Zinc Patents (Class 205/305)
  • Publication number: 20150027899
    Abstract: Provided is an anode for electroplating which uses an aqueous solution as an electrolytic solution, and the anode which is low in potential when compared with a conventional anode, able to decrease an electrolytic voltage and an electric energy consumption rate and may also be used as an anode for electroplating various types of metals, and which is low in cost. Also provided is a method for electroplating which uses an aqueous solution as an electrolytic solution, in which the anode is low in potential and electrolytic voltage, thereby making it possible to decrease the electric energy consumption rate. The anode for electroplating of the present invention is an anode for electroplating which uses an aqueous solution as an electrolytic solution, in which a catalytic layer containing amorphous ruthenium oxide and amorphous tantalum oxide is formed on a conductive substrate.
    Type: Application
    Filed: August 31, 2012
    Publication date: January 29, 2015
    Applicant: THE DOSHISHA
    Inventor: Masatsugu Morimitsu
  • Publication number: 20140231267
    Abstract: The present invention concerns an electrode for oxygen evolution in electroplating plants comprising a valve metal substrate and an outer catalytic layer, the substrate consisting of a metal plate provided with slits of area ranging from 2 to 8 cm2, said slits being spaced apart by a distance of 5 to 25 cm. The invention also concerns a horizontal electrochemical cell for electro-plating processes comprising at least one of said electrodes, and an electroplating plant equipped with at least one of said cells. The invention also concerns an electroplating process comprising the step of anodically evolving oxygen on the surface of said electrode.
    Type: Application
    Filed: November 23, 2012
    Publication date: August 21, 2014
    Applicant: Industrie de Nora S.P.A.
    Inventors: Jose Eduardo Gomes De Abreu, Takashi Oishi, Alice Calderara
  • Patent number: 8801913
    Abstract: A chemical bath deposition method based on a new CBD reactor is presented to prepare different thin films on continuous flexible substrates in roll-to-roll processes. In particular, they are useful to deposit CdS or ZnS buffer layers in manufacture of thin film solar cells. This method deposits thin films onto vertically travelling continuous flexible workpieces delivered by a roll-to-roll system. The thin films are deposited with continuously spraying the reaction solutions from their freshly mixed styles to gradually aged forms until the designed thickness is obtained. The substrates and the solutions are heated to a reaction temperature. During the deposition processes, the front surfaces of the flexible substrates are totally covered with the sprayed solutions but the substrate backsides are remained dry. The reaction ambience inside the reactor can be isolated from the outside atmosphere. The apparatus is designed to generate a minimum amount of waste solutions for chemical treatments.
    Type: Grant
    Filed: July 28, 2013
    Date of Patent: August 12, 2014
    Inventor: Jiaxiong Wang
  • Patent number: 8726829
    Abstract: A chemical bath deposition apparatus is presented to prepare different thin films on continuous flexible substrates in roll-to-roll processes. In particular, they are useful to deposit CdS or ZnS buffer layers in manufacture of thin film solar cells. This apparatus deposits thin films onto vertically travelling continuous flexible workpieces delivered by a roll-to-roll system. The thin films are deposited with continuously spraying the reaction solutions from their freshly mixed styles to gradually aged forms until the designed thickness is obtained. The substrates and the solutions are heated to a reaction temperature. During the deposition processes, the front surfaces of the flexible substrates are totally covered with the sprayed solutions but the substrate backsides are remained dry. The reaction ambience inside the reactor can be isolated from the outside atmosphere. The apparatus is designed to generate a minimum amount of waste solutions for chemical treatments.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 20, 2014
    Inventor: Jiaxiong Wang
  • Publication number: 20140110379
    Abstract: An electrode wire for electro-discharge machining includes a core wire including a first metal including copper and having one of phases ?, ?+??, and ??, a first alloy layer formed at a boundary region between the core wire and a second metal plated on an outer surface of the core wire due to mutual diffusion between the core wire and the second metal and having a phase ??, and a second alloy layer formed due to diffusion of the first metal to the second metal and having a phase ? and/a phase ?. A core wire material is erupted onto a surface of the electrode wire for electro-discharge machining, which includes the core wire, the first alloy layer, and the second alloy layer, along cracks appearing on the second alloy layer, so that a plurality of grains are formed on the surface of the electrode wire.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 24, 2014
    Inventors: Ki-Chul SEONG, Hyun-Soo SEONG, Hyun-Kook SEONG
  • Publication number: 20130264215
    Abstract: The present invention relates to an anode system for conventional electrolysis cells, a process for the production thereof and its use for the deposition of electrolytic coatings. The anode system is characterized in that the anode (2) is in direct contact with a membrane (3) which completely separates the anode space from the cathode space. This anode system is therefore a direct-contact membrane anode.
