First Stage Is Thermal Or Catalytic Cracking Patents (Class 208/67)
  • Patent number: 7288685
    Abstract: A process for producing olefins from biorenewable feedstocks has been developed. The process comprises first pretreating the feedstock, e.g. vegetable oil, to remove contaminants such as alkali metals and then cracking the purified feedstock in a fluidized catalytic cracking (FCC) zone operated at conditions to provide C2-C5 olefins.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: October 30, 2007
    Assignee: UOP LLC
    Inventor: Terry L. Marker
  • Patent number: 7227045
    Abstract: Process for the preparation of a mixture comprising C5+ linear olefins, which process comprises the steps of (a) reacting carbon monoxide and hydrogen in the presence of an effective amount of Fischer-Tropsch catalyst under Fischer-Tropsch reaction conditions; (b) separating from the hydrocarbon mixture thus prepared at least one hydrocarbon fraction, of which at least 95% by weight consists of hydrocarbons containing 15 carbon atoms or more; (c) contacting this hydrocarbon fraction with hydrogen in the presence of an effective amount of hydrogenation catalyst under hydrogenation conditions; (d) subjecting the hydrogenated hydrocarbon fraction thus obtained to a mild thermal cracking treatment; and (e) separating from the cracked product thus prepared the mixture comprising C5+ linear olefins.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: June 5, 2007
    Assignee: Shell Oil Company
    Inventors: Joachim Ansorge, Hendrik Dirkzwager, Joannes Ignatius Geijsel, Abdul Razak Mohamad Ali, Timothy Michael Nisbet, Laurent Alain Michel Fenouil
  • Patent number: 7214309
    Abstract: The instant invention is directed to a process for upgrading heavy oils using a slurry composition. The slurry composition is prepared in a series of steps, involving mixing a Group VIB metal oxide with aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal compound. Subsequent steps involve mixing the slurry with a hydrocarbon oil, and combining the resulting mixture with hydrogen gas (under conditions which maintain the water in a liquid phase) to produce the active slurry catalyst.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: May 8, 2007
    Assignee: Chevron U.S.A. Inc
    Inventors: Kaidong Chen, Pak C. Leung, Bruce E. Reynolds, Julie Chabot
  • Patent number: 7144498
    Abstract: Supercritical conversion of hydrocarbons boiling above 538° C. (1000° F.) with a solvating hydrocarbon at a weight ratio of solvating hydrocarbon to high-boiling hydrocarbons of at least 2:1 and at conditions above the critical temperature and pressure of the high-boiling hydrocarbons-solvent mixture, in the presence of hot fluidized solids. The hydrocarbons are supplied to a reaction zone at a temperature below that of the hot solids supplied thereto, whereby the resulting hydrocarbons-solids suspension has a thermal equilibrium temperature corresponding to the reaction temperature. The conversion has high rates of sulfur, nitrogen and metals removal, nearly complete conversion to lower molecular weight products, high naphtha and distillate selectivity, and low coke formation.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: December 5, 2006
    Assignee: Kellogg Brown & Root LLC
    Inventors: Thomas F. McCall, Pritham Ramamurthy, Kiran V. Shah, Michael A. Silverman, Martin John Van Sickels
  • Patent number: 7097760
    Abstract: A catalytic hydrocracking process for the production of ultra low sulfur diesel wherein a hydrocarbonaceous feedstock is hydrocracked at elevated temperature and pressure to obtain conversion to diesel boiling range hydrocarbons. The resulting hydrocracking zone effluent is hydrogen stripped in a stripping zone maintained at essentially the same pressure as the hydrocracking zone to produce a first gaseous hydrocarbonaceous stream and a first liquid hydrocarbonaceous stream. The first gaseous hydrocarbonaceous stream containing diesel boiling range hydrocarbons is introduced into a desulfurization zone and subsequently partially condensed to produce a hydrogen-rich gaseous stream and a second liquid hydrocarbonaceous stream containing diesel boiling range hydrocarbons. The first liquid stream is separated to produce a third liquid hydrocarbonaceous stream containing diesel boiling range hydrocarbons which is also introduced into the desulfurization zone. An ultra low sulfur diesel product stream is recovered.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: August 29, 2006
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Vasant P. Thakkar, Richard K. Hoehn
  • Patent number: 7067053
    Abstract: A process for upgrading a heavy crude oil includes the steps of providing a heavy crude oil; and exposing the heavy crude oil to residue conversion conditions in the presence of a free radical generator and a hydrogen donor, whereby the free radical generator enhances reactions to form distillates, and the hydrogen donor inhibits reactions to form coke.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: June 27, 2006
    Assignee: Intevep, S.A.
