Cracking Patents (Class 208/106)
  • Patent number: 8642499
    Abstract: A particulate catalytic cracking catalyst which comprises a zeolite having catalytic cracking ability under catalytic cracking conditions, added silica, precipitated alumina and, optionally clay. The catalytic cracking catalyst has a high matrix surface area and is useful in a catalytic cracking process, in particularly, a fluid catalytic cracking process, to improve bottoms conversion at a constant coke formation.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: February 4, 2014
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Wu-Cheng Cheng, Kevin John Sutovich, Ruizhong Hu, Ranjit Kumar, Xinjin Zhao
  • Patent number: 8636895
    Abstract: The invention concerns integration of hydroprocessing and steam cracking. A feed comprising crude or resid-containing fraction thereof is treated by hydroprocessing and visbreaking and then passed to a steam cracker to obtain a product comprising olefins.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: January 28, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F Keusenkothen, Stephen H. Brown
  • Patent number: 8617386
    Abstract: A process is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising molybdenum supported on a base, such as boehmite or pseudo-boehmite alumina. Iron oxide may also be in the base. The base is preferably bauxite. The heavy hydrocarbon slurry is hydrocracked in the presence of the catalyst to produce lighter hydrocarbons.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 31, 2013
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza, Maureen L. Bricker, Lorenz J. Bauer
  • Publication number: 20130334100
    Abstract: A method for upgrading a heavy oil includes: disposing an initiator in a heavy oil environment, the heavy oil environment including a heavy oil; producing a radical from the initiator; contacting the heavy oil with the radical; and converting the heavy oil to upgraded oil.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 19, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Oleg A. Mazyar, Gaurav Agrawal
  • Patent number: 8608945
    Abstract: A process is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising molybdenum supported on a base, such as boehmite or pseudo-boehmite alumina. Iron oxide may also be in the base. The base is preferably bauxite. The heavy hydrocarbon slurry is hydrocracked in the presence of the catalyst to produce lighter hydrocarbons.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza, Maureen L. Bricker, Lorenz J. Bauer
  • Patent number: 8608942
    Abstract: Systems and methods for processing hydrocarbons are provided. A hydrocarbon can be distilled to provide a distillate, a gas oil, and a residue. The residue can include, but is not limited to asphaltenes and non-asphaltenes. The residue can be mixed with a solvent to provide a mixture. The asphaltenes can be selectively separated from the mixture to provide a deasphalted oil. At least a portion of the deasphalted oil and at least a portion of the gas oil can be hydroprocessed to provide a hydroprocessed hydrocarbon. At least a portion of the distillate and at least a portion of the hydroprocessed hydrocarbon can be cracked in a first reaction zone to provide a first cracked product comprising C2 hydrocarbons, C3 hydrocarbons, C4 hydrocarbons, and naphtha.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: December 17, 2013
    Assignee: Kellogg Brown & Root LLC
    Inventors: Anand Subramanian, Phillip K. Niccum
  • Patent number: 8597502
    Abstract: Disclosed is a method of manufacturing a diesel fuel base stock improved in low-temperature flowability, including: fractionating in a first fractionator a synthetic oil obtained by Fisher-Tropsch synthesis into at least two fractions of a first middle fraction containing a component having a boiling range corresponding to diesel fuel oil, and a wax fraction containing a wax component heavier than the first middle fraction; hydroisomerizing the first middle fraction by bringing the first middle fraction into contact with a hydroisomerizing catalyst to produce a hydroisomerized middle fraction; hydrocracking the wax fraction by bringing the wax fraction into contact with a hydrocracking catalyst to produce a wax-decomposition component; and fractionating in a second fractionator a mixture of the produced hydroisomerized middle fraction and the produced wax-decomposition component, wherein rectification conditions in the first fractionator and/or rectification conditions in the second fractionator are adjusted
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: December 3, 2013
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, Nippon Oil Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yuichi Tanaka, Kazuhito Sato
  • Patent number: 8597498
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a metal-containing catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), the hydrogen sulfide, and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. and a total pressure of from 6.9 MPa to 27.5 MPa, where hydrogen sulfide is provided at a mole ratio of hydrogen sulfide to hydrogen of at least 0.5:9.5 and the combined hydrogen sulfide and hydrogen partial pressures provide at least 60% of the total pressure. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone, and, apart from the mixing zone, the vapor may be condensed to produce a liquid hydrocarbon-containing product.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington
