With Group Iii Metal, Rare Earth Metal, Or Metal Oxide (i.e., Sc, Y, Al, Ga, In, Tl, Metal Of Atomic Number 57-71 Or Oxide Thereof) Patents (Class 208/120.01)
  • Patent number: 7425663
    Abstract: In a method for the production of propylene, a charge stream containing C4 to C6 olefins is evaporated, superheated, mixed with hot water vapor, the olefins vapor mixture converted on a zeolite catalyst, the reaction mixture formed thereby cooled, and then partially condensed. In order to increase the yield of propylene, the gaseous phase containing ethylene, propylene, C4 to C8 olefins, and additional hydrocarbons that is accumulated during the partial condensation is compressed, the gaseous and liquid phase containing propylene, ethylene, and other light hydrocarbons that exit from the compression step is separated into a gaseous phase containing propylene, ethylene, and other light hydrocarbons and a liquid phase containing C4+ olefins, and the liquid phase is separated into a fraction containing C4 to C6 olefins and a fraction containing C7+ olefins.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: September 16, 2008
    Assignee: Lurgi AG
    Inventors: Hermann Bach, Harald Kömpel, Bernd Ahlers, Peter Trabold, Frank Höper
  • Publication number: 20080202984
    Abstract: The present invention is directed to methods for mitigating the deleterious effect of at least one metal on an FCC catalyst. This objective is achieved by using a mixed metal oxide compound comprising magnesium and aluminum, that has not been derived from a hydrotalcite compound, and having an X-ray diffraction pattern displaying at least a reflection at a two theta peak position at about 43 degrees and about 62 degrees, wherein the ratio of magnesium to aluminum in the compound is from about 0.6:1 to about 10:1. In one embodiment, the ratio of magnesium to aluminum in the compound is from about 1:1 to about 6:1. In one embodiment, the ratio of magnesium to aluminum in the compound is from about 1.5:1 to about 10:1. In another embodiment, the invention is directed to methods wherein the ratio of magnesium to aluminum in the compound is from about 1.5:1 to about 6:1.
    Type: Application
    Filed: January 28, 2008
    Publication date: August 28, 2008
    Inventor: Albert A. Vierheilig
  • Patent number: 7414166
    Abstract: This invention provides feed introduction devices, and processes for using same, which minimize catalyst clogging. In particular, the invention is to a feed introduction device having a first end in fluid communication with a feed source, a second end in fluid communication with a reactor and a deviation zone between the first end and the second end to deviate the flow of feed about a deviation angle from the first end toward the second end. According to the invention, the deviation angle is greater than 90 degrees.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: August 19, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Brian A. Cunningham, Christopher G. Smalley, Rathna P. Davuluri
  • Patent number: 7381322
    Abstract: This invention provides a resid cracking apparatus comprising a riser, reactor, stripper cum separator with adjustable outlets in flow communication with adsorbent and catalyst regenerators for converting hydrocarbon residues containing higher concentration of conradson carbon content, poisonous metals such as nickel & vanadium and basic nitrogen etc., into lighter and valuable products and a process thereof.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: June 3, 2008
    Assignee: Indian Oil Corporation Limited
    Inventors: Kasliwal Pankaj, Rama Rao Marri, Dixit Jagdev Kumar, Saroya Latoor Lal, Sukumar Mandal, Satish Makhija, Sobhan Ghosh
  • Patent number: 7375257
    Abstract: A process for cracking an olefin containing hydrocarbon feedstock which is selective towards light olefins in the effluent, the process comprising passing a hydrocarbon feedstock containing one or more olefins through a moving bed reactor containing a crystalline silicate catalyst selected from an MFI-type crystalline silicate having a silicon/aluminium atomic ratio of at least 180 and an MEL-type crystalline silicate having a silicon/aluminium atomic ration of from 150 to 800 which has been subjected to a steaming step, at an inlet temperature of from 500 to 600° C., at an olefin partial pressure of from 0.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: May 20, 2008
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Jean-Pierre Dath, Walter Vermeiren
  • Patent number: 7371316
