With Group Iii Metal, Rare Earth Metal, Or Metal Oxide (i.e., Sc, Y, Al, Ga, In, Tl, Metal Of Atomic Number 57-71 Or Oxide Thereof) Patents (Class 208/120.01)
  • Publication number: 20140228204
    Abstract: A catalyst composition useful for producing olefins and aromatic compounds from a feedstock is formed from a fluidized catalytic cracking (FCC) catalyst and a ZSM-5 zeolite catalyst, wherein the amount of ZSM-5 zeolite catalyst makes up from 10 wt. % or more by total weight of the FCC catalyst and the ZSM-5 zeolite catalyst. The catalyst composition may be used in a method of producing olefins and aromatic compounds from a feedstock by introducing a hydrocarbon feedstock and the catalyst composition within a reactor, at least a portion of the reactor being at a reactor temperature of 550° C. or higher. The feedstock and catalyst composition are introduced into the reactor at a catalyst-to-feed (C/F) ratio of from 6 or greater.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 14, 2014
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Ravichander Narayanaswamy, Krishna Kumar Ramamurthy, P. S. Sreenivasan
  • Patent number: 8753502
    Abstract: This procedure uses a low carbon fuel with a FCC Catalyst Heater-Fuel Gas/Catalyst Combustion Chamber. The low carbon content fuel source will minimize CO2 emissions while satisfying unit heat balance. This will further reduce coke yield and CO2 emissions while improving energy efficiency.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: June 17, 2014
    Assignee: Marathon Petroleum Company LP
    Inventors: Jeff Sexton, David A. Lomas
  • Patent number: 8704023
    Abstract: This disclosure relates to a molecular sieve comprising a framework of tetrahedral atoms bridged by oxygen atoms, the tetrahedral atom framework being defined by a unit cell with atomic coordinates in nanometers shown in Table 3.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: April 22, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Douglas L. Dorset, Gordon J. Kennedy, Thomas Yorke, Terry Eugene Helton, Prasenjeet Ghosh, Joshi V. Yogesh
  • Patent number: 8642499
    Abstract: A particulate catalytic cracking catalyst which comprises a zeolite having catalytic cracking ability under catalytic cracking conditions, added silica, precipitated alumina and, optionally clay. The catalytic cracking catalyst has a high matrix surface area and is useful in a catalytic cracking process, in particularly, a fluid catalytic cracking process, to improve bottoms conversion at a constant coke formation.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: February 4, 2014
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Wu-Cheng Cheng, Kevin John Sutovich, Ruizhong Hu, Ranjit Kumar, Xinjin Zhao
  • Patent number: 8608944
    Abstract: A catalytic conversion process for increasing the light olefin yields, which comprises bringing a hydrocarbon oil feedstock into contact with a catalytic conversion catalyst in a catalytic conversion reactor including one or more reaction zones to carry out the reaction, wherein the hydrocarbon oil feedstock is subjected to the catalytic conversion reaction in the presence of an inhibitor; and separating the reactant vapor optionally containing the inhibitor from the coke deposited catalyst, wherein a target product containing ethylene and propylene is obtained by separating the reactant vapor, and the coke deposited catalyst is stripped and regenerated for recycle use by being returned to the reactor. The process can weaken the further converting reaction of produced light olefins such as ethylene and propylene to 50-70% of the original level by injecting the inhibitor; thereby it can increase the yields of the target products.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: December 17, 2013
    Assignees: Research Institute of Petroleum Processing SINOPEC, China Petroleum & Chemical Corporation
    Inventors: Zheng Li, Jun Long, Shuandl Hou, Zhijian Da, Chaogang Xie, Jiushun Zhang, Zhanzhu Zhang
  • Publication number: 20130313164
    Abstract: This invention relates to a process of preparing a catalyst from zeolite having a relatively high content of sodium of 18.6 ?g Na2O per zeolite surface area, or greater. The invention comprises adding yttrium compound to the zeolite, either prior to, during, or after its combination with precursors for catalyst matrix. This invention is suitable for preparing zeolite containing fluid cracking catalysts.