    Type: Application
    Filed: December 8, 2011
    Publication date: October 10, 2013
    Applicant: UMICORE GALVANOTECHNIK GMBH
    Inventors: Bernd Weyhmueller, Franz Kohl, Uwe Manz, Klaus Bronder, Frank Oberst, Mario Tomazzoni
  • Publication number: 20130199936
    Abstract: Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.
    Type: Application
    Filed: June 13, 2012
    Publication date: August 8, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jiguang Zhang, Wu Xu, Gordon L. Graff, Xilin Chen, Fei Ding, Yuyan Shao
  • Patent number: 8377283
    Abstract: An apparatus (12) for applying a zinc or zinc-alloy electroplate to a workpiece comprises an electroplating bath (16) having a pH more than about 14. The electroplating bath includes zinc ions and an additive. A cathode workpiece (18) is in the bath. An anode assembly (20) contacts the bath. The anode assembly includes an anolyte and an insoluble metal anode in the anolyte. The additive is capable of electrolytically breaking down upon contact with the anode. The anode assembly inhibits the electrolytic breakdown of the additive.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: February 19, 2013
    Assignee: Coventya, Inc.
    Inventors: William E. Eckles, Robert E. Frischauf, Frederic Raulin, Lionel Thiery, Jean-Jacques Duprat
  • Patent number: 8372542
    Abstract: An improved Ni—Zn cell with a negative electrode substrate plated with tin or tin and zinc during manufacturing has a reduced gassing rate. The copper or brass substrate is electrolytic cleaned, activated, electroplated with a matte surface to a defined thickness range, pasted with zinc oxide electrochemically active material, and baked. The defined plating thickness range of 40-80 ?In maximizes formation of an intermetallic compound Cu3Sn that helps to suppress the copper diffusion from under plating layer to the surface and eliminates formation of an intermetallic compound Cu6Sn5 during baking to provide adequate corrosion resistance during battery operation.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: February 12, 2013
    Assignee: PowerGenix Systems, Inc.
    Inventors: Feng Feng, Jeffrey Phillips, Samaresh Mohanta, Jeff Barton, Zeiad M. Muntasser
  • Patent number: 8282808
    Abstract: The present invention relates to the use of phosphinic acids and/or phosphonic acids and salts thereof, preferably as surface-active compounds, in redox processes, in particular in electroplating technology, particularly preferably in electroplating baths, and to electroplating baths comprising these compounds.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: October 9, 2012
    Assignee: Merck Patent GmbH
    Inventors: Wolfgang Hierse, Nikolai Ignatyev
  • Patent number: 8282806
    Abstract: The preceding invention concerns a galvanic bath as well as a method for depositing a zinc-bearing layer onto a substrate surface. According to the invention, it is provided that the galvanic bath be divided into at least two cell chambers, in which the division occurs by means of a cation-exchange membrane and one cell chamber includes an acidic deposition-electrolyte and the other cell chamber includes a neutral or acidic anolyte. The acidic anolyte here is at least partially removed from the cell chamber containing it and is stripped of the foreign metal ions contained in it by means of a cation-exchange arrangement.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: October 9, 2012
    Assignee: Enthone Inc.
    Inventor: Axel Fuhrmann
  • Patent number: 8182946
    Abstract: An improved Ni—Zn cell with a negative electrode substrate plated with tin or tin and zinc during manufacturing has a reduced gassing rate. The copper or brass substrate is electrolytic cleaned, activated, electroplated with a matte surface to a defined thickness range, pasted with zinc oxide electrochemically active material, and baked. The defined plating thickness range of 40-80 ?In maximizes formation of an intermetallic compound Cu3Sn that helps to suppress the copper diffusion from under plating layer to the surface and eliminates formation of an intermetallic compound Cu6Sn5 during baking to provide adequate corrosion resistance during battery operation.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: May 22, 2012
    Assignee: Powergenix Systems, Inc.