    Abstract: A catalytic composition useful for cracking and reducing the viscosity of heavy hydrocarbons. The catalytic composition comprises Portland cement, a volcanic ash component, titanium dioxide, and a transition metal salt. Optionally, a hydrogen source is added to the catalytic composition.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: May 13, 2008
    Inventor: Jeffrey P. Newton
  • Patent number: 7347930
    Abstract: A novel process for cracking olefins including contacting a hydrocarbon oil with a catalyst in a riser reactor having multiple reaction zones under cracking reaction conditions; separating reaction products and the catalyst; regenerating at least a part of spent catalyst obtained, contacting a part of the regenerated catalyst with the hydrocarbon in the first reaction zone; contacting the other part of the spent catalyst and/or regenerated catalyst in at least one reaction zone after the first reaction zone with the products obtained in previous reaction zones.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: March 25, 2008
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Yuxia Zhu, Huiping Tian, Yujian Liu, Zhenyu Chen, Yaoqing Guo, Zhijian Da, Jiushun Zhang, Mingyuan He
  • Patent number: 7326332
    Abstract: A multi component catalyst and catalytic cracking process for selectively producing C3 olefins. The catalyst comprises a first molecular sieve having an intermediate pore size, a second molecular sieve and, optionally a third molecular sieve having a large pore size. At least one of the channels of the second molecular sieve has a pore size index that is less than the pore size index of at least one channel of the first molecular sieve. The process is carried out by contacting a feedstock containing hydrocarbons having at least 5 carbon atoms is contacted, under catalytic cracking conditions, with the multi component catalyst. The catalyst finds application in the cracking of naphtha and heavy hydrocarbon feedstocks.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: February 5, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, John Scott Buchanan, Brian Erik Henry, Paul F. Keusenkothen, Philip A. Ruziska, David L. Stern
  • Patent number: 7309416
    Abstract: Sulfur is removed from a hydrocarbon fuel via contact with a desulfurization agent; the desulfurization agent is then regenerated (wherein sulfur is released) by exposing it to oxygen. The sulfur removal and regeneration processes each can be carried out at relatively moderate temperatures, e.g., from 300 to 600° C., and pressure, e.g., about 0.79 to about 3.5 MPa; and the desulfurization agent can include a transition metal oxide, such as molybdenum oxide. The process can also include the additional steps of cracking the hydrocarbon, separating high-boiling and low-boiling fractions from the reaction product and contacting the lower-boiling fraction with a secondary desulfurization agent.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: December 18, 2007
    Assignee: Aspen Products Group, Inc.
    Inventors: Mark D. Fokema, Wendell E. Rhine, Neng Ye, Kang P. Lee, Jennifer P. Gordon
  • Patent number: 7154015
    Abstract: Process for the production of propylene starting from mixtures of hydrocarbons, prevalently olefins, the above hydrocarbons having a boiling point ranging from ?15° C. to +80° C., preferably from ?12° C. to +60° C., which comprises putting the above mixture of hydrocarbons in contact, under cracking conditions, with a large-pore zeolite having a molar ratio Silica/Alumina lower than 200, preferably ranging from 50 to 150.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: December 26, 2006
    Assignees: Enichem S.p.A., Enitecnologie S.p.A.
    Inventors: Carlo Perego, Stefano Peratello, Paolo Pollesel, Sergio Sgorlon, Maria Angela Mantegazza, Massimo Romagnoli
  • Patent number: 7153413
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, is reduced in a catalytic cracking process employing a cracking catalyst containing a high content of vanadium. The cracking process involves introducing at least one vanadium compound into a hydrocarbon-sulfur containing feedstock to be charged to a fluid catalytic cracking reactor operating under steady state conditions and containing an equilibrium fluid cracking catalyst inventory within the reactor. The amount of sulfur in the liquid products, in particular gasoline and LCO fractions, is reduced as a result of the increased vanadium content on the equilibrium catalyst. Advantageously, sulfur reduction is achieved even in the presence of other metal contaminants, such as nickel and iron, on the equilibrium catalyst.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: December 26, 2006
    Assignee: W.R. Grace &Co.-Conn.