    Type: Application
    Filed: November 22, 2011
    Publication date: November 28, 2013
    Applicant: W.R. Grace & Co. - CONN
    Inventors: Yuying Shu, Richard Franklin Wormsbecher, Wu-Cheng Cheng
  • Publication number: 20130237738
    Abstract: One exemplary embodiment can be a process for producing at least one of ethene, propene, and gasoline. The process may include reacting a feed boiling above about 340° C. in the presence of a composition including at least about 55%, by weight, alumina. Often, the composition is the sole catalyst utilized in the reaction.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: UOP, LLC
    Inventor: Chad R. Huovie
  • Publication number: 20130220887
    Abstract: Catalyst composition useful in the catalytic dewaxing of a waxy hydrocarbon feedstock which catalyst composition includes a mixture of zeolite EU-2 and titania and may further include a noble metal. The zeolite EU-2 has a molar bulk ratio of silica-to-alumina (SAR) of greater than 100:1. The zeolite or mixture may have been dealuminated such as by acid leaching using a fluorosilicate salt or by steam treating.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 29, 2013
    Applicant: SHELL OIL COMPANY
    Inventor: Shell Oil Company
  • Patent number: 8491781
    Abstract: The present invention describes a reaction zone comprising at least two fluidized reactors, a principal reactor for cracking a heavy hydrocarbon cut, the other, additional, reactor for cracking one or more light cuts, the effluents from the two reactors being treated in a common gas-solid separation and quench zone. Performance is enhanced because the thermal degradation reactions in the reaction zone are controlled in an optimum manner.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: July 23, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Thierry Gauthier, Vincent Coupard, Jan Verstraete, Romain Roux
  • Publication number: 20130168290
    Abstract: A composition of a value added RFCC catalyst and a process of preparation of a composition for a dual function additive catalyst from a spent catalyst are disclosed. The value added spent FCC catalyst offers improved performance, options such as either employing as an additive for passivation of both vanadium and nickel and enhancing catalytic activity, for initial start-up or make-up for attrition losses. The value addition process does not harm any of physical properties of starting material with respect to ABD, attrition index, surface area and particle size distribution. Value added catalyst can be used in a range from 1-99 wt % in fluid catalytic cracking process in which, feeds may have higher metals and carbon.
    Type: Application
    Filed: July 4, 2011
    Publication date: July 4, 2013
    Applicant: INDIAN OIL CORPORATION LTD.
    Inventors: Prabhu K. Mohan, A.V. Karthikeyani, Manish Agarwal, Biswanath Sarkar, Balaiah Swamy, V. Chidambaram, P.S. Choudhury, S. Rajagopal
  • Patent number: 8475649
    Abstract: Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 2, 2013
    Assignee: Phillips 66 Company
    Inventors: Sundararajan Uppili, Donald R. Engelbert
  • Publication number: 20130153465
    Abstract: Systems and methods that include providing, e.g., obtaining or preparing, a material that includes a hydrocarbon carried by an inorganic substrate, and exposing the material to a plurality of energetic particles, such as accelerated charged particles, such as electrons or ions.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Applicant: XYLECO, INC.
