIO, Hideki MASUDA
  • Publication number: 20100206738
    Abstract: A method of manufacturing a surface treated member used for semiconductor liquid crystal manufacturing apparatus, capable of forming an anodized film at a higher hardness than that of an anodizing film formed of an existent method, with no problem in view of the generation of cracks, and excellent in the balance between a high hardness and reduced cracks by a simple and convenient method by forming an anodized film to the surface of a member having an aluminum alloy or pure aluminum as a basic material, then dipping the same in pure water, and applying a hydrating treatment to the anodized film, wherein the hydrating treatment is conducted under the conditions satisfying that a treatment temperature is 80° C. to 100° C. and a treatment time (min)??1.5×treatment temperature (° C.)+270.
    Type: Application
    Filed: December 28, 2009
    Publication date: August 19, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.)
    Inventors: Koji WADA, Takayuki Tsubota, Mamoru Hosokawa, Jun Hisamoto
  • Patent number: 7767072
    Abstract: A method for forming a modified platinum aluminide coating on a turbine engine component surface includes the step of forming a platinum layer on the turbine engine component surface. A bath is then prepared, including a mixture of a primary alcohol and a tertiary alcohol, and an electrolyte including an yttrium salt. Then, yttrium from the yttrium salt is electrodeposited onto the platinum layer. The component is heated to diffuse the yttrium into the platinum layer to form a modified platinum layer. Aluminum is then deposited onto the modified platinum layer, and the component is heated to diffuse the aluminum into the modified platinum layer to form a modified platinum aluminide layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: August 3, 2010
    Assignee: Honeywell International Inc.
    Inventor: Devlin M. Gualtieri
  • Publication number: 20100181874
    Abstract: A spindle motor component of hard disk with composite coating layer and a composite coating method hereof. The spindle motor component of hard disk includes a motor component base (1) and the composite coating layer which is coated on the base (1). The composite coating layer consists of an electrodepositing coating layer (2) and a spraying coating layer (3). The composite coating method includes a step of coating the electrodepositing coating layer (2) on the surface of the motor component base (1) and coating the spraying coating layer (3) on the electrodepositing coating layer (2), wherein the weight ratio of tin in the electrodepositing coating layer (2) is between 60 ppm to 300 ppm and the weight ratio of tin in the spraying coating layer (3) is no more than 50 ppm.
    Type: Application
    Filed: March 7, 2008
    Publication date: July 22, 2010
    Applicant: CHENGDU GALAXY MAGNETS CO., LTD.
    Inventors: Jinzhou He, Yan Dai
  • Publication number: 20100170594
    Abstract: A metal surface treatment method for a metal base material in order to improve the uniformity of a cathodic electrodeposition coating film, the method including: a surface treatment step for forming a chemical conversion film on a metal base material by contacting the metal base material with a metal surface treatment composition including zirconium and/or titanium ions and an adhesive imparting agent characterized in being at least one selected from the group consisting of (A) silicon-containing compound, (B) adhesive imparting metal ion, and (C) adhesive imparting resin; and a heating/drying step to heat and dry the metal base material, on which the chemical conversion film is formed, at 60° C. to 190° C. for at least 30 seconds.
    Type: Application
    Filed: September 7, 2007
    Publication date: July 8, 2010
    Inventors: Toshio Inbe, Kazuhiro Makino, Hiroshi Kameda, Masanobu Futsuhara
  • Publication number: 20100167084
    Abstract: Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. An exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinide, lanthanides, and oxides thereof. An exemplary article (150) may comprise a biaxially textured base material (130), and at least one biaxially textured layer (110) selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer (110) is formed by electrodeposition on the biaxially textured base material (130).
    Type: Application
    Filed: August 1, 2005
    Publication date: July 1, 2010
    Applicant: Midwest Research Institute
    Inventors: Raghu N. Bhattacharya, Sovannary Phok, Priscila Spagnol, Tapas Chaudhuri
  • Publication number: 20100167087
    Abstract: This invention relates to a method for producing a metallic coating layer comprising nickel and molybdenum on an electrically conductive substrate by electrodeposition from an aqueous solution including nickel salts, gluconate anions and citrate anions wherein the substrate acts as the cathode and wherein molybdate is added and wherein the pH of the aqueous solution is adjusted between 5.0 and 8.5. The invention also relates to an electrically conductive substrate provided with such a metallic coating layer electrodeposited from the aqueous solution.