    Inventors: Terry G. Roberie, Ranjit Kumar, Michael S Ziebarth, Wu-Cheng Cheng, Xinjin Zhao, Nazeer Bhore
  • Patent number: 7151199
    Abstract: Hydrocarbon or oxygenate conversion process in which a feedstock is contacted with a non zeolitic molecular sieve which has been treated to remove most, if not all, of the halogen contained in the catalyst. The halogen may be removed by one of several methods. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The hydrocarbon or oxygenate conversion processes include the conversion of oxygenates to olefins, the conversion of oxygenates and ammonia to alkylamines, the conversion of oxygenates and aromatic compounds to alkylated aromatic compounds, cracking and dewaxing.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: December 19, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc Roger Marc Martens, Stephen N. Vaughn, Albert Edward Schweizer, John K. Pierce, Shun Chong Fung
  • Patent number: 7125817
    Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Group 3 and one or more elements from Groups 4–15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur, wherein the elements from Groups 3, Groups 4–15 and the at least one of oxygen and sulfur are chemically bound both within and between the groups and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: October 24, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Neeraj Sangar
  • Patent number: 7122492
    Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Groups 1 and 2; one or more elements from Group 3; one or more elements from Groups 4–15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: October 17, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Neeraj Sangar
  • Patent number: 7122495
    Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: October 17, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Di-Yi Ou, Neeraj Sangar
  • Patent number: 7122494
    Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of two or more elements from Groups 4–15 of the Periodic Table of the Elements and at least one of oxygen and sulfur, wherein the elements from Groups 4–15 and the at least one of oxygen and sulfur are chemically bound both within and between the groups and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: October 17, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Neeraj Sangar
  • Patent number: 7115198
    Abstract: A novel crystalline aluminophosphate and metalloaluminophosphate of the molecular sieve type, denominated SSZ-51, is prepared by hydrothermal synthesis from reactive sources of aluminum and phosphorus, fluorine and an organic templating agent, 4-dimethylaminopyridine. SSZ-51 is useful in catalysts for, e.g., hydrocarbon conversion reactions.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: October 3, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Thomas V. Harris
  • Patent number: 7087155
    Abstract: A process for cracking an olefin-rich hydrocarbon feedstock which is selective towards light olefins in the effluent, the process comprising contacting a hydrocarbon feedstock containing olefins having a first composition of at least one olefinic component with a crystalline silicate catalyst to produce an effluent having a second composition of at least one olefinic component, the feedstock and the effluent having substantially the same olefin content by weight therein as the feedstock. A process for the cracking of olefins in a hydrocarbon feedstock containing at least one diene and at least one olefin, the process comprising hydrogenating the at least one diene to form at least one olefin in the presence of a transition metal-based hydrogenation catalyst at an inlet temperature of from 40 to 200° C.
    Type: Grant
    Filed: December 5, 1998
    Date of Patent: August 8, 2006
    Assignee: TOTAL Petrochemicals Research Feluy
    Inventors: Jean-Pierre Dath, Luc Delorme, Jacques-François Grootjans, Xavier Vanhaeren, Walter Vermeiren
  • Patent number: 7083714
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-65 prepared using 1-[1-(4-chlorophenyl)-cyclopropylmethyl]-1-ethyl-pyrrolidinium or 1-ethyl-1-(1-phenyl-cyclopropylmethyl)-pyrrolidinium cation as a structure-directing agent, methods for synthesizing SSZ-65 and processes employing SSZ-65 in a catalyst.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: August 1, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Patent number: 7045056
    Abstract: A composition for controlling CO and NOx emissions during FCC processes comprises (i) acidic oxide support, (ii) cerium oxide, (iii) lanthanide oxide other than ceria such as praseodymium oxide (iv), optionally, oxide of a metal from Groups Ib and IIb such as copper, silver and zinc and (v) precious metal such as Pt and Pd.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: May 16, 2006
    Assignee: Engelhard Corporation
    Inventors: Chandrasbekhar Pandurang Kelkar, Yuejin Li, Rostam J. Madon, Marius Vaarkamp
  • Patent number: 7041866
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component comprising at least one Group III A (IUPAC 13) component, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: May 9, 2006
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 7033487
    Abstract: A catalyst composition comprising about 5–55 wt % metal-doped anionic clay, about 10–50 wt % zeolite, about 5–40 wt % matrix alumina, about 0–10 wt % silica, about 0–10 wt % of other ingredients, and balance kaolin. In metal-doped anionic clays, the additive, i.e. the metal dopant, is distributed more homogeneously within the anionic clay than in impregnated anionic clays, without separate phases of additive being present. Hence, abrasion of this catalyst composition will result in microfines poorer in additive than the prior art composition. Furthermore, the catalyst composition according to the invention results in a higher reduction of sulfur in fuels such as gasoline and diesel than is the case in compositions comprising impregnated anionic clay.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: April 25, 2006
    Assignee: Albemarle Netherlands B.V.