  • Patent number: 8597499
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and at least one metal-containing catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. and a total pressure of from 6.9 MPa to 27.5 MPa. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone. Any metal-containing catalyst provided to the mixing zone has an acidity as measured by ammonia chemisorption of at most 200 ?mol ammonia per gram of catalyst.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8597496
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and at least one catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone, and, apart from the mixing zone, the vapor is condensed to produce a liquid hydrocarbon-containing product. The hydrocarbon-containing feedstock is continuously or intermittently provided to the mixing zone at a rate of at least 350 kg/hr per m3 of the mixture volume in the mixing zone.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8597497
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and at least one catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone, and, apart from the mixing zone, the vapor is condensed to produce a liquid hydrocarbon-containing product containing at least 85% of the atomic carbon initially present in the hydrocarbon-containing feedstock and containing at most 2 wt. % hydrocarbons having a boiling point of at least 538° C.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington
  • Patent number: 8586812
    Abstract: Processes for upgrading condensate in a first hydrocarbon stream to provide distillate material may involve ionic liquid catalyzed olefin oligomerization of olefins in the first hydrocarbon stream to provide a first distillate enriched stream, dechlorination of the first distillate enriched stream, hydroprocessing at least one of a second and a third hydrocarbon stream to provide a second distillate enriched stream, and separation of a distillate product from the first and second distillate enriched streams.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: November 19, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung C. Timken, Bi-Zeng Zhan
  • Patent number: 8551324
    Abstract: The present invention describes a process for the production of gasoline in a fluid catalytic cracking unit having at least one principal reactor operating using feeds with a low Conradson Carbon and a high hydrogen content, said process comprising recycling a coking cut either to a side chamber branching off the stripper or within the stripper itself by means of a tubular vessel within said stripper.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: October 8, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Frederic Feugnet, Romain Roux
  • Patent number: 8551326
    Abstract: This invention describes a two-stage regeneration zone that has a regenerated catalyst circuit such as the one that results from the mixing of a partially regenerated catalyst with a residual coke rate of between 0.3 and 0.7% and a totally regenerated catalyst with a coke rate that is less than 0.15%. All things being equal, this double-population regenerated catalyst enables the maximization of the LCO yield.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: October 8, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Romain Roux, Thierry Gauthier
  • Patent number: 8535518
    Abstract: A petroleum feedstock upgrading method is provided. The method includes supplying a mixed stream that includes hydrocarbon feedstock and water to a hydrothermal reactor where the mixed stream is maintained at a temperature and pressure greater than the critical temperatures and pressure of water in the absence of catalyst for a residence time sufficient to convert the mixed stream into a modified stream having an increased concentration of lighter hydrocarbons and/or concentration of sulfur containing compounds. The modified stream is then supplied to an adsorptive reaction stage charged with a solid adsorbent operable to remove at least a portion of the sulfur present to produce a trimmed stream. The trimmed stream is then separated into a gas and a liquid streams, and the liquid stream is separated into a water stream and an upgraded hydrocarbon product stream.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: September 17, 2013
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Mohammad F. Aljishi
  • Patent number: 8524960
    Abstract: A process is disclosed for fluid catalytic cracking of oxygenated hydrocarbon compounds such as glycerol and bio-oil. In the process the oxygenated hydrocarbon compounds are contacted with a fluid cracking catalyst material for a period of less than 3 seconds. In a preferred process a crude-oil derived material, such as VGO, is also contacted with the catalyst.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 3, 2013
    Assignee: KiOR, Inc.