    Inventor: Marshall Medoff
  • Publication number: 20130129611
    Abstract: The present invention relates to an organotemplate-free synthetic process for the production of a zeolitic material having a CHA-type framework structure comprising YO2, X2O3, and optionally comprising Z2O5, wherein said process comprises the steps of: (1) providing a mixture comprising one or more sources for YO2, one or more sources for X2O3, and seed crystals having a CHA framework structure, wherein the CHA framework structure of the seed crystals comprises YO2, X2O3, and optionally comprises Z2O5; and (2) crystallizing the mixture obtained in step (1); wherein Y is a tetravalent element, X is a trivalent element, and Z is a pentavalent element, wherein optionally one or more sources for Z2O5 are further provided in step (1), and wherein if the CHA framework of the seed crystals does not contain Z2O5, the seed crystals then have a YO2:X2O3 molar ratio of 5 or greater than 5.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 23, 2013
    Applicant: BASF SE
    Inventor: BASF SE
  • Publication number: 20130131419
    Abstract: A fluid catalytic cracking catalyst exhibiting reduced coke make comprises a zeolite cracking component in a matrix of gibbsite having a median particle size of not more than 0.4 microns and preferably not more than 0.3 microns. The zeolite cracking component will normally be a faujasite, with preference to zeolite Y in its various forms such as Y, HY, REY, REHY, USY, REUSY and secondary zeolite additives may be present, including ZSM-5.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: John Scott Buchanan, William A. Wachter, Kun Wang, Kathryn L. Peretti, Daniel Mark Giaquinta, Hongyi Hou
  • Publication number: 20130123096
    Abstract: The present invention relates to an organotemplate-free synthetic process for the production of a zeolitic material having a BEA framework structure comprising YO2 and optionally comprising X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising seed crystals and at least one source for YO2; and (2) crystallizing the mixture; wherein Y is a tetravalent element, and X is a trivalent element, wherein the zeolitic material optionally comprises at least one alkali metal M, wherein when the BEA framework additionally comprises X2O3, the mixture according to step (1) comprises at least one source for X2O3, and wherein the seed crystals comprise zeolitic material having a BEA framework structure, preferably zeolite Beta.
    Type: Application
    Filed: December 19, 2012
    Publication date: May 16, 2013
    Inventors: Feng-Shou XIAO, Bin Xie, Ulrich Mueller, Bilge Yilmaz
  • Publication number: 20130081980
    Abstract: The present invention relates to sulphur reduction catalyst additive composition comprising an inorganic porous support incorporated with metals; an alumino silicate or zeolite component; an alumina component and clay. More particularly the present invention relates to sulphur reduction catalyst additive composition comprising refinery spent catalyst as support. The primary sulphur reduction catalyst additive component of the catalyst composition contains metals of Period III or IV of the Periodic Table, preferably Zinc or Magnesium or combination thereof or one of the transition metals along with other metals.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 4, 2013
    Applicant: BHARAT PETROLEUM CORPORATION LIMITED
    Inventors: Dattatraya Tammannashastri GOKAK, Chiranjeevi THOTA, Pragya RAI, N. JOSE, P.S. VISWANATHAN
  • Publication number: 20130059723
    Abstract: The present invention relates to a process for the preparation of a zeolitic material having a structure comprising YO2 and optionally comprising X2O3, preferably comprising YO2 and X2O3, wherein said process comprises the steps of (1) providing a mixture comprising one or more ammonium compounds of which the ammonium cation has the formula (I): [R1R2NR3R4]+??(I) and further comprising one or more sources for YO2 and one or more sources for X2O3; (2) crystallizing the mixture provided in (1); wherein Y is a tetravalent element, and X is a trivalent element, and wherein in formula (I) R1 and R2 are independently from one another derivatized or underivatized methyl, and R3 and R4 are independently from one another derivatized or underivatized (C3-C5)alkyl, and wherein the molar ratio of ammonium cation having the formula (I) to Y in the mixture provided in step (1) and crystallized in step (2) is equal to or greater than 0.25.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 7, 2013
    Applicant: BASF SE
    Inventors: Bilge Yilmaz, Ulrich Berens, Vijay Narayanan Swaminathan, Ulrich Müller, Gabriele Iffland, Laszlo Szarvas
  • Publication number: 20130045860
    Abstract: The present invention relates to an organotemplate-free synthetic process for the production of a zeolitic material having a BEA framework structure comprising YO2 and optionally comprising X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising seed crystals and at least one source for YO2; and (2) crystallizing the mixture; wherein Y is a tetravalent element, and X is a trivalent element, wherein the zeolitic material optionally comprises at least one alkali metal M, wherein when the BEA framework additionally comprises X2O3, the mixture according to step (1) comprises at least one source for X2O3, and wherein the seed crystals comprise zeolitic material having a BEA framework structure, preferably zeolite Beta.