    Inventors: Paul O'Connor, Gregory A. Pearson, Jerry J. Springs, Dennis Stamires
  • Patent number: 7025873
    Abstract: Cationic layered materials, a process for their preparation and their use in hydrocarbon conversion, purification, and synthesis processes, such as fluid catalytic cracking. Cationic layered materials are especially suitable for the reduction of SOx and NOx emissions and the reduction of the sulfur and nitrogen content in fuels like gasoline and diesel. The new preparation process avoids the use of metal salts and does not require the formation of anionic clay as an intermediate.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: April 11, 2006
    Assignees: Albemarle Netherlands BV., Akzo Nobel NV.
    Inventors: Paul O'Connor, William Jones, Dennis Stamires
  • Patent number: 6998037
    Abstract: The present invention relates to the use of zeolite ITQ-21 in a process of catalytic cracking of organic compounds. In said cracking process the zeolite ITQ-21 can be present in the catalyst as the sole zeolite component of same of combined with at least one second zeolite component. Moreover, said zeolite ITQ-21 can be present in the catalyst as unmodified zeolite ITQ-21 or as ITQ-21 modified zeolite. The preferred combinations, wherein the zeolite forms part of the cracking catalyst, are those wherein it is combined with at least one second zeolite component. The preferred modifications comprise, for example, a modification by means of post-synthesis treatment with phosphorous or a modification involving the introduction of acid centres. The catalytic process is preferably an FCC or DPC type hydrocarbon cracking process.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: February 14, 2006
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Avelino Corma Canós, María José Díaz Cabañas, Luis Joaquín Martinez Triguero, Fernando Rey García
  • Patent number: 6977322
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element, yttrium or mixtures thereof, which is preferably ytterbium or holmium, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: December 20, 2005
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 6977321
    Abstract: A process for the production of propylene from an olefinic feedstock containing at least one olefin of C4 or greater, the process comprising contacting the olefinic feedstock with a catalyst of the MFI-type having a silicon/aluminum atomic ratio of at least about 180 to produce an effluent containing propylene, the propylene yield on an olefin basis being from 30 to 50k based on the olefinic content of the feedstock.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: December 20, 2005
    Assignee: Fina Research S.A.
    Inventors: Jean-Pierre Dath, Luc Delorme, Jacques-François Grootjans, Xavier Vanhaeren, Walter Vermeiren
  • Patent number: 6953872
    Abstract: This invention relates to a process of producing C2- to C4-olefins from steam and a feed mixture containing C4- to C8-olefins, wherein the feed mixture containing steam is introduced into a reactor with an inlet temperature of 300 to 700° C., said reactor comprising a bed of granular, form-selective zeolite catalyst, and wherein a product mixture containing steam and C2- to C4-olefins is withdrawn from the bed and is passed through at least one cooling means.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: October 11, 2005
    Assignee: MG Technologies AG
    Inventors: Ulrich Koss, Martin Rothaemel, Peter König
  • Patent number: 6951968
    Abstract: A process for the production of olefins by catalytic cracking, the process comprising feeding a hydrocarbon feedstock containing at least one olefin of C4 or greater over a MFI-type crystalline silicate catalyst to produce an effluent containing at least one olefin of C2 or greater by catalytic cracking which is selective towards light olefins in the effluent, whereby for increasing the catalyst stability by limiting formation of coke thereon during the cracking process the catalyst has a silicon/aluminum atomic ratio of at least about 180, the olefin partial pressure is from 0.1 to 2 bars, and the feedstock contacts the catalyst at an inlet temperature of from 500 to 600° C.