    Inventors: Feng Feng, Jeffrey Phillips, Samaresh Mohanta, Jeff Barton, Zeiad M. Muntasser
  • Publication number: 20120040202
    Abstract: The invention relates to the field of materials science and material physics and relates to a coated magnetic alloy material, which can be used, for example, as a magnetic cooling material for cooling purposes. The object of the present invention is to disclose a coated magnetic alloy material, which has improved mechanical and/or chemical properties. The object is attained with a magnetic alloy material with a NaZn13 type crystal structure and a composition according to the formula RaFe100-a-x-y-zTxMyLz and the surface of which is coated with a material composed of at least one element from the group Al, Si, C, Sn, Ti, V, Cd, Cr, Mn, W, Co, Ni, Cu, Zn, Pd, Ag, Pt, Au or combinations thereof The object is furthermore attained by a method in which the magnetic alloy material is coated by means of a method from the liquid phase.
    Type: Application
    Filed: December 10, 2009
    Publication date: February 16, 2012
    Inventors: Julia Lyubina, Mihaela Buschbeck, Oliver Gutfleisch
  • Patent number: 8066864
    Abstract: The invention relates to polymers which comprise at least partially cross-linked main chains constructed from repeat units of the general formula I and possibly repeat units of the general formula II and also possibly repeat units comprising five- or six-membered aza aromatics or nitrogen-containing heterocycles. Polymers of this type are used as additive in electroplating baths since these enable a better layer thickness distribution of the electroplated layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: November 29, 2011
    Assignee: Coventya GmbH
    Inventors: Alexander Jimenez, Thorsten Kühler
  • Patent number: 7964083
    Abstract: A zinc electroplating bath includes zinc ions and a brightening agent. The brightening agent is a polyamine or a mixture of polyamines that include a quaternary ammonium group.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: June 21, 2011
    Assignee: Taskem, Inc.
    Inventors: William E. Eckles, Thorsten Kuehler
  • Patent number: 7931988
    Abstract: An improved Ni—Zn cell with a negative electrode substrate plated with tin or tin and zinc during manufacturing has a reduced gassing rate. The copper or brass substrate is electrolytic cleaned, activated, electroplated with a matte surface to a defined thickness range, pasted with zinc oxide electrochemically active material, and baked. The defined plating thickness range of 40-80 ?In maximizes formation of an intermetallic compound Cu3Sn that helps to suppress the copper diffusion from under plating layer to the surface and eliminates formation of an intermetallic compound Cu6Sn5 during baking to provide adequate corrosion resistance during battery operation.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: April 26, 2011
    Assignee: Powergenix Systems, Inc.
    Inventors: Feng Feng, Jeffrey Phillips, Samaresh Mohanta, Jeff Barton, Zeiad M. Muntasser
  • Publication number: 20100294669
    Abstract: A method is provided for imparting corrosion resistance onto a surface of a substrate. The method comprises contacting the surface of the substrate with an electrolytic plating solution comprising (a) a source of deposition metal ions of a deposition metal selected from the group consisting of zinc, palladium, silver, nickel, copper, gold, platinum, rhodium, ruthenium, chrome, and alloys thereof, (b) a pre-mixed dispersion of non-metallic nano-particles, wherein the non-metallic particles have a pre-mix coating of surfactant molecules thereon; and applying an external source of electrons to the electrolytic plating solution to thereby electrolytically deposit a metal-based composite coating comprising the deposition metal and non-metallic nano-particles onto the surface.
    Type: Application
    Filed: December 10, 2008
    Publication date: November 25, 2010
    Applicant: ENTHONE INC.
    Inventors: Joseph A. Abys, Edward J. Kudrak, JR., Jingye Li, Chen Xu, Chonglun Fan
  • Patent number: 7714285
    Abstract: A spectrometer (10) for sample surface analysis by irradiation of the surface by primary particles and a corresponding method of surface analysis spectroscopy. The spectrometer (10) provides sample viewing and secondary charged particle collection substantially normal to the sample surface. A collection chamber (22) comprises a secondary charged particle lens arrangement (20) to focus the emitted particles in a downstream direction along a first normal axis (24) and thereby to define a charged particle optical crossover location (25); and a light-reflecting optical element (50) downstream of the lens arrangement and arranged to receive image light (41) and reflect it away from a second normal axis (42) for providing a viewable image of the surface.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 11, 2010
    Assignee: Thermo Fisher Scientific Inc.
    Inventor: Bryan Robert Barnard
  • Publication number: 20100044240
    Abstract: When depositing a metal or a compound of the metal from a liquid crystal phase comprising a metal compound, e.g. a metal salt, by electrochemical means, high concentrations of the salt may be employed by using an ionic surfactant in place of the commonly used non-ionic surfactant.