    Type: Application
    Filed: October 17, 2012
    Publication date: February 21, 2013
    Inventor: Feng-Shou XIAO
  • Publication number: 20130029832
    Abstract: This invention relates to stabilized aggregates of small primary crystallites of zeolite Y that are clustered into larger secondary particles. At least 80% of the secondary particles may comprise at least 5 primary crystallites. The size of the primary crystallites may be at most about 0.5 micron, or at most about 0.3 micron, and the size of the secondary particles may be at least about 0.8 micron, or at least about 1.0 ?m. The silica to alumina ratio of the resulting stabilized aggregated Y zeolite may be 4:1 or more.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 31, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Wenyih Frank Lai, Robert E. Kay, Jason Wu, Kun Wang, Robert C. Lemon
  • Publication number: 20130026071
    Abstract: A process for catalytically cracking and oxidatively desulfurizing a hydrocarbon feedstock containing organosulfur compounds is provided. Oxygen containing gas is introduced with a cracking catalyst and the feed to form a suspension. At least a portion of organosulfur compounds in the hydrocarbon feedstock are oxidized to form oxidized organosulfur compounds, carbon-sulfur bonds of oxidized organosulfur compounds are cleaved to form sulfur-free hydrocarbon compounds and sulfur oxides, and oxidized and unoxidized compounds are catalytically cracked into hydrocarbon compounds of lower boiling points. Cracked components and the cracking catalyst particles are separated and recovered for regeneration and reuse.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 31, 2013
    Inventors: Omer Refa Koseoglu, Abdennour Bourane
  • Publication number: 20130015102
    Abstract: A catalyst is provided for production of hydrocarbons including monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and aliphatic hydrocarbons having a carbon number of 3 to 4 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower. The catalyst includes crystalline aluminosilicate including large-pore zeolite having a 12-membered ring structure.
    Type: Application
    Filed: January 20, 2011
    Publication date: January 17, 2013
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Kazuaki Hayasaka
  • Publication number: 20130001129
    Abstract: A catalytic conversion process for increasing the cetane number barrel of diesel, in which contacting the feedstock oil with a catalytic cracking catalyst having a relatively homogeneous activity containing mainly the large pore zeolites in a catalytic conversion reactor, wherein the reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil and containing a diesel; the reaction temperature ranges from about 420° C. to about 550° C.; the residence time of oil vapors ranges from about 0.1 to about 5 seconds; the weight ratio of the catalytic cracking catalyst/feedstock oil is about 1-about 10. The fluid catalytic cracking gas oil is fed into other unit for further treatment or is fed back to the initial catalytic conversion reactor.
    Type: Application
    Filed: October 20, 2010
    Publication date: January 3, 2013
    Applicants: Research Institute of Petroleum Processing, Sinopec, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Youhao Xu, Jianhong Gong, Congli Cheng, Shouye Cui, Zhihai Hu, Yun Chen
  • Publication number: 20130001134
    Abstract: Catalytic cracking catalyst compositions and processes for cracking hydrocarbons to maximize light olefins production are disclosed. Catalyst compositions comprise at least one zeolite having catalytic cracking activity under catalytic cracking conditions, preferably Y-type zeolite, which zeolite has low amounts of yttrium in specified ratios to rare earth metals exchanged on the zeolite. Catalyst and processes of the invention provide increased yields of light olefins and gasoline olefins during a FCC process as compared to conventional lanthanum containing Y-type zeolite FCC catalysts.
    Type: Application
    Filed: March 8, 2011
    Publication date: January 3, 2013
    Applicant: W. R. Grace & Co.-Conn.
    Inventors: Yuying Shu, Richard F. Wormsbecher, Wu-Cheng Cheng
  • Patent number: 8337803
    Abstract: Compositions and methods suitable for removing poisonous metals from hydrocarbons are provided. The compositions comprise hydrotalcite having one or more trapping metals dispersed on the outer surface thereof.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: December 25, 2012
    Assignee: Albemarle Netherlands B.V.