    Inventors: Paul O'Connor, George W. Huber, Avelino Corma Camos, Laurent Louis Andre Sauvanaud
  • Patent number: 8524070
    Abstract: A method and apparatus are disclosed for treating the effluent from a hydrocarbon pyrolysis unit employing a small primary fractionator, i.e., a rectifier. The method comprises cooling the gaseous effluent, e.g., by direct quench and/or at least one primary heat exchanger, and then cooling the gaseous effluent to a temperature at which tar, formed by reactions among constituents of the effluent, condenses, e.g., in a secondary exchanger. The resulting mixed gaseous and liquid effluent is passed through a rectifier, to cleanly separate quench oil from the gaseous effluent comprising a pyrolysis gasoline fraction, whose boiling point can be lowered as a result of the rectifier treatment. The effluent is then cooled to condense a liquid effluent comprising pyrolysis gasoline and water condensed from steam, which fractions are separated in a distillate drum. The cooled gaseous effluent is directed to a recovery train to recover light olefins.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert David Strack, John R. Messinger
  • Publication number: 20130213858
    Abstract: Undesirable components of traditional coking processes are selectively cracked or coked in the coking vessel by injecting an additive into the vapors in the coking vessel. The additive contains catalyst(s), seeding agent(s), excess reactant(s), quenching agent(s), carrier(s), or any combination thereof to modify reaction kinetics to preferentially crack (or coke) these undesirable components that typically have a high propensity to coke, and are often precursors to coke in the coking process. These undesirable components can also be very problematic in downstream catalytic cracking processes, significantly contributing to coke on catalyst and catalyst deactivation. Exemplary embodiments of the present invention also provide methods to (1) decrease coke production, (2) increase liquid transportation fuels, (3) control the coke crystalline structure, and (4) control the quantity and quality of volatile combustible materials (VCMs) in the resulting coke.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 22, 2013
    Inventor: Roger G. ETTER
  • Publication number: 20130206645
    Abstract: A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Inventor: Stephen Lee Yarbro
  • Patent number: 8500992
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product. The catalyst is comprised of a material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Bi, Ag, Mn, Zn, Sn, Ru, La, Pr, Sm, Eu, Yb, Lu, Dy, Pb, and Sb and the second metal is Mo, W, V, Sn, and Sb.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 6, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8496803
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a catalyst to produce a hydrocarbon-containing product. The catalyst is comprised of a tetrathiometallate material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Ni, Co, Bi, Ag, Mn, Zn, Sn, Ru, La, Pr, Sm, Eu, Yb, Lu, Dy, Pb, and Sb and the second metal is Mo, W, V, Sn, and Sb.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 30, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8491784
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product. The catalyst is prepared by mixing a first salt and a second salt in an aqueous mixture under anaerobic conditions at a temperature of from 15° C. to 150° C., where the first salt comprises a cationic component in any non-zero oxidation state selected from the group consisting of Cu, Fe, Ag, Co, Mn, Ru, La, Ce, Pr, Sm, Eu, Yb, Lu, Dy, Ni, Zn, Bi, Sn, Pb, and Sb, and where the second salt comprises an anionic component selected from the group consisting of MoS42?, WS42?, SnS44?, and SbS43.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8490703