    Inventors: Edgar A Cotte, Ivan C. Machin
  • Patent number: 6875339
    Abstract: The invention relates to methods for improving the octane number of a synthetic naphtha stream and optionally for producing olefins and/or solvents. In one embodiment, the method comprises aromatizing at least a portion of a synthetic naphtha stream to produce an aromatized hydrocarbon stream; and isomerizing at least a portion of the aromatized hydrocarbon stream to produce an isomerized aromatized hydrocarbon stream having a higher octane rating than the synthetic naphtha stream. Alternatively, the method comprises providing at least three synthetic naphtha cuts comprising a C4-C5 stream; a C6-C8 stream and a C9-C11 stream; aromatizing some of the C6-C8 stream to form an aromatized hydrocarbon stream with a higher octane number; steam cracking some of the C6-C8 stream and optionally the C9-C11 stream to form olefins; and selling some portions of C9-C11 stream as solvents. In preferred embodiments, the synthetic naphtha is derived from Fischer-Tropsch synthesis.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: April 5, 2005
    Assignee: ConocoPhillips Company
    Inventors: Priya Rangarajan, Steven R. McDonald, Joe D. Allison, Keith H. Lawson, Oluwaseyi A. Odueyungbo, Doug S. Jack, Rafael L. Espinoza
  • Patent number: 6869521
    Abstract: A process and apparatus are disclosed contacting hydrocarbon feed with catalyst in a reactor vessel under conditions more vigorous than bubbling bed conditions and preferably fast fluidized flow conditions. The vigorous conditions assure thorough mixing of catalyst and feed to suppress formation of dry gas and the promotion of hydrogen transfer reactions.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: March 22, 2005
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 6866771
    Abstract: A process and apparatus is disclosed for contacting feed with mixed catalyst in a secondary reactor that is incorporated into an FCC reactor. The mixed catalyst used in the secondary reactor is regenerated catalyst from a regenerator that regenerates spent catalyst from an FCC reactor that is mixed with spent catalyst from either the FCC reactor or the secondary reactor. The mixing of spent and regenerated catalyst reduces the catalyst temperature and tempers catalyst activity to inhibit both thermal and catalytic cracking reactions.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: March 15, 2005
    Assignee: UOP LLC
    Inventors: David A. Lomas, Rusty M. Pittman
  • Patent number: 6837989
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it in an upstream zone of the primary FCC riser reactor.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: January 4, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, George A. Swan, III, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Publication number: 20040256288
    Abstract: The present invention provides an upgraded synthetic gasoline having a true boiling point (TBP) range of between 50° C.-300° C., a sulphur content of less than 1 ppm, a nitrogen content of less than 1 ppm, an aromatics content of between 0.01%-35% by weight, an olefins content of between 0.01%-45%, a benzene content of less than 1.00% by weight, an oxygen content of between 0.5-3.0% by weight, a RON of greater than 80, and a MON of greater than 80. The invention also provides processes for the production of the upgraded synthetic gasoline wherein the synthetic products derived from a Fischer-Tropsch reaction are passed to a cracking reactor to produce a synthetic gasoline stream which is subsequently fractionated and upgraded using an oxygenating reactor, and optionally a combination of an MTBE reactor, a dehydrocyclodimerisation reactor and C5 isomerisation reactor. The upgraded synthetic gasoline is useful as a fuel.