    Inventors: Julie Ann Francis, Charles Vadovic
  • Publication number: 20120318713
    Abstract: Processes described include reacting a fresh or spent catalyst, or sorbent, with a solution containing an extracting agent (such as an acid or a base). Preferably, the catalyst contains both alumina and a molecular sieve (or a sorbent), and the reaction is performed under relatively mild conditions such that the majority of the base material does not dissolve into the solution. Thus, the catalyst can be re-used, and in certain instances the catalyst performance even improves, with or without re-incorporating certain of the metals back into the catalyst. Additionally, metals contained in the catalyst, such as Na, Mg, Al, P, S, Cl, K, Ca, V, Fe, Ni, Cu, Zn, Sr, Zn Sb, Ba, La, Ce, Pr, Nd, Pb, or their equivalent oxides, can be removed from the catalyst. Some of the metals that are removed are relatively valuable (such as the rare earth elements of La, Ce, Pr and Nd).
    Type: Application
    Filed: August 13, 2012
    Publication date: December 20, 2012
    Inventor: Albert A. Vierheilig
  • Publication number: 20120261310
    Abstract: A catalytic cracking process that processes a Fischer-Tropsch derived waxy feedstock and which is operated in a heat balanced mode without the use of additional heat sources or heavy feedstock. Heat is provided by the coke yielded from cracking of the Fischer-Tropsch derived waxy feedstock. A combination of the use of a high rare earth oxide large pore zeolite cracking catalyst with the operation of the riser reactor under suitable cracking conditions provide a spent cracking catalyst having a coke content sufficient to provide for the heat balance in the operation of the catalytic cracking system.
    Type: Application
    Filed: October 4, 2011
    Publication date: October 18, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: George A. HADJIGEORGE, Easwar Santhosh RANGANATHAN
  • Patent number: 8278235
    Abstract: A cracking catalyst contains a substantially inert core and an active shell, the active shell containing a zeolite catalyst and a matrix. The catalyst is formed by spray-drying a slurry containing water, substantially inert microspheres and a zeolite precursor and crystallizing zeolite in the active shell to create the cracking catalyst. Methods of using the cracking catalyst are also described.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: October 2, 2012
    Assignee: BASF Corporation
    Inventors: David Matheson Stockwell, John M. Macaoay
  • Patent number: 8262902
    Abstract: Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: September 11, 2012
    Assignee: Phillips 66 Company
    Inventors: Sundararajan Uppili, Donald R. Engelbert
  • Patent number: 8247631
    Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolitic compositions represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolitic compositions are active and selective in the catalytic cracking of hydrocarbons.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: August 21, 2012
    Assignee: UOP LLC
    Inventors: Christopher P Nicholas, Deng-Yang Jan, Jaime G. Moscoso
  • Patent number: 8221615
    Abstract: The invention is a composition that is suitable for reducing sulfur species from products produced by petroleum refining processes, especially gasoline products produced by fluidized catalytic cracking (FCC) processes. The composition comprises zeolite, yttrium, and at least one element selected from the group consisting of zinc, magnesium and manganese, wherein the yttrium and element are present as cations. The yttrium and zinc are preferably present as cations that have been exchanged onto the zeolite. The zeolite is preferably a zeolite Y.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 17, 2012
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Ruizhong Hu, Richard Franklin Wormsbecher
  • Publication number: 20120132563
    Abstract: Solid acid nanoparticles are added to crude oil before initial distillation in order to increase the yield of light hydrocarbons obtained during initial distillation. According to one aspect, nanoparticles of a solid acid of a characteristic particle size are added to crude oil before initial distillation in order to increase the yield of light hydrocarbons obtained during initial distillation. According to another aspect, nanoparticles of a solid acid are added to crude oil in a characteristic concentration before initial distillation in order to increase the yield of light hydrocarbons obtained during initial distillation. According to another aspect, nanoparticles of two or more solid acids are mixed and added to crude oil before initial distillation in order to increase the yield of light hydrocarbons obtained during initial distillation.