    Type: Application
    Filed: September 7, 2007
    Publication date: February 25, 2010
    Inventors: Jennifer Kimber, Daniel Peat
  • Publication number: 20090224422
    Abstract: Embodiments of a composite carbon nanotube structure comprising a number of carbon nanotubes disposed in a matrix comprised of a metal or a metal oxide. The composite carbon nanotube structures may be used as a thermal interface device in a packaged integrated circuit device.
    Type: Application
    Filed: January 9, 2009
    Publication date: September 10, 2009
    Inventor: Valery M. Dubin
  • Publication number: 20090223830
    Abstract: A surface treatment method of cladding a Sn or Sn alloy coating with one or more metals selected from among Mn, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, In, Ti, Ge, Pb, Sb and Bi continuously or discontinuously in such a way as to make the Sn or Sn alloy coating partially exposed, which method makes it possible to inhibit the generation of whiskers in an Sn or Sn alloy coating formed on the surface of a substrate to which other member is pressure-welded or the joint surface to be soldered. Cladding an Sn or Sn alloy coating with a prescribed metal continuously or discontinuously in such a way as to make the coating partially exposed inhibits the generation of whiskers by contact pressure in pressure welding, and further inhibits the generation of whiskers without impairing the solder wettability of the coating even when the cladding is not followed by heat treatment or reflowing.
    Type: Application
    Filed: October 2, 2006
    Publication date: September 10, 2009
    Applicants: C. UYEMURA & CO., LTD., OSAKA UNIVERSITY
    Inventors: Masanobu Tsujimoto, Isamu Yanada, Katsuaki Suganuma, Keunsoo Kim
  • Publication number: 20090166212
    Abstract: The present invention relates to the use of phosphinic acids and/or phosphonic acids and salts thereof, preferably as surface-active compounds, in redox processes, in particular in electroplating technology, particularly preferably in electroplating baths, and to electroplating baths comprising these compounds.
    Type: Application
    Filed: May 4, 2007
    Publication date: July 2, 2009
    Inventors: Wolfgang Hierse, Nikolai Ignatyev
  • Patent number: 7540950
    Abstract: An electrically conductive body, which in particular includes a metal and/or an alloy and/or a semiconductor, includes an adhesion promoter layer provided on at least one surface of the electrically conductive body. The adhesion promoter layer includes a metal, in particular zinc, and a porous, in particular platelike and/or needle-shaped and/or sponge-like, surface structure.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: June 2, 2009
    Assignee: Infineon Technologies, AG
    Inventors: Edmund Riedl, Wolfgang Schober
  • Patent number: 7537663
    Abstract: A corrosion-inhibiting coating, process, and system that provides a tight, adherent zinc- or zinc-alloy coating that is directly deposited onto steel or cast iron surfaces for enhanced corrosion protection. A process for applying the coating is also provided. The process includes the application of two sequential aqueous baths. The first bath contains a precursor zinc compound while the second bath contains a reducing agent to deposit the zinc directly upon the steel or cast iron.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: May 26, 2009
    Assignee: University of Dayton
    Inventors: Andrew W. Phelps, Jeffrey A. Sturgill
  • Publication number: 20090123789
    Abstract: There is disclosed articles for and methods of confining volatile materials in the void volume defined by crystalline void materials. In one embodiment, the hydrogen isotopes are confined inside carbon nanotubes for storage and the production of energy. There is also disclosed a method of generating various reactions by confining the volatile materials inside the crystalline void structure and releasing the confined volatile material. In this embodiment, the released volatile material may be combined with a different material to initiate or sustain a chemical, thermal, nuclear, electrical, mechanical, or biological reaction.
    Type: Application
    Filed: May 9, 2008
    Publication date: May 14, 2009
    Inventors: William K. Cooper, James F. Loan, Christopher H. Cooper
  • Publication number: 20090090636
    Abstract: An improved Ni—Zn cell with a negative electrode substrate plated with tin or tin and zinc during manufacturing has a reduced gassing rate. The copper or brass substrate is electrolytic cleaned, activated, electroplated with a matte surface to a defined thickness range, pasted with zinc oxide electrochemically active material, and baked. The defined plating thickness range of 40-80 ?In maximizes formation of an intermetallic compound Cu3Sn that helps to suppress the copper diffusion from under plating layer to the surface and eliminates formation of an intermetallic compound Cu6Sn5 during baking to provide adequate corrosion resistance during battery operation.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 9, 2009
    Applicant: POWERGENIX SYSTEMS, INC.