    Type: Application
    Filed: July 11, 2008
    Publication date: July 1, 2010
    Applicant: Hille & muller GMBH
    Inventors: Jacques Hubert Olga Joseph Wijenberg, Daniël Adriaan De Vreugd, Ilja Portegies Zwart
  • Publication number: 20100155249
    Abstract: An electrochemical method for manufacturing a lithium phosphate (Li3PO4) thin film includes preparing an electroplating solution and forming the lithium phosphate thin film on a conductive substrate under suitable conditions. The electroplating bath includes about 10?2 M to about 10?1 M lithium ion and about 10?2 M to about 1 M monohydrogen phosphate ion (HPO42?) or dihydrogen phosphate ion (H2PO4?).
    Type: Application
    Filed: December 30, 2008
    Publication date: June 24, 2010
    Applicant: TAIWAN TEXTILE RESEARCH INSTITUTE
    Inventors: Wen-Hsien Ho, Shiow-Kang Yen, Han-Chang Liu, Ching Fei Li
  • Publication number: 20100154884
    Abstract: Electrochemical methods for manufacturing a zinc ferrite (ZnFe2O4) thin film include preparing an electrodeposition solution and forming the zinc ferrite thin film on a conductive substrate under suitable conditions. The electrodeposition solution includes about 10?2 M to about 10?1 M zinc nitrate aqueous solution and about 10?3 M to about 10?2 M ferric nitrate aqueous solution.
    Type: Application
    Filed: May 29, 2009
    Publication date: June 24, 2010
    Applicant: TAIWAN TEXTILE RESEARCH INSTITUTE
    Inventor: Wen-Hsien Ho
  • Patent number: 7641781
    Abstract: In a method for coating a substrate, and a coated object, in a first step, in an external current-less or electrolytic manner, nickel and/or cobalt and/or platinum are deposited on a substrate in a deposition bath. In the deposition bath, particles are additionally suspended which contain at least one metal selected from Mg, Al, Ti, Zn and no Cr, the particles becoming occluded in the coating. In a second step, the actual protective layer is produced by heat treatment. The coating of component parts may be used for aircraft turbines or gas turbines or for garbage incineration systems having temperature-resistant protective layers against high temperature corrosion.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: January 5, 2010
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Dietz, Gebhard Klumpp, Juergen Olfe
  • Publication number: 20090257060
    Abstract: Housing (1) for an optical measurement device, in particular for yarn monitoring, and a method for producing such housing, from a plastics material by prototyping and receiving components of the measurement device such as a light source, sensor or lens. According to the invention, a glass insert (3) is arranged on the housing (1) and is used for the protection of the components from environmental influences, and the glass insert (3) is fitted into the housing (1) by means of the shrinkage occurring during prototyping in such a way that the housing.
    Type: Application
    Filed: August 24, 2006
    Publication date: October 15, 2009
    Applicant: Oerlikon Textile GmbH & Co. KG
    Inventor: Olav Birlem
  • Publication number: 20090249893
    Abstract: A measuring device including a layer of a magnetoelastic alloy formed on a load-carrying member. The layer is intended for measuring stresses induced by a force applied to the load-carrying member. An average grain size of the layer is in the range of 100 nm to 10 000 nm. A method for production of the layer.
    Type: Application
    Filed: February 14, 2007
    Publication date: October 8, 2009
    Applicant: ABB AB
    Inventors: Hans Ling, Hakan F. Wintzell, Mingsheng Wang, Per S. Gustafsson, Andrius Miniotas
  • Publication number: 20090242417
    Abstract: A process for manufacturing electrodes for electrolysis, including steps of forming an arc ion plating (AIP) undercoating layer including valve metal or valve metal alloy containing a crystalline tantalum component and a crystalline titanium component on a surface of the electrode substrate comprising valve metal or valve metal alloy, by an arc ion plating method; heat sintering, including the steps of coating a metal compound solution, which includes valve metal as a chief element, onto the surface of the AIP undercoating layer, followed by heat sintering to transform only the tantalum component of the AIP undercoating layer into an amorphous substance, and to form an oxide interlayer, which includes a valve metal oxides component as a chief element, on the surface of the AIP undercoating layer containing the transformed amorphous tantalum component and the crystalline titanium component; and forming an electrode catalyst layer on the surface of the oxide interlayer.