    Type: Grant
    Filed: December 5, 1998
    Date of Patent: October 4, 2005
    Assignee: Fina Research S.A.
    Inventors: Jean-Pierre Dath, Luc Delorme, Jacques-François Grootjans, Xavier Vanhaeren, Walter Vermeiren
  • Patent number: 6942784
    Abstract: Zeolite microsphere FCC catalysts having a novel morphology comprising a porous matrix and crystallized zeolite freely coating the walls of the pores of the matrix. The catalysts are formed from microspheres containing a metakaolin and an alumina source other than kaolin having a high pore volume.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: September 13, 2005
    Assignee: Engelhard Corporation
    Inventors: David M. Stockwell, Stephen H. Brown, Ji-Yong Ryu
  • Patent number: 6942783
    Abstract: A fluid catalytic cracking catalyst is provided with a high porosity by in-situ crystallizing an aluminosilicate zeolite from a reactive microsphere comprising metakaolin and hydrous kaolin. Any calcination of the reactive microsphere before reaction with a zeolite-forming solution is done at low temperatures so as to ensure the hydrous kaolin is not converted to metakaolin.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: September 13, 2005
    Assignee: Engelhard Corporation
    Inventors: Mingting Xu, David Matheson Stockwell
  • Patent number: 6930217
    Abstract: A catalytic material includes a microporous zeolite supported on a mesoporous inorganic oxide support. The microporous zeolite can include zeolite beta, zeolite Y or ZSM-5. The mesoporous inorganic oxide can be, e.g., silica or alumina, and can optionally include other metals. Methods for making and using the catalytic material are described herein.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: August 16, 2005
    Assignee: ABB Lummus Global Inc.
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Johannes Hendrik Koegler, Thomas Maschmeyer
  • Patent number: 6923903
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: August 2, 2005
    Assignees: ExxonMobil Oil Corporation, W.R. Grace & Co.-Conn.
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Terry G. Roberie, Michael S. Ziebarth
  • Patent number: 6916459
    Abstract: This invention refers to a new zeolitic material included under the ITQ-16 denomination, to the method for obtaining them and their use as catalysts. This material, ITQ-16 zeolite, is characterized by having different ratios of the different polymorphs A, B and C described as possible intergrowths in Beta zeolite and which, therefore, show different X-ray diffraction patterns to that described for Beta zeolite, showing the X-ray diffraction pattern for ITQ-16, as it is synthesised, diffraction peaks at 2? angles of 6.9°, 7.4°, and 9.6°, simultaneously. ITQ-16 zeolite in its calcinated form has the following empiric formula: x(M1/nXO2):tTO2:gGeO2:(1?g)SiO2 where T is one or various elements with +4 oxidation status, different of Ge and Si; X is one or various elements with +3 oxidation status and M can be H+ or one or various inorganic cations with charge +n, t is comprised between 0 and 0.1, g is comprised between 0.001 and 0.33 and x is comprised between 0 and 0.2.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: July 12, 2005
    Assignees: Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia
    Inventors: Avelino Corma Canós, Maria Teresa Navarro Villalba, Fernando Rey García, Susana Valencia Valencia
  • Patent number: 6908603
    Abstract: A novel method of forming ZSM-5 comprises reacting calcined kaolin microspheres with silicate and a seed solution used for forming zeolite Y under conditions of pH, temperature, and time to yield ZSM-5 crystals formed in-situ on said calcined kaolin microspheres. The reaction medium does not contain any organic templates or ZSM-5 seeding crystals.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: June 21, 2005
    Assignee: Engelhard Corporation
    Inventors: Mingting Xu, John Macaoay
  • Patent number: 6908544
    Abstract: The present invention relates to a cracking catalyst comprising layered clays and a process for cracking hydrocarbon oils using said catalyst. Said catalyst is prepared by the process comprising the following steps: mixing and slurrying an expandable clay, a modifier component, pseudo-boehmite and water for 0.1-10 h to obtain a slurry, aging the slurry at 50-85° C. for 0.1-10 h, then drying and forming the slurry to obtain a formed material, water washing and aging the solid, and finally drying and calcining the solid, and said modifier being one or more selected from the group consisting of hydroxyl polymers of silicon, aluminum, zirconium or titanium, and substances comprising one or more of said hydroxyl polymers.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: June 21, 2005