    Type: Application
    Filed: November 29, 2010
    Publication date: May 31, 2012
    Inventors: Oleksander S. Tov, Petro E. Stryzhak
  • Patent number: 8173010
    Abstract: The invention relates to materials used as electrodes and/or catalysts, as well as methods associated with the same. The materials may comprise an alloy or intermetallic compound of a transition metal (e.g., Ni) and a metal additive (e.g., Sn). The transition metal and additive are selected to provide improved electrode and/or catalytic performance. For example, the materials of the invention may have a high catalytic activity, while being less susceptible to coking than certain conventional electrode/catalytic materials. These performance advantages can simplify the equipment used in certain applications, as well as reducing energy and capital requirements. Furthermore, the materials may be manufactured using traditional ceramic processing methods, without the need for complex, unconventional fabrication techniques. The materials are particularly suitable for use in fuel cells (e.g., SOFCs electrodes) and in reactions that use or produce synthesis gas.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: May 8, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Jackie Y. Ying, Steven E. Weiss
  • Patent number: 8157985
    Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the catalytic cracking of hydrocarbons.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: April 17, 2012
    Assignee: UOP LLC
    Inventors: Christopher P Nicholas, Deng-Yang Jan, Jaime G Moscoso
  • Patent number: 8137533
    Abstract: A process is presented for the selective catalytic cracking of naphtha to light olefins. The process includes contacting a naphtha feedstream with a mixture of catalysts to reduce the amount of recycle, and especially the recycle of light paraffins. The mixture of catalysts includes a first molecular sieve made up from a small pore zeolite having a pore index between 13 and 26, and a second molecular sieve made up from an intermediate pore zeolite having a pore index between 26 and 30.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: March 20, 2012
    Assignee: UOP LLC
    Inventors: Gavin P. Towler, Hayim Abrevaya
  • Patent number: 8137535
    Abstract: Systems and methods for producing and using one or more doped catalysts are provided. One or more coked-catalyst particles can be fluidized in the presence of one or more oxidants to provide a fluidized mixture. The coke from the one or more coked-catalyst particles can be removed to provide regenerated catalyst particles within the fluidized mixture. One or more doping agents can be distributed to the fluidized mixture, and the one or more doping agents can be deposited onto the surface of the regenerated catalyst particles to provide a regenerated, doped catalyst particle.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: March 20, 2012
    Assignee: Kellogg Brown & Root LLC
    Inventor: Pritham Ramamurthy
  • Publication number: 20120048777
    Abstract: A method of forming a catalyst is provided. The method comprises reacting a reactive solution comprising at least one alumina precursor, at least one silica precursor, a templating agent, a solvent, a catalytic metal precursor, and a modifier, to form a gel. The method can also include calcining the gel to form a catalyst composition comprising a pore-containing, homogeneous solid mixture which comprises at least one catalytic metal and an inorganic support comprising alumina and silica. The pores of the homogenous solid mixture have an average diameter in a range of about 1 nanometer to about 200 nanometers. A method of upgrading a hydrocarbon feedstock to a liquid fuel in the presence of the catalyst composition is also provided.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Daniel Lawrence Derr, Larry Neil Lewis, Hrishikesh Keshavan, Gregg Anthony Deluga
  • Patent number: 8110093
    Abstract: Described herein are methods for cracking a biocrude, particularly catalytically cracking a biocrude that primarily includes olefmic hydrocarbons. Also described herein are compositions and methods of producing such compositions that are useful as fuels or fuel production feedstock.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: February 7, 2012
    Assignee: LS9, Inc.