    Abstract: A method of maintaining the structural integrity of heating conduit used to heat a permeable body of hydrocarbonaceous material enclosed within a constructed permeability control infrastructure. The method includes obtaining a heating conduit with corrugated walls and configured for transporting a heat transfer fluid, burying the heating conduit at a depth within the permeable body of hydrocarbonaceous material and with an inlet end extending from the boundary of the constructed permeability control infrastructure, operably coupling the inlet end of the heating conduit to a heat source of the heat transfer fluid, and passing the heat transfer fluid through the heating conduit to transfer heat from the heat transfer fluid to the permeable body, with the corrugations in the corrugated walls mitigating longitudinal axis thermal expansion of the heating conduit and allowing the heating conduit to conformably bend in response to subsidence of the permeable body.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: July 23, 2013
    Assignee: Red Leaf Resources, Inc
    Inventors: James W. Patten, Todd Dana
  • Patent number: 8491782
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8491783
    Abstract: A process for treating a hydrocarbon-containing feed in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a catalyst to produce a hydrocarbon-containing product, where hydrogen sulfide is provided at a mole ratio relative to hydrogen of at least 0.5:9.5. The catalyst is comprised of a bimetallic tetrathiometallate material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Ni, Co, Bi, Ag, Mn, Zn, Sn, Ru, La, Ce, Pr, Sm, Eu, Yb, Lu, Dy, Ph, and Sb and the second metal is Mo, W, V, Sn, and Sb.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott-Lee Wellington
  • Patent number: 8491781
    Abstract: The present invention describes a reaction zone comprising at least two fluidized reactors, a principal reactor for cracking a heavy hydrocarbon cut, the other, additional, reactor for cracking one or more light cuts, the effluents from the two reactors being treated in a common gas-solid separation and quench zone. Performance is enhanced because the thermal degradation reactions in the reaction zone are controlled in an optimum manner.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: July 23, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Thierry Gauthier, Vincent Coupard, Jan Verstraete, Romain Roux
  • Publication number: 20130180885
    Abstract: A device for processing a hydrocarbon resource may include a hydrocarbon processing container configured to receive the hydrocarbon resource therein and having a pair of opposing ends with an enlarged width medial portion therebetween. The device may also include a radio frequency (RF) source, and a first spirally wound electrical conductor surrounding the hydrocarbon processing container and coupled to the RF source. The device may further include a second spirally wound electrical conductor carried within the hydrocarbon processing container. The first spirally wound electrical conductor may be configured to generate magnetic fields with the hydrocarbon processing container that are parallel with an axis thereof.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 18, 2013
    Applicant: Harris Corporation
    Inventor: Francis Eugene Parsche
  • Patent number: 8480965
    Abstract: Injection nozzles for use in a gas distribution device are disclosed. In one aspect, the injection nozzle may include: a tube having a fluid inlet and a fluid outlet; wherein the inlet comprises a plurality of flow restriction orifices. In another aspect, embodiments disclosed herein relate to an injection nozzle for use in a gas distribution device, the injection nozzle including: a tube having a fluid inlet and a fluid outlet; wherein the fluid inlet comprises an annular orifice surrounding a flow restriction device. Injection nozzles according to embodiments disclosed herein may be disposed in a gas distribution manifold used in a vessel, for example, for conducting polymerization reactions, spent catalyst regeneration, and coal gasification, among others.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: July 9, 2013
    Assignee: Lummus Technology Inc.
    Inventors: Leonce Francis Castagnos, Jr., Ting Yee Chan, Norman Paul Kolb, Ronald Eugene Pieper
  • Patent number: 8475649
    Abstract: Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 2, 2013
    Assignee: Phillips 66 Company
    Inventors: Sundararajan Uppili, Donald R. Engelbert
  • Patent number: 8454803
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: June 4, 2013
    Assignee: Xyleco, Inc.