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing,
    Inventors: Zhiqing Yu, Zhijian Da, Zhenyu Chen, Enze Min, Jun Long, Caiying Li, Zhiqing Huang
  • Patent number: 6902665
    Abstract: Compositions comprising a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) palladium promote CO combustion in FCC processes while minimizing the formation of NOx. The acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen storage oxide.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: June 7, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Alan W. Peters, Edward F. Rakiewicz, Gordon Dean Weatherbee, Xinjin Zhao
  • Patent number: 6858129
    Abstract: There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: February 22, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Xiaobing Feng, Marc H. Anthonis, Bart Schoofs
  • Patent number: 6852214
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction additive comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve. The molecular sieve is normally a large pore size zeolite such as USY or zeolite beta or an intermediate pore size zeolite such as ZSM-5. The metal is normally a metal of Period 4 of the Periodic Table, preferably zinc or vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: February 8, 2005
    Assignees: Mobil Oil Corporation, W. R. Grace & Co.-Conn.
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Michael S. Ziebarth, Terry G. Roberie
  • Patent number: 6837989
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it in an upstream zone of the primary FCC riser reactor.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: January 4, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, George A. Swan, III, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Publication number: 20040262197
    Abstract: The present invention relates to the reduction of the concentrations of nitrogen oxides (NOx) from a fluid catalytic cracking (FCC) regenerator by operating the regenerator in partial CO burn mode with a NOx reducing catalyst system.
    Type: Application
    Filed: April 21, 2004
    Publication date: December 30, 2004
    Inventors: Duane R. McGregor, James O. Guerra
  • Patent number: 6835863
    Abstract: A C4+ naphtha hydrocarbon feed is converted to light olefins and aromatics, by contacting the feed with a catalyst containing ZSM-5 and/or ZSM-11, a substantially inert matrix material such as silica and/or clay, having less than about 20 wt % active matrix material based on total catalyst composition, and phosphorus.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: December 28, 2004
    Assignee: ExxonMobil Oil Corporation
    Inventors: Art W. Chester, Ke Liu, Robert A. Ware
  • Publication number: 20040256290
    Abstract: A catalyst for fluidized catalytic cracking of a heavy hydrocarbon oil, which comprises (A) catalyst particles comprising a compound of a bivalent metal or a compound of bivalent and trivalent metals, wherein said compound shows an XRD pattern of a carbonate of the bivalent metal, and (B) catalyst particles comprising a crystalline aluminosilicate zeolite and a mixture compound of aluminum and at least one metal selected from the group consisting of the Group IVa metals of the Periodic Table.
    Type: Application
    Filed: July 29, 2004
    Publication date: December 23, 2004
    Inventors: Hidenori Yamada, Tadashi Shibuya, Nobuki Sekine
  • Publication number: 20040256291
    Abstract: The present invention relates to the use of zeolite ITQ-21 in a process of catalytic cracking of organic compounds. In said cracking process the zeolite ITQ-21 can be present in the catalyst as the sole zeolite component of same of combined with at least one second zeolite component. Moreover, said zeolite ITQ-21 can be present in the catalyst as unmodified zeolite ITQ-21 or as ITQ-21 modified zeolite. The preferred combinations, wherein the zeolite forms part of the cracking catalyst, are those wherein it is combined with at least one second zeolite component. The preferred modifications comprise, for example, a modification by means of post-synthesis treatment with phosphorous or a modification involving the introduction of acid centres. The catalytic procxess is preferably an FCC or DPC type hydrocarbon cracking process.