    Inventors: Lisa Friedman, Mathew Rude
  • Patent number: 8088274
    Abstract: A process is described for catalytic cracking of hydrocarbon feedstocks from petroleum refining which increases substantially the yields of light olefins. The process limits the extreme conditions to a first reaction section and introduces a stream of cooling fluid above the feedstock injection point so as to maintain a second reaction section under cracking conditions which produce light olefins propene and ethene, and inhibits reactions undesirable for the process.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: January 3, 2012
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventors: William Richard Gilbert, Emanuel Freire Sandes, Andrea de Rezende Pinho, Claudia Maria de Lacerda Alvarenga Baptista
  • Patent number: 8084383
    Abstract: The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention is a cracking catalyst composition comprising a zeolite in combination with a Lewis Acid containing component, wherein the cracking catalyst composition comprises 0.2% Na2O or less. It has been found that sulfur compounds in hydrocarbon feeds to fluid catalytic cracking processes can be reduced by at least 15% compared to the same composition, which does not comprise the aforementioned Lewis Acid containing component.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: December 27, 2011
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Ruizhong Hu, Xinjin Zhao, Richard Franklin Wormsbecher, Michael Scott Ziebarth
  • Patent number: 8076525
    Abstract: Process for the preparation of C3 and C4 olefins and gasoline by: (a) contacting in a fluidised bed reactor a light hydrocarbon feedstock with a first catalyst inventory comprising a medium pore size zeolite catalyst, wherein the first catalyst inventory is a fresh catalyst inventory; (b) combining at least part of the catalyst inventory as used in step (a) with one or more catalyst streams to form a second catalyst inventory comprising a medium pore size zeolite catalyst and a large pore size zeolite catalyst; (c) contacting a hydrocarbon feedstock with the second catalyst inventory in a reactor riser to form cracked products.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: December 13, 2011
    Assignee: Shell Oil Company
    Inventors: George A. Hadjigeorge, Colin John Schaverien, Nicolaas Wilhelmus Joseph Waij
  • Publication number: 20110297585
    Abstract: The present invention relates to a process for the reduction of CO2 emissions from the flue gas of a cracking catalyst regenerator that is part of a fluidized catalytic cracking system which cracks petroleum feedstocks such as petroleum distillates of residual or crude oil which, when catalytically cracked, provide either a gasoline or a gas oil product. This process may also be utilized with regard to the cracking of synthetic feeds having boiling points of from 400° F. to about 1000 as exemplified by oils derived from coal or shale oil. By reducing the CO2 emissions in the regeneration step of catalytic cracking, the further goal of maximizing the production of CO in the flue gas is achieved, the CO being further utilized as a fuel in the refinery or further processed to produce hydrogen.
    Type: Application
    Filed: December 16, 2010
    Publication date: December 8, 2011
    Applicant: Air Liquide Large Industries U.S. LP
    Inventor: Dennis A. Vauk
  • Patent number: 8053617
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized. These zeolites are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the propyltrimethylammonium cation and E is a framework element such as gallium. These zeolites are similar to MWW but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: November 8, 2011
    Assignee: UOP LLC
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Publication number: 20110266197
    Abstract: The present invention relates to a method of production of light olefins, with the objective of maximizing the production of propylene and in particular ethylene by the use of a special catalyst containing high-silica zeolite, whose composition also includes a dehydrogenating metal, so as to generate light olefins and appreciable deposition of coke on the catalyst. Gains in selectivity for light olefins are observed, and at the same time the energy deficiency of catalytic cracking in petrochemical operations with light hydrocarbons is minimized, avoiding problems due to the need to burn heating oil in the catalyst regenerating section to make up for the energy deficit of the converter.