    Type: Application
    Filed: March 18, 2009
    Publication date: October 1, 2009
    Applicant: Permelec Electrode Ltd.
    Inventors: Yi Cao, Hajime Wada, Masashi Hosonuma
  • Publication number: 20090183994
    Abstract: The invention relates to a method of making a nanotubular titania substrate having a titanium dioxide surface comprised of a plurality of vertically oriented titanium dioxide nanotubes containing oxygen vacancies, including the steps of anodizing a titanium metal substrate in an acidified fluoride electrolyte and annealing the titanium oxide surface in a non-oxidating atmosphere. The invention further relates to a nanotubular titania substrate having an annealed titanium dioxide surface comprised of self-ordered titanium dioxide nanotubes containing oxygen vacancies. The invention further relates to a photo-electrolysis method for generating H2 wherein the photo-anode is a nanotubular titania substrate of the invention. The invention also relates to an electrochemical method of synthesizing CdZn/CdZnTe nanowires, wherein a nanoporous TiO2 template was used in combination with non-aqueous electrolyte.
    Type: Application
    Filed: September 11, 2006
    Publication date: July 23, 2009
    Applicant: UNIVERSITY OF NEVADA, RENO
    Inventors: Manoranjan Misra, Krishnan Selva Raja, Susant Kumar Mohapatra, Vishal Khamdeo Mahajan
  • Publication number: 20090169874
    Abstract: Methods and associated structures of forming microelectronic devices are described. Those methods may include forming a magnetic material on a substrate, wherein the magnetic material comprises rhenium, cobalt, iron and phosphorus, and annealing the magnetic material at a temperature below about 330 degrees Celsius, wherein the coercivity of the annealed magnetic material is below about 1 Oersted.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: Paul McCloskey, Donald S. Gardner, Brice Jamieson, Saibal Roy, Terence O'Donnell
  • Publication number: 20090139872
    Abstract: A cost-favorable process for production of corrosion-resistant sheet steel products, having good characteristics of use for certain application purposes includes applying a zinc-containing coating by electro-galvanizing a flat steel product, finally cleaning mechanically and/or chemically the flat steel product, applying a magnesium-based coating to the finally cleaned zinc-containing coating by means of vapour deposition, and heat treating the coated flat steel product to form a diffusion or convention layer between the zinc-containing coating and the magnesium-based coating at a temperature of 320 ° C. to 335 ° C. under normal atmosphere.
    Type: Application
    Filed: September 22, 2006
    Publication date: June 4, 2009
    Applicant: ThyssenKrupp Steel AG
    Inventors: Nicole Weiher, Bernd Schuhmacher, Michael Steinhorst, Andreas Klare, Tamara Appel, Ralf Bause, Stefan Kohler, Krasimir Nikolov, Monika Riemer, Slavcho Topalski, Frank Friedel, Wilfried Prange, Reinhard Schulski, Christian Schwerdt, Rolf Bode, Brigitte Bode
  • Publication number: 20090120799
    Abstract: Embodiments of the invention teach a method for depositing a copper seed layer to a substrate surface, generally to a barrier layer. The method includes placing the substrate surface into a copper solution, wherein the copper solution includes complexed copper ions. A current or bias is applied across the substrate surface and the complexed copper ions are reduced to deposit the copper seed layer onto the barrier layer.