    Inventor: Marshall Medoff
  • Patent number: 8449761
    Abstract: The present invention is a method for synthesizing non-zeolitic molecular sieves which have a three dimensional microporous framework comprising [AlO2] and [PO2] units. In preparing the reaction mixture, a surfactant is used, coupled with non-aqueous impregnation to prevent acid sites from being destroyed by water during Pt impregnation. The superior SAPO exhibits higher activity and selectivity especially in catalytic hydroisomerization of waxy feeds, due to the presence of medium-sized silica islands distributed throughout the SAPO.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: May 28, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen Joseph Miller
  • Patent number: 8449763
    Abstract: Embodiments of a nozzle reactor of the type useable to inject a first material feed stock and a second material feed stock to cause interaction between the first material feed stock and second material feed stock are described herein. According to some embodiments, the nozzle reactor may crack residual oil produced by other processing units in a refinery process. Furthermore, nozzle reactors may replace traditional processing units of a refinery process, such as cokers, hydrocrackers and deasphalting units.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: May 28, 2013
    Assignee: Marathon Canadian Oil Sands Holding Limited
    Inventor: Willem P. C. Duyvesteyn
  • Patent number: 8435452
    Abstract: A circulating fluid bed reactor such as that used in fluid coking processes has a circular dense bed reaction section above the reactor base where the fluidizing gas is injected and a plurality of frusto-conical baffles in the dense bed reaction section, each of which depends downwardly and radially inwards from the reactor wall to a lower, inner edge defining a central aperture. The baffles are preferably provided with downcomers which permit downward flow of solids and upward flow of gas through the baffles.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: May 7, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John T. Wyatt, Jr., E. Nicholas Jones, Alvin U. Chen, Clay R. Sutton, Timothy M. Healy, Ronald Suryo, Len Lampert, Jonathan Miller
  • Patent number: 8435402
    Abstract: A method of cracking hydrocarbon material in a nozzle reactor. The method includes a step of providing a nozzle reactor, a step of injecting a stream of cracking material into the reactor body of the nozzle reactor, and a step of injecting hydrocarbon material into the reactor body of the nozzle reactor, wherein the cracking material is methanol, ethanol, ethane, propane, biodiesel, carbon monoxide, nitrogen, or combinations thereof. The cracking material can also include steam. The hydrocarbon material can be injected into the reactor body at a direction transverse to the direction the cracking material is injected into the reactor body.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 7, 2013
    Assignee: Marathon Canadian Oil Sands Holding Limited
    Inventors: Willem P. C. Duyvesteyn, Jose Armando Salazar
  • Patent number: 8431015
    Abstract: Methods and apparatus relate to processes and systems that introduce microwaves into mixtures containing hydrocarbons. The microwaves cause heating of the hydrocarbons in order to upgrade the hydrocarbons. Such upgrading occurs after recovering the hydrocarbons from within a formation and results in lowering viscosity of the hydrocarbons to enable transportation of the hydrocarbons to offsite locations, such as a refinery.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: April 30, 2013
    Assignee: ConocoPhillips Company
    Inventors: Dwijen K. Banerjee, Kenneth W. Smith
  • Patent number: 8414763
    Abstract: A process is disclosed for recovering product from catalytically converted product streams. Gaseous unstabilized naphtha from an overhead receiver from a main fractionation column is compressed in a compressor. Liquid unstabilized naphtha from the overhead receiver and liquid naphtha fraction from the compressor are sent to a naphtha splitter column upstream of a primary absorber. Consequently, less naphtha is circulated in the gas recovery system.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: April 9, 2013
    Assignee: UOP LLC
    Inventors: Joao Jorge da Silva Ferreira Alves, Saadet Ulas Acikgoz, Xin X. Zhu, Laura E. Leonard
  • Patent number: 8404008
    Abstract: A system for reforming diesel fuel into hydrogen including feeds for water and diesel fuel, a supercritical water (SCW) reactor in fluid communication with the water feed and the diesel fuel, at least one pre-heater in thermal communication with the water feed, the diesel fuel feed that is configured to heat water from the water feed and diesel fuel from the diesel fuel feed to a predetermined temperature equal to or greater than the critical temperature of water before the water and the diesel fuel are mixed, a water-gas shift (WGS) reactor, and a hydrogen capturing system, where the SCW reactor reforms the diesel fuel into a synthesis gas comprising a mixture of hydrogen and carbon monoxide and outputs the synthesis gas, the synthesis gas output by the SCW reactor is fed into the WGS reactor which converts the carbon monoxide into carbon dioxide and hydrogen and outputs an output gas including a higher percentage of hydrogen to carbon monoxide compared to the synthesis gas, and the hydrogen in the output ga
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: March 26, 2013
    Assignee: DRS Sustainment Systems, Inc.