    Type: Application
    Filed: April 2, 2004
    Publication date: December 23, 2004
    Inventors: Avelino Corma Canos, Maria Jose Diaz Cabanas, Luis Joaquin Martinez Triguero, Fernando Rey Garcia
  • Publication number: 20040245148
    Abstract: In the regeneration of a cracking catalyst in a regeneration zone operated in a partial combustion mode, NH3 and HCN in the regenerator flue gas are reduced by incorporating into the regenerator precious metals such as ruthenium, rhodium, iridium, or mixtures thereof.
    Type: Application
    Filed: June 6, 2003
    Publication date: December 9, 2004
    Inventor: Mingting Xu
  • Patent number: 6827843
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-63 prepared using N-cyclodecyl-N-methyl-pyrrolidinium cation as a structure-directing agent, methods for synthesizing SSZ-63 and processes employing SSZ-63 in a catalyst.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: December 7, 2004
    Assignee: Chevron U.S.A., Inc.
    Inventor: Saleh Elomari
  • Publication number: 20040238407
    Abstract: A novel method of forming ZSM-5 comprises reacting calcined kaolin microspheres with silicate and a seed solution used for forming zeolite Y under conditions of pH, temperature, and time to yield ZSM-5 crystals formed in-situ on said calcined kaolin microspheres. The reaction medium does not contain any organic templates or ZSM-5 seeding crystals.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 2, 2004
    Inventors: Mingting Xu, John Macaoay
  • Patent number: 6803494
    Abstract: A process for producing polypropylene from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is contacted with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures from about 500° C. to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia. The catalyst may be pre-coked with a carbonaceous feed. Alternatively, the carbonaceous feed used to coke the catalyst may be co-fed with the naphtha feed.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: October 12, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, Brian Erik Henry, Shun C. Fung
  • Publication number: 20040188324
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-65 prepared using 1-[1-(4-chlorophenyl)-cyclopropylmethyl]-1-ethyl-pyrrolidinium or 1-ethyl-1-(1-phenyl-cyclopropylmethyl)-pyrrolidinium cation as a structure-directing agent, methods for synthesizing SSZ-65 and processes employing SSZ-65 in a catalyst.
    Type: Application
    Filed: March 26, 2003
    Publication date: September 30, 2004
    Inventor: Saleh Elomari
  • Patent number: 6797155
    Abstract: A process for catalytic cracking of a hydrocarbon feedstock comprises contacting the feedstock with a catalyst composition comprising a primary cracking component, such as zeolite Y, and a mesoporous aluminophosphate material which includes a solid aluminophosphate composition modified with at least one element selected from zirconium, cerium, lanthanum, manganese, cobalt, zinc, and vanadium. The mesoporous aluminophosphate material has a specific surface area of at least 100 m2/g, an average pore size less than or equal to 100 Å, and a pore size distribution such that at least 50% of the pores have a pore diameter less than 100 Å.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: September 28, 2004
    Assignee: ExxonMobil Research & Engineering Co.
    Inventors: Arthur Warren Chester, Frederick Earl Daugherty, Anthony Shiu lun Fung, Charles Theodore Kresge, Hye Kyung Cho Timken, James Clarke Vartuli, Ranjit Kumar, Terry G. Roberie, Michael S. Ziebarth
  • Publication number: 20040182744
    Abstract: A family of crystalline aluminosilicate zeolites designated UZM-8HS and derived from UZM-8 have been synthesized. The aluminum content of the UZM-8HS is lower than that of the starting UZM-8 thus changing its ion exchange capacity and acidity.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 23, 2004
    Inventors: Deng Yang Jan, Jaime G. Moscoso, Susan G. Koster, Lisa M. Rohde, Gregory J. Lewis, Mark A. Miller, R. Lyle Patton, Stephen T. Wilson