    Type: Application
    Filed: May 4, 2004
    Publication date: December 23, 2004
    Inventor: Josephus Johannes Helena Maria Font Freide
  • Patent number: 6811682
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: November 2, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, George A. Swan, III, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Patent number: 6797153
    Abstract: A catalyst for the hydrocracking of heavy oils contains iron and active carbon having an MCH conversion rate of 40-80%, a specific surface area of 600-1000 m2/g of, a pore volume of 0.5 to 1.4 cm3/g, 2-50 nanometers' mesopore volume of not less than 60% and an average pore diameter of 3-6 nanometers, the iron being carried on the active carbon in an amount of 1 to 20 wt. % to the active carbon. The hydrocracking process using the catalyst includes a first step of conducting hydrocracking at a temperature within the range of 360-450° C. at a hydrogen partial pressure of 2-14 MPaG and a second step of conducting hydrocracking at a temperature within the range of 400-480° C. at a hydrogen partial pressure of 2-18 MPaG, which can suppress the generation of coke and remove, in a high efficiency, heavy metals such as Ni and V, asphaltene, residual carbon, sulfur and nitrogen from the heavy oils.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: September 28, 2004
    Assignees: Petroleum Energy Center, Toyo Engineering Corporation
    Inventors: Hidetsugu Fukuyama, Koji Ohtsuka, Satoshi Terai, Shuhei Sawamoto
  • Patent number: 6774272
    Abstract: A process for converting a blend of plastic waste and a Fischer-Tropsch waxy fraction into high VI lube oils. A Fischer-Tropsch wax is separated into a 1000° F.+ fraction and a 1000° F.− fraction. The higher boiling fraction is combined with virgin or waste polyolefin and fed to a pyrolysis zone after being heated in a heating unit. The pyrolysis effluent is separated into at least a heavy fraction. Any light fraction recovered can be further processed into a feed for gasoline products. Any middle fraction recovered can be hydrotreated and isodewaxed to form diesel, diesel blending and jet fuel, or can be oligomerized, hydrotreated and isodewaxed to form high VI lubricating base oil. The heavy fraction is hydrotreated and isodewaxed to yield high VI lubricating base oil. The process can be conducted on a continuous basis.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: August 10, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 6770191
    Abstract: Process for the preparation of a mixture comprising C5+ linear olefins, which process comprises the steps of (a) reacting carbon monoxide and hydrogen in the presence of an effective amount of Fischer-Tropsch catalyst under Fischer-Tropsch reaction conditions; (b) separating from the hydrocarbon mixture thus prepared at least one hydrocarbon fraction, of which at least 95% by weight consists of hydrocarbons containing 15 carbon atoms or more; (c) contacting this hydrocarbon fraction with hydrogen in the presence of an effective amount of hydrogenation catalyst under hydrogenation conditions; (d) subjecting the hydrogenated hydrocarbon fraction thus obtained to a mild thermal cracking treatment; and (e) separating from the cracked product thus prepared the mixture comprising C5+ linear olefins.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: August 3, 2004
    Assignee: Shell Oil Company
    Inventors: Joachim Ansorge, Hendrik Dirkzwager, Joannes Ignatius Geijsel, Abdul Razak Mohamad Ali, Timothy Michael Nisbet, Laurent Alain Michel Fenouil
  • Patent number: 6767451
    Abstract: A process for cracking, in a fluidized bed, a hydrocarbon charge wherein the cooling particles, which may optionally also be catalytic particles, circulate in two successive reaction chambers (1; 16), in each of which they are brought into contact with at least one cut of hydrocarbons, and the reaction effluents from each of the chambers are directed towards one and the same fractionating unit. The effluents from each of the reaction chambers (1; 16) are fractionated in part separately in one and the same partially partitioned fractionating unit, and at least one cut (12) obtained by separately fractionating the effluents from one of the two reaction chambers (1; 16) is, as a whole or in part, reinjected into the other chamber.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: July 27, 2004
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Marcellin Espeillac, Pierre Crespin
  • Patent number: 6755962
    Abstract: A slurry phase reactor is designed to treat extra heavy petroleum crude in a combination of thermal-zone and catalytic-zone in a counterflow system where liquid feed is added to the top and hydrogen at the bottom. Feed enters the gas-phase thermal zone, where it passes to a liquid-phase thermal zone. In the liquid-phase thermal zone, the hydrocarbon is thermally cracked and the unreacted liquid is further passed to a catalytic-zone below in communication with the thermal-zone. Catalyst can be added or removed as required in a continuous mode without shutting down the system. The heat generated inside the catalytic cracking zone is distributed to the entire reactor as the gaseous product flows upward. Feed is brought to the reaction conditions by the heat recovered from the gas-phase zone. Reaction temperature could be controlled by feed temperature.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: June 29, 2004
    Assignee: ConocoPhillips Company
    Inventor: Dwijen K. Banerjee
  • Publication number: 20040030210
    Abstract: A process is provided for the production of xylenes from reformate. The process is carried out by methylating the benzene, toluene, or both present in the reformate to produce a resulting product having a higher xylenes content than the reformate. Greater than equilibrium amounts of para-xylene can be produced by the process.