    Inventors: Feng Feng, Jeffrey Phillips, Sam Mohanta, Jeff Barton, Zeiad M. Muntasser
  • Publication number: 20080223726
    Abstract: A zinc electroplating bath includes zinc ions and a brightening agent. The brightening agent is a polyamine or a mixture of polyamines that include a quaternary ammonium group.
    Type: Application
    Filed: February 28, 2005
    Publication date: September 18, 2008
    Inventors: William E. Eckles, Thorsten Kuehler
  • Publication number: 20080131687
    Abstract: Process for applying integrated pretreatment layers to metallic surfaces, particularly the surfaces of coil metals, by treatment with a composition comprising at least one binder, crosslinker, a finely divided inorganic filler, and compounds containing at least two thioamide groups or containing one thioamide group and at least one functional group. Integrated pretreatment layer obtainable by the process.
    Type: Application
    Filed: January 24, 2006
    Publication date: June 5, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Monica Fernandez Gonzalez, Markus Hickl, Cordula Mock-Knoblauch, Manfred Essig, Ingolf Hennig, Alexander Gothlich
  • Publication number: 20070267300
    Abstract: A method of electroplating a radiator is provided. A container is disposed on a predetermined plating area of the radiator and an electrolyte containing the plating material is added into the container such that the electrolyte directly contacts the predetermined plating area to form a plating layer thereon.
    Type: Application
    Filed: May 22, 2006
    Publication date: November 22, 2007
    Applicant: ASIA VITAL COMPONENTS CO., LTD.
    Inventors: Jing-De Gu, Jiang-Yan Liu, Hsin-Cheng Lin
  • Patent number: 7264704
    Abstract: It is described an electrolysis cell wherein the anodic dissolution of metals is carried out, in particular of metals characterised by a relatively high oxidation potential, such as copper, or metals with high hydrogen overpotential, for example tin, aimed at restoring both the concentration of said metals, and the pH in galvanic baths used in electroplating processes with insoluble anodes. The cell of the invention comprises an anodic compartment, wherein the metal to be dissolved acts as a consumable anode, and a cathodic compartment, containing a cathode for hydrogen evolution, separated by a cation-exchange membrane. The coupling of the cell of the invention with the electroplating cell allows a strong simplification of the overall process and a sensible reduction in the relevant costs.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: September 4, 2007
    Assignee: De Nora Elettrodi S.p.A.
    Inventors: Ulderico Nevosi, Paolo Rossi
  • Patent number: 7163915
    Abstract: This invention relates to solutions of dithionic acid and/or dithionate salts which use in metal finishing processes such those used for the cleaning, activating, electroplating, electroless plating, conversion coating and/or other pre-treatment or post-treatment of a metallic surface. In particular the solutions are a useful electrolyte for the electroplating of metallic coatings, especially, Sn, Cu, Ni, Zn and precious metals, onto metal or plastic substrates and/or other surfaces.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: January 16, 2007
    Assignee: Arkema Inc.
    Inventors: Michael D. Gernon, Sandra L. Bodar
  • Patent number: 7109375
    Abstract: An additive for an alkaline zinc or zinc alloy electroplating bath medium, the additive comprising a random co-polymer comprising the reaction product of: (i) one or more di-tertiary amines including an amide or thioamide functional group, and (ii) optionally, one or more saturated second di-tertiary amines and/or one or more second di-tertiary amines including an unsaturated moiety, with (iii) one or more saturated or unsaturated linking agents capable of reacting with said di-tertiary amines (i) and (ii), provided that, where all the linking agents are saturated, an unsaturated di-tertiary amine must he present. Preferably, the polymer has the general formula n(2x+2y+zEp)j-.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: September 19, 2006
    Inventors: Roderick Dennis Herdman, Trevor Pearson, Anthony Rowan
  • Patent number: 7087315
    Abstract: A method for forming a plating film, comprising the steps of: applying a plating film onto an object to be plated at a first current density for a predetermined period in a plating bath having a cathode capable of varying current and an anode and; and maintaining the object to be plated at a second current density lower than the first current density. According to the present invention, it is possible to improve solderability of a plating film for conventional lead-free solder by a simple method, which allows the productivity to further enhanced, resulting in a plating film with reduced production costs.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: August 8, 2006
    Assignees: Sharp Kabushiki Kaisha, Kobe Leadmikk Co., Ltd.