    Type: Application
    Filed: December 11, 2008
    Publication date: May 14, 2009
    Inventors: Zhi-Wen Sun, Renren He, You Wang, Michael X. Yang
  • Patent number: 7462269
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: December 9, 2008
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, LinLin Chen, Lyndon W. Graham, Curt Dundas
  • Patent number: 7431816
    Abstract: A method for manufacturing a heat resistant resin film with a metal thin film is configured to include the steps of: biasing a conductive material to one surface of the heat resistant resin film; and applying electrolytic plating to the heat resistant resin film while using the conductive material biased to the one surface of the heat resistant resin film as an electrode, so as to form a metal thin film on the heat resistant resin film.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: October 7, 2008
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Ryuichiro Maeyama, Kazuyoshi Itoh, Yasutaka Naito, Hideaki Ohara
  • Publication number: 20080237051
    Abstract: A cobalt-iron-boron (CoFeB) film (100) is electrolessly deposited on a substrate (150) using a chloride plating bath. The plating bath may include a primary metal in a concentration of between approximately 0.05 moles per liter and approximately 0.4 moles per liter, a secondary metal in a concentration of between approximately 0.005 moles per liter and approximately 0.04 moles per liter, a complexing agent in a concentration of between approximately 0.15 and approximately 0.8 moles per liter, a pH buffer in a concentration of between approximately 0.5 and approximately 1.5 moles per liter, and a reducing agent in a concentration of between approximately 0.05 and approximately 0.25 moles per liter.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Chang-Min Park, Arnel M. Fajardo
  • Patent number: 7422674
    Abstract: Provided are electron-emitting devices improved in durability during concentration of an electric field and thus rarely suffering chain discharge breakdown. An electron-emitting device has an electroconductive film, a layer placed on the electroconductive film and containing aluminum oxide as a main component, a pore placed in the layer containing aluminum oxide as a main component, and an electron emitter placed in the pore and containing a material of the electroconductive film, and the electron emitter is porous and is electrically connected to the electroconductive film.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: September 9, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuhiro Yasui, Tohru Den
  • Patent number: 7419579
    Abstract: A method for manufacturing a ferroelectric film includes the steps of causing, in a solution containing sol-gel raw materials, hydrolysis and polycondensation to the sol-gel raw materials to form a liquid containing particulate gels dispersed therein, and forming a ferroelectric film by a migration electrodeposition method, using the liquid containing particulate gels, through electrodepositing the particulate gels on an electrode.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: September 2, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Takeshi Kijima
  • Publication number: 20080190775
    Abstract: A method is realized for easily performing, without using a masking tape, an operation to accurately form a coating film 31 only on a coated section (?8) partly formed on the surface of a hub main body 13a. The upper end face of a rubber closed end cylindrical masking cover 32 is elastically pressed against the outside end surface of a cylindrical section 16 forming the hub main body 13a. As a result a border section between the coated section (?8) and the portion adjacent to the coated section (?8) can be made liquid-tight. In this state, coating particles are electrodeposited on the coated section (?8) by bringing a coating liquid 28 discharged from a liquid supply tube 29 into contact with the coated section (?8). By adopting such a method, the problems can be solved.
    Type: Application
    Filed: June 20, 2007
    Publication date: August 14, 2008
    Inventors: Katsuyuki Kawamura, Yoshio Inoue, Satoru Endo, Hiroyuki Okuno
  • Patent number: 7282132
    Abstract: A film of zinc oxide electrochemically deposited from an aqueous solution is subjected to heat treatment at a temperature equal to or higher than 150° C. and equal to or lower than 400° C. in a nitrogen or inert gas atmosphere that contains oxygen, thereby obtaining a zinc oxide film that is low in electric resistance without impairing the light transmittance of the zinc oxide film.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: October 16, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masumitsu Iwata, Noboru Toyama, Ryo Hayashi, Yuichi Sonoda, Tomonori Nishimoto, Takaharu Kondo, Satoru Yamada, Yusuke Miyamoto
  • Patent number: 7270734
    Abstract: The invention relates to a method for electroplating a metal deposit on electroplatable portions of composite articles that have both electroplatable and non-electroplatable portions. In this method, the invention is an improvement which comprises treating the articles prior to electroplating to provide the electroplatable portions with enhanced electroplatability. This is achieved by passing a current though a near neutral pH solution that contains a conductivity agent and a buffer to reduce or remove surface oxides and contaminants from such portions without deleteriously affecting the non-electroplatable portions of the articles. When the treated surfaces are subsequently subjected to metal plating, a uniform, smooth metal deposit is achieved.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: September 18, 2007
    Assignee: Technic, Inc.