    Inventors: John R. Wootton, Sunggyu Lee, Asdrubal Garcia-Ortiz
  • Patent number: 8394260
    Abstract: A process for upgrading a heavy oil stream by completely mixing the heavy oil stream with a water stream prior to the introduction of an oxidant stream. A mixture of the heavy oil stream and the water stream are subjected to operating conditions, in the presence of the oxidant stream, that are at or exceed the supercritical temperature and pressure of water. The resulting product stream is a higher value oil having low sulfur, low nitrogen, and low metallic impurities as compared to the heavy oil stream.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: March 12, 2013
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Publication number: 20130048539
    Abstract: Methods and systems for upgrading hydrocarbon are described. The system can include a combustor and a nozzle reactor. The combustor can be used to produce a motive fluid suitable for use in the nozzle reactor. The motive fluid produced by the combustor and a hydrocarbon stream can be injected into the nozzle reactor to upgrade the hydrocarbon material. The systems and methods can also be integrated with a steam assisted gravity drainage system.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: MARATHON OIL CANADA CORPORATION
    Inventors: Jose Armando Salazar, Mahendra Joshi, Thomas Edward Carter
  • Publication number: 20130048538
    Abstract: Method to enhance the recovery of oil from an oil field, comprising: applying heat to a colloidal hydrocarbonic medium that comprises hydrocarbon chains; and applying pressure waves having a predetermined frequency and intensity to hydrocarbon chains, in order to crack hydrocarbon chains into relatively shorter hydrocarbon chains. Optionally: applying heat may comprise applying steam; the pressure waves may be applied directly or indirectly to hydrocarbon chains to be cracked; applying pressure waves may be performed within the oil field, by use of an Activator within or outside of the oil field; applying pressure waves may be performed within the oil field; applying pressure waves may be performed by use of a rotor situated in a housing pervaded by the colloidal hydrocarbonic medium.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Inventors: Ruediger Uwe Nuerk, Joseph Laura
  • Patent number: 8372347
    Abstract: Improvements in the selective extraction of relatively low molecular weight oils from coal, coal liquids, oil shales, shale oils, oil sands, heavy and semi-heavy oils, bitumens, and the like are provided by a continuous process involving contacting the material to be treated with supercritical water in a continuous operation at pressures of from 500 psi to 3000 psi, temperatures of 250° C. to 450° C., and in-reactor dwell times generally in excess of 25 seconds and up to 10 minutes.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: February 12, 2013
    Assignee: Yeda Research and Development Co. Ltd
    Inventors: Brian Berkowitz, Stephen R. Dunn, Ishai Dror
  • Patent number: 8337803
    Abstract: Compositions and methods suitable for removing poisonous metals from hydrocarbons are provided. The compositions comprise hydrotalcite having one or more trapping metals dispersed on the outer surface thereof.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: December 25, 2012
    Assignee: Albemarle Netherlands B.V.
    Inventors: Julie Ann Francis, Charles Vadovic
  • Publication number: 20120298553
    Abstract: A method of predicting the morphological type of coke produced in a delayed coking process is provided by measuring S-values of an asphaltene containing feedstock with an S-value machine. Improved refinery operations and delayed coking operations can be obtained by virtue of the invention.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Applicant: LYONDELL CHEMICAL COMPANY
    Inventor: Jared Fern
  • Patent number: 8303803
    Abstract: In one aspect, the inventive process comprises a process for pyrolyzing a hydrocarbon feedstock containing nonvolatiles in a regenerative pyrolysis reactor system. The inventive process comprises: (a) heating the nonvolatile-containing hydrocarbon feedstock upstream of a regenerative pyrolysis reactor system to a temperature sufficient to form a vapor phase that is essentially free of nonvolatiles and a liquid phase containing the nonvolatiles; (b) separating said vapor phase from said liquid phase; (c) feeding the separated vapor phase to the pyrolysis reactor system; and (d) converting the separated vapor phase in said pyrolysis reactor system to form a pyrolysis product.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: November 6, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, James N. McCoy, Frank Hershkowitz
  • Publication number: 20120267286
    Abstract: A reactor for cracking heavy hydrocarbons includes a tube having an internal passage filled with a fluid that includes heavy hydrocarbon material. The reactor is oriented vertically so that the fluid moves downward through the internal passage of the tube. The internal passage includes alternating linear sections and curved sections. The internal passage is oriented so that it lies on a single plane. The reactor may be combined with another reactor to produce a reactor system.