    Inventors: Yoshihiko Matsuo, Ryukichi Ikeda, Kimihiko Yoshida, Fumio Okuda
  • Patent number: 6938552
    Abstract: Structure incorporating lead is fabricated from specially prepared components such that mobility of the lead is impeded when the structure is exposed to an unprotected environment such as weathering outdoors or saltwater. In a preferred embodiment, a bullet or bullet core is swaged from a number of bunched electroplated fine lead or lead-alloy wires placed in a die. The lead or lead-alloy wires may be fabricated from lead or lead-alloy wool. The lead alloy may comprise zinc and antimony. The electroplating process plates zinc on the fine wires and may plate a zinc alloy such as zinc-aluminum. The plated surface may be coated with a corrosion resistant coating such as molybdenum phosphate. In addition to bullets and bullet cores, fishing weights, lead shielding, counterweights, ballast, and other lead containing structure may be fabricated or treated using methods and materials of the present invention.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: September 6, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joe G. Tom, Philip G. Malone, Charles A. Weiss, Jr., Steven L. Larson
  • Patent number: 6884332
    Abstract: A method and apparatus for treating an aqueous electroplating bath solution. The method comprises continuously agitating the solution; adjusting the pH of the solution, adjusting the temperature of the solution while adding an amount of hydrogen peroxide sufficient to promote dissolution of the hydrogen peroxide and generation of hydroxyl radicals; and adding an amount of an iron-containing compound so as to increase the rate of dissolution of the hydrogen peroxide to hydroxyl radicals so as to oxidize the organic compounds; whereby the total amount of organic carbon compounds in the solution is reduced. The apparatus comprises a treatment vessel, a pump for transferring a portion of the solution from the vessel to a mixing tank and for transferring a second portion of the solution to a heat exchanger for heating or cooling the second portion of the solution and a pump for transferring hydrogen peroxide to the vessel.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: April 26, 2005
    Assignee: Kuntz Electroplating Inc.
    Inventors: Peter Forth, Art Vibert, Madeline Busch, Sarah Stevenson, Hussain Al-Ekabi
  • Patent number: 6852210
    Abstract: To provide a plating method, which enables wide industrial use of the redox system electroless plating method having excellent characteristics, and a plating bath precursor which is preferable for the plating method. The plating method comprises a process oxidizing first metal ions of a redox system of a plating bath from a lower oxidation state to a high oxidation state, and second metal ions of said redox system are reduced and deposited onto the surface of an object to be plated, wherein a process is provided in which by supplying the electrical current to the plating bath, the first metal ions are reduced from said lower oxidation state to thereby activate the plating bath. The plating bath precursor is formed stabilizing the plating bath so that reduction and deposition of the second metal ions substantially do not occur in order to improve its storing performance.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: February 8, 2005
    Assignees: Daiwa Fine Chemicals Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Keigo Obata, Dong-Hyun Kim, Takao Takeuchi, Seiichiro Nakao, Shinji Inazawa, Ayao Kariya, Masatoshi Majima, Shigeyoshi Nakayama
  • Publication number: 20040173467
    Abstract: The present invention relates to methods for depositing zincate coatings on aluminum and aluminum alloys comprising applying an immersion zincate coating on an aluminum or aluminum alloy substrates, optionally followed by plating the zincate coated aluminum or aluminum alloy substrate using an electroless or electrolytic metal plating solution. The present invention also relates to an improved aqueous alkaline zincate solution comprising hydroxide ions, zinc ions, nickel ions and/or cobalt iron ions, copper ions, and at least one inhibitor containing one or more nitrogen atoms, sulfur atoms, or both nitrogen and sulfur atoms provided said nitrogen atoms are not present in an aliphatic amine or hydroxylamine.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 9, 2004
    Inventors: Nayan H. Joshi, Maulik D. Mehta
  • Patent number: 6773568
    Abstract: The present invention provides inter alia electroplating compositions, methods for use of the compositions and products formed by the compositions. Electroplating compositions of the invention are characterized in significant part by a grain refiner/stabilizer additive comprising one or more non-aromatic compounds having &pgr; electrons that can be delocalized, e.g., an &agr;,&bgr; unsaturated system or other conjugated system that contains a proximate electron-withdrawing group. Compositions of the invention provide enhanced grain refinement and increased stability in metal plating solutions, particularly in tin and tin alloy plating formulations.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: August 10, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Andre Egli, Anja Vinckier, Jochen Heber, Wan Zhang
  • Publication number: 20040089553
    Abstract: A method for supplying zinc ions to an alkaline zinc plating bath, wherein a source of zinc ions and a zinc dissolution accelerating metal are put in the same vessel and brought into direct contact with each other or put in different vessels and connected via an electric conductor, and the source of zinc ions and the zinc dissolution accelerating metal are moved in the vessel(s) in a plating solution by shaking, vibrating or rotating the vessel(s) in order to accelerate zinc dissolution.