    Type: Application
    Filed: August 28, 2009
    Publication date: November 3, 2011
    Applicant: PETROLEO BRASILEIRO S.A. - PETROBRAS
    Inventors: Andrea de Rezende Pinho, Lam Yiu Lau
  • Publication number: 20110240523
    Abstract: A fluid catalytic cracking (FCC) process for manufacturing propylene and ethylene in increased yield. The process comprises cracking an olefinic naphtha stream and main hydrocarbon stock in combination with an olefinic C4 hydrocarbon stream in different zones of one or more risers of an FCC unit. Each FCC riser comprises an acceleration zone at the lower portion thereof, a lift stream feed nozzle at the bottom of the acceleration zone, a main hydrocarbon stock feed nozzle above the acceleration zone and an olefinic naphtha feed nozzle at a location along the acceleration zone between the lift stream feed nozzle and main hydrocarbon stock feed nozzle. The cracking is carried out on a mixed FCC catalyst comprising at least 2 percent by weight pentasil zeolite and at least 10 percent by weight Y-zeolite.
    Type: Application
    Filed: December 8, 2009
    Publication date: October 6, 2011
    Inventors: Sukumar Mandal, Asit Kumar Das, Ashwani Yadav, Manoj Yadav, Akhilesh Bhatnagar, Rajeshwar Dongara, Veera Venkata satya Bhaskara sita Rama Murthy Katravulapalli
  • Patent number: 8021642
    Abstract: A porous crystalline composition having a molar composition as follows: YO2:m X2O3:n ZO, wherein Y is a tetravalent element selected from the group consisting of silicon, germanium, tin, titanium and combinations thereof, X is a trivalent element selected from the group consisting of aluminum, gallium, boron, iron and combinations thereof, Z is a divalent element selected from the group consisting of magnesium, zinc, cobalt, manganese, nickel and combinations thereof, m is between about 0 and about 0.5, n is between about 0 and about 0.5; and the composition has an x-ray diffraction pattern which distinguishes it from the materials. A process for making the composition, and a process using the composition to treat an organic compound are also provided.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: September 20, 2011
    Assignee: Intevep, S.A.
    Inventors: Andres Quesada Perez, Gerardo Vitale Rojas
  • Patent number: 8022003
    Abstract: A porous crystalline composition having a molar composition as follows: YO2:m X2O3:n ZO, wherein Y is a tetravalent element selected from the group consisting of silicon, germanium, tin, titanium and combinations thereof, X is a trivalent element selected from the group consisting of aluminum, gallium, boron, iron and combinations thereof, Z is a divalent element selected from the group consisting of magnesium, zinc, cobalt, manganese, nickel and combinations thereof, m is between about 0 and about 0.5, n is between about 0 and about 0.5; and the composition has an x-ray diffraction pattern which distinguishes it from the materials. A process for making the composition, and a process using the composition to treat an organic compound are also provided.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: September 20, 2011
    Assignee: Intevep, S.A.
    Inventors: Andres Quesada Perez, Gerardo Vitale Rojas
  • Publication number: 20110220549
    Abstract: This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
    Type: Application
    Filed: February 17, 2011
    Publication date: September 15, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jianxin Jason Wu, William A. Wachter, Colin L. Beswick, Edward Thomas Habib, JR., Terry G. Roberie, Ruizhong Hu
  • Publication number: 20110192766
    Abstract: A supported catalyst comprises a zeolite having a silica to alumina molar ratio of 500 or less, a first metal oxide binder having a crystallite size greater than 200 ? and a second metal oxide binder having a crystallite size less than 100 ?, wherein the second metal oxide binder is present in an amount less than 15 wt % of the total weight of the catalyst.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 11, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stephen J. McCarthy, Wenyih F. Lai, Darryl Donald Lacy, Robert Ellis Kay
  • Patent number: 7993623
    Abstract: Compositions and methods suitable for removing poisonous metals from hydrocarbons are provided. The compositions comprise hydrotalcite having one or more trapping metals dispersed on the outer surface thereof.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 9, 2011
    Assignee: Albemarle Netherlands B.V.
    Inventors: Julie Ann Francis, Charles Vadovic
  • Patent number: 7982084
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized. These zeolites are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the propyltrimethylammonium cation and E is a framework element such as gallium. These zeolites are similar to MWW but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 19, 2011
    Assignee: UOP LLC
    Inventors: Jaime G. Moscoso, Deng-Yang Jan