    Type: Application
    Filed: June 18, 2003
    Publication date: February 12, 2004
    Inventors: Gary D. Mohr, John Scott Buchanan, Robert A. Crane, Jihad M. Dakka, Xiaobing Feng, Larry L. Laccino, Shifang L. Luo
  • Patent number: 6677496
    Abstract: A process for the coproduction of purified benzene and ethylene is provided. The method comprises providing a first mixture comprising benzene, toluene, and one or more C6 to C7 non-aromatics and separating the majority of the benzene and the one or more C6 to C7 non-aromatics from the majority of the toluene to form a second mixture containing benzene and at least a portion of the one or more C6 to C7 non-aromatics. Thereafter at least about 80% of the C6 to C7 non-aromatics in the second mixture are cracked while maintaining essentially no cracking of benzene to produce a cracked product containing ethylene, propylene and pyrolysis gasoline comprising olefins, di-olefins and benzene. The pyrolysis gasoline is preferably hydrotreated and then fractionated to form a purified benzene product comprising at least about 80 wt % benzene. The purified benzene can be used as a feed to a liquid phase or mixed phase alkylation and/or to produce ethylbenzene or cumene.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: January 13, 2004
    Inventor: David Netzer
  • Patent number: 6673237
    Abstract: A method of increasing the selective desulfurization of naphtha feed streams that includes: combining a naphtha feed stream with a hydrogen containing gas to form a combined feed stream and reacting the combined feed stream over a monolithic honeycomb catalyst bed containing hydrodesulfurization catalyst components to give a desulfurized naphtha. In conducting such an illustrative embodiment, the percent desulfurization of the naphtha is preferably greater than about 50% and the percent olefin hydrogenation of the naphtha is preferably less than about 50%. The monolithic honeycomb catalyst bed of one alternative and illustrative embodiment preferably has a channel density of about 25 to 1600 cells per square inch; a channel size from about 0.1 to 10 mm; and a channel wall thickness of about 0.01 to about 2.0 mm. The illustrative method should be carried out such that the octane number (R+M/2) of the naphtha feed stream is reduced by no more than 3.0 at 95% desulfurization and preferably no more than 1.5.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: January 6, 2004
    Assignee: Corning Incorporated
    Inventors: Wei Liu, Tinghong Tao
  • Patent number: 6641715
    Abstract: An entrained bed or fluidised bed process for catalytic cracking of a hydrocarbon feed in two reaction zones is described, one zone (1) being in catalyst dropper mode, the other (2) being in catalyst riser mode. A feed (102) and catalyst from at least one regeneration zone (302) are introduced into the upper portion of the dropper zone, the feed and catalyst are circulated in accordance with a catalyst to feed weight ratio, C/O, of 5 to 20, the cracked gases are separated from the coked catalyst in a first separation zone (105), the cracked gases are recovered (107), the coked catalyst is introduced (110) into the lower portion of the riser zone (2), the coked catalyst and said feed are circulated in a C/O weight ratio of 4 to 8, the used catalyst is separated from the effluent produced in a second separation zone (203), the catalyst is stripped in a stripping zone (212), the effluent and stripping gases are recovered (206) and the used catalyst is recycled (7) to the regeneration zone.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: November 4, 2003
    Assignee: Institut Francais du Petrole
    Inventor: Thierry Gauthier
  • Publication number: 20030196932
    Abstract: A process and apparatus are disclosed contacting hydrocarbon feed with catalyst in a reactor vessel under conditions more vigorous than bubbling bed conditions and preferably fast fluidized flow conditions. The vigorous conditions assure thorough mixing of catalyst and feed to suppress formation of dry gas and the promotion of hydrogen transfer reactions.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 23, 2003
    Inventor: David A. Lomas
  • Publication number: 20030199717
    Abstract: A process for converting a blend of plastic waste and a Fischer-Tropsch waxy fraction into high VI lube oils. A Fischer-Tropsch wax is separated into a 1000° F.+ fraction and a 1000° F.− fraction. The higher boiling fraction is combined with virgin or waste polyolefin and fed to a pyrolysis zone after being heated in a heating unit. The pyrolysis effluent is separated into at least a heavy fraction. Any