    Type: Application
    Filed: October 27, 2003
    Publication date: May 13, 2004
    Inventors: Osamu Sekiguchi, Shigetaka Usui
  • Patent number: 6716475
    Abstract: A materials system or dielectric structure, for example a photonic crystal, of the invention includes a plurality of materials that are biocompatible. The materials have different indices of refraction for the wavelength of operation and are assembled into a dielectric structure having a photonic band gap in one or more directions. The assembly process yields a structure with a particular spatial arrangement of materials with different indices of refraction which is completely biocompatible and has the property of reflecting light at a particular predetermined range of frequencies, as well as other properties associated with photonic band gaps. These structures can exhibit photonic band gaps that can be engineered to be broad or narrow and be centered on different parts of the spectrum UV, visible IR or longer wavelengths. The materials used can have microwave transparency or be made to reflect microwaves.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: April 6, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Yoel Fink, John D. Joannopoulos, Edwin L. Thomas
  • Patent number: 6709719
    Abstract: A tin layer and a zinc layer are stacked sequentially on a given substrate to form a multilayered film composed of the tin layer and the zinc layer. Then, a laser beam is irradiated onto the multilayered film to produce a tin-zinc alloy film through the inter-diffusion between the tin elements of the tin layer and the zinc elements of the zinc layer.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: March 23, 2004
    Assignee: Susuka National College of Technology
    Inventors: Hideyuki Kanematsu, Yoshihiko Masuo, Takeo Oki, Hirohiko Ohmura
  • Publication number: 20030201186
    Abstract: The quality of painted surfaces of polymer composites is improved by first forming an electroless metal coating on the molded surface of the composite and then electroplating a coating of zinc or zinc alloy on the metallized composite surface. The “galvanized” composite surface provides a good base for electrostatic deposition of either liquid or powder paint and the zinc surface prevents the formation of defects in the painted surface during heating of the composite to dry or cure the paint film.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Inventors: Hsai-Yin Lee, Yar-Ming Wang, Tao Xie
  • Publication number: 20030192785
    Abstract: An additive for an alkaline zinc or zinc alloy electroplating bath medium, the additive comprising a random co-polymer comprising the reaction product of: (vii) one or more di-tertiary amines including an amide or thioamide functional group, and (viii) optionally, one or more saturated second di-tertiary amines and/or one or more second di-tertiary amines including an unsaturated moiety, with (ix) one or more saturated or unsaturated linking agents capable of reacting with said di-tertiary amines (i) and (ii), provided that, where all the linking agents are saturated, an unsaturated di-tertiary amine must be present. Preferably, the polymer has the general formula n(2x+2y+zEp)j-.
    Type: Application
    Filed: May 29, 2003
    Publication date: October 16, 2003
    Inventors: Roderick Dennis Herdman, Trevor Pearson, Anthony Rowan
  • Patent number: 6632346
    Abstract: The present process for electrodepositing a zinc oxide film comprises the steps of immersing a substrate and an opposing electrode in an electrodeposition bath which contains zinc nitrate and is kept heated, and forming the zinc oxide film on the substrate by passing a current between the substrate and the opposing electrode, wherein the process further includes a step of trapping the particles of zinc oxide precipitated in the electrodeposition bath by circulating or stirring the bath before the formation of the zinc oxide film, whereby the present process can prevent the generated zinc oxide powder from depositing on the surfaces of the substrate and the zinc oxide film formed by electrodeposition when restarting or starting the formation of a zinc oxide film by the electrodeposition using an electrodeposition apparatus, and hence the formation of a uniform zinc oxide film free from defects.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: October 14, 2003
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kozo Arao, Noboru Toyama, Yuichi Sonoda, Yusuke Miyamoto
  • Patent number: 6607844
    Abstract: Provided are a Zn—Mg electroplated metal sheet excellent in corrosion resistance, formability and productivity, and a fabrication process therefor. The Zn—Mg electroplated metal sheet comprises a Zn—Mg electroplated layer including Mg and Zn, the Zn being a main component, formed on at least one surface of a metal substrate material. The Zn—Mg electroplated layer shows more excellent corrosion resistance by including a C component therein. The Zn—Mg electroplated metal sheet can be fabricated by performing electroplating with an acidic aqueous solution including metal salts of Zn and Mg, and in addition, a surface active agent.