    Type: Application
    Filed: November 9, 2011
    Publication date: October 25, 2012
    Applicant: MARATHON OIL CANADA COMPANY
    Inventors: Jose Armando Salazar-Guillen, Christopher Ard
  • Publication number: 20120261308
    Abstract: Systems and methods for refining conventional crude and heavy, corrosive, contaminant-laden carbonaceous crude (Opportunity Crude) in partially or totally separated streams or trains.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Applicant: Bechtel Hydrocarbon Technology Solutions, Inc.
    Inventors: Benjamin Klein, Odette Eng
  • Patent number: 8287721
    Abstract: A method for reducing asphaltene and paraffin content in oil material for recuperating and improving production of heavy, medium and light crude oils by reducing asphaltene and paraffin content in crude oil and oil-containing tar sands; and schist and clay for recuperation of exposed oxidized oil; and tar petroleum, schist petroleum, and clay petroleum, whereby a molecule elimination process of very polymerized hydrocarbons, including asphaltene and paraffin, are responsible for medium, heavy and extra heavy crude oil poor properties, as well as the difficult recuperation of most high containing long chain asphaltene and paraffin light crude oils, resulting in the production of more light and short hydrocarbon chains to greatly reduce viscosity, thus facilitating its recuperation and transportation.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: October 16, 2012
    Inventors: Lucinda Paris-Marcano, Maria Borjas-Garcia
  • Publication number: 20120259147
    Abstract: An apparatus and method is presented for reducing mono nitrogen oxide emissions in a hydrocarbon processing furnace. A preferred embodiment hydrocarbon cracking furnace includes a firebox with a set of wall burners and a set of floor burners, the floor burners comprising secondary burner tips burning a fuel-rich mixture and positioned below primary burner tips burning a fuel-lean mixture. A portion of flue gases are recirculated from the primary burner combustion area to the secondary burner combustion area and back to the primary burner combustion area. The floor burners further comprise a set of steam injection ports that inject steam into a conical flow to contact flames at the primary burner tips, reducing flame temperature and thereby reducing thermal NOx. The steam injection ports are positioned in the firebox above the primary burner tips.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Inventor: David C. Payne
  • Publication number: 20120253092
    Abstract: A post fractionation process for removing heavy hydrocarbons from the C4+ olefins conversion process reactor effluent, which act as foulants when recycled to the C4+ olefins conversion reactor. This simple and effective process improves the run length of the reactor by reducing catalyst fouling, which also improves yields in a C4+ olefins conversion process to light olefins. Essential to present invention is the efficient recycling of a hydrocarbon stream to the reactor, utilizing well proven equipment in a novel way to separate more valuable product from less desirable components in the recycle product stream.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: STONE & WEBSTER PROCESS TECHNOLOGY, INC.
    Inventors: CORNELIS F. VAN EGMOND, DAVID LEUNG
  • Patent number: 8278235
    Abstract: A cracking catalyst contains a substantially inert core and an active shell, the active shell containing a zeolite catalyst and a matrix. The catalyst is formed by spray-drying a slurry containing water, substantially inert microspheres and a zeolite precursor and crystallizing zeolite in the active shell to create the cracking catalyst. Methods of using the cracking catalyst are also described.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: October 2, 2012
    Assignee: BASF Corporation
    Inventors: David Matheson Stockwell, John M. Macaoay