    Inventors: Robert A. Schetty, III, Kilbnam Hwang
  • Patent number: 7204924
    Abstract: The present invention provides a method for forming a conductive film with uniform properties on a wafer surface that has features or cavities. During the process, the workpiece is rotated and laterally moved while an electrodeposition solution is delivered onto the wafer surface at a predetermined flow rate, and a potential difference is applied between the workpiece surface and the electrode. The workpiece is rotated about an axis at predetermined revolutions per minute so that an edge region of the workpiece has a first predetermined linear velocity due to the rotation. The workpiece has a second predetermined linear velocity due to the lateral motion. The second predetermined velocity may be larger than the first predetermined velocity. Further, the wafer may not be rotated.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: April 17, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Homayoun Talieh
  • Patent number: 7192494
    Abstract: A method and apparatus for annealing copper. The method comprises forming a copper layer by electroplating on a substrate in an integrated processing system and annealing the copper layer in a chamber inside the integrated processing system.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: March 20, 2007
    Assignee: Applied Materials, Inc.
    Inventors: B. Michelle Chen, Ho Seon Shin, Yezdi Dordi, Ratson Morad, Robin Cheung
  • Patent number: 7192510
    Abstract: A fluid control device has very fine pores with an average diameter not greater than 10 nm and provides a large flux. The fluid control device comprises an anodized alumina film having fine pores and a silicon based micro-porous film having very fine pores and made from an AlSi mixed film and the fine pores and the very fine pores are at least partly linked with each other. The fluid control device is prepared from a film including at least an aluminum layer and an AlSi mixed film by forming an anodized alumina film having fine pores by way of an anodization process for the aluminum layer part and also forming a silicon based micro-porous film having very fine pores containing silicon as principal ingredient by way of an anodization process or etching process for the AlSi mixed film. The fluid control device can be used as filter or ultrafilter film that allows fluid and gas to pass through it.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: March 20, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tohru Den, Kazuhiko Fukutani
  • Patent number: 7141274
    Abstract: A substrate processing apparatus and method which employs the so-called batch processing method of processing a plurality of substrates simultaneously, thereby increasing the throughput, and which can carry out processing, such as electroless plating, stably and securely with a relatively simple apparatus. The substrate processing apparatus includes: a processing bath (14) for holding a processing liquid (12); and a substrate holder (16) which is vertically movable relative to the processing bath (14) and which includes a plurality of substrate holding portions (40) for holding a plurality of substrates (W) in parallel.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: November 28, 2006
    Assignee: Ebara Corporation
    Inventors: Xinming Wang, Kenichi Abe, Koji Mishima
  • Patent number: 7135103
    Abstract: A soft magnetic thin film of CoFe alloy having a high Br and low Hc is prepared by furnishing a plating tank including cathode and anode compartments which are separated by a diaphragm or salt bridge so as to permit charge transfer, but inhibit penetration of Fe ions, feeding a plating solution containing Co ions and divalent Fe ions to the cathode compartment, feeding an electrolyte solution to the anode compartment, immersing a substrate in the plating solution, immersing an anode in the electrolyte solution, electroplating, and heat treating the plated film at 100–550° C.; or by immersing a substrate and a soluble anode in a plating solution containing Co ions and divalent Fe ions, electroplating, and heat treating the plated film at 100–550° C.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: November 14, 2006
    Assignee: Waseda University
    Inventors: Tetsuya Osaka, Tokihiko Yokoshima
  • Patent number: 7122107
    Abstract: A process is disclosed for stabilizing certain colored anodized coating on aluminum articles against degradation by ultraviolet radiation. Anodized articles colored by an electrolytic or interference process can thereafter be stabilized by heat treating them at temperatures of the order of 350° F. for a period of an hour or so. The process is particularly useful for use on electrolytically colored, anodized vehicular external body panels made from suitably formable sheet metal aluminum alloys.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: October 17, 2006
    Assignee: General Motors Corporation
    Inventors: Sheila Farrokhalaee Kia, Hong-Hsiang Kuo, Yar-Ming Wang
  • Patent number: 7112628
    Abstract: Aqueous electrophoretic lacquer capable of being deposited cataphoretically, containing A) an aqueous dispersion of cationically modified polyurethane (meth)acrylates (a1) with terminal, ethylenically unsaturated (meth)acrylic double bonds, and reactive thinner (a2) with at least two ethylenically unsaturated (meth)acrylic double bonds, the (meth)acrylic double bonds of the mixture of (a1) and (a2) corresponding to a bromine number of 20 to 150 g bromine/100 g solids, and B) photoinitiators and optionally free-radical initiators capable of thermal activation, the terminal, ethylenically unsaturated (meth)acrylic double bonds of the polyurethane (meth)acrylates being bonded with the anionically modified polyurethane prepolymer via urethane, urea, amide or ester groups, and optionally conventional auxiliary substances and additives, pigments and/or fillers.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: September 26, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Andreas Fieberg, Volker Rekowski, Dietrich Saatweber, Hans-Ulrich Simmrock, Bettina Vogt-Birnbrich
  • Patent number: 7094327
    Abstract: The invention relates to a composition for treating magnesium alloys aimed at improving the resistance thereof to corrosion. The composition is an aqueous solution with a pH ranging between 7 and 10, containing a niobium salt, hydrofluoric acid, and optionally a zirconium salt, phosphoric acid, and boric acid. The alloy is treated in an electrochemical cell in which said alloy acts as an anode. The cell contains an inventive composition at a temperature between 20° C. and 40° C. as an electrolyte. An initial voltage which is sufficient to create a current density between 1.5 and 2.5 A/dm2 is applied to the cell, whereupon the voltage is progressively increased to a level ranging between 240 and 330 V in order to maintain the initial current density.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: August 22, 2006
    Assignee: Univeriste Pierre et Marie Curie
    Inventors: Hélène Ardelean, Philippe Marcus
  • Patent number: 7074455
    Abstract: A method of manufacturing an electrode for an alkaline storage battery, including a process of manufacturing a porous metal plate. A method of manufacturing this porous metal plate includes adding a predetermined organic substance to a urethane sponge or coating a foamed urethane sponge with polyethylene terephthalate. Furthermore, the method includes grinding the urethane sponge or rolling the urethane sponge using a roll press.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: July 11, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Gota Asano, Hitoshi Mikuriya, Kiyoto Watanabe
  • Patent number: 7070687
    Abstract: Apparatus and method for treating a surface of a substrate for electrolytic or electroless plating of metals in integrated circuit manufacturing. In one embodiment the method includes forming a barrier layer on a substrate. A metal-seed layer is then formed on the barrier layer. The method continues by performing in situ surface treatment of the metal-seed layer to form a passivation layer on the metal-seed layer. In another embodiment of a method of this invention, a substrate is provided into an electroplating tool chamber. The substrate has a barrier layer formed thereon, a metal seed layer formed on the barrier layer and a passivation layer formed over the metal seed layer. The method continues by annealing the substrate in forming gas to reduce the passivation layer. A conductive material is deposited on the substrate using an electrolytic plating or electroless plating process.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: July 4, 2006
    Assignee: Intel Corporation
    Inventors: Vinay B. Chikarmane, Chi-Hwa Tsang
  • Patent number: 7029566
    Abstract: In a process of forming a HA/ZrO2 complex coating on a Co—Cr—Mo alloy substrate, the substrate is subjected to electrolytic deposition respectively in a ZrO(NO3)2 bath and a mixed solution of Ca(NO3)2.4H2O and NH4H2PO4 to respectively form Zr(OH)4 colloidal layer and Ca10(PO4)6(OH)2 layer. Then, the substrate is subjected to a low-temperature sintering process to convert the two layers into a HA/ZrO2 complex coating.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: April 18, 2006
    Assignee: Chinese Petroleum Corporation
    Inventor: Shiow-Kang Yen