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: August 19, 2003
    Assignee: Kobe Steel, Ltd.
    Inventors: Kuniyasu Araga, Hiroo Shige, Masatoshi Iwai, Takeshi Watase, Yutaka Kitou
  • Patent number: 6605369
    Abstract: The present invention is directed to provision of a surface-treated copper foil exhibiting a maximum effect of a silane coupling agent which is adsorbed onto the copper foil and is employed in order to enhance adhesion between the copper foil and a substrate during manufacture of printed wiring boards. The invention is also directed to provision of a method for producing such a copper foil. To attain these goals, a surface-treated copper foil for producing printed wiring boards is provided, wherein an anti-corrosion treatment comprises forming a zinc layer or a zinc alloy layer on a surface of the copper foil and forming an electrodeposited chromate layer on the zinc or zinc alloy layer; forming a silane-coupling-agent-adsorbed layer on the electrodeposited chromate layer without causing the electrodeposited chromate layer of the nodular-treated surface to dry; and drying.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: August 12, 2003
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Naotomi Takahashi, Yutaka Hirasawa
  • Publication number: 20030141195
    Abstract: The invention relates to a process for the electrolytic coating of metals with zinc or a zinc alloy in which matt surfaces are obtained, by deposition of zinc from an electrolyte solution comprising a zinc salt selected from zinc sulfate or an alkanesulfonate of zinc or mixtures thereof, and, if desired, further metal salts, an acid selected from sulfuric acid or an alkanesulfonic acid or a mixture of the two acids, and at least one additive for improving the surface roughness and preventing dendritic edge growth, selected from nitrogen-containing surface-active compounds, which may be ionic or nonionic, sulfur-containing anionic surface-active compounds, and surface-active compounds based on multifunctional alcohols having at least three hydroxyl groups.
    Type: Application
    Filed: January 10, 2003
    Publication date: July 31, 2003
    Inventors: Gregor Brodt, Jens Haas, Werner Hesse, Hans-Ulrich Jager
  • Patent number: 6582582
    Abstract: An electroplating bath is disclosed that is particularly suited to the electrodeposition of tin, zinc and alloys of the foregoing in a smooth and bright electrodeposit. The disclosed electroplating bath comprises propanedioic acid, diethyl ester, polymer with N-(3-aminopropyl)-1,3-propanediamine, N-(2-carboxy benzoyl) as a brightener additive. In addition, the electroplating bath may also comprise carboxylic acids, ammonium salts, aldehyde compounds and a variety of co-brighteners.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: June 24, 2003
    Inventor: Donald Becking
  • Patent number: 6576112
    Abstract: The present invention provides a method of forming a zinc oxide film on a conductive substrate, which comprises dipping the conductive substrate and a counter electrode in an aqueous solution containing at least nitric acid ion and zinc ion and supplying a current between these electrodes to form a zinc oxide film, wherein the aqueous solution further contains polycarboxylic acid in which a carboxyl radical is bonded to each of carbon having sp2 hybrid orbital, or its ester with a concentration of 0.5 &mgr;mol/L to 500 &mgr;mol/L. Thereby, it is possible to form in a short time a thin film having texture structure exhibiting an optical confinement effect, to prevent abnormal growth of a deposited film, and to obtain a zinc oxide thin film having excellent uniformity and adhesion on a surface thereof where the film is formed. Also, by applying the photovoltaic device to a stacked structure, it is possible to enhance the photoelectric characteristics and mass producibility.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: June 10, 2003
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yuichi Sonoda, Noboru Toyama, Yusuke Miyamoto, Hidetoshi Tsuzuki
  • Publication number: 20030099882
    Abstract: Methods for the deposition of zinc, particularly for the fabrication of a zinc anode that is useful in a Zn-air battery or a fuel cell. The method can be selected from electrodeposition, deposition and reduction of ZnO, physical vapor deposition and chemical vapor deposition.
    Type: Application
    Filed: June 12, 2002
    Publication date: May 29, 2003
    Inventors: Mark J. Hampden-Smith, Stojan Djokic, Paolina Atanassova, Rimple Bhatia, Paul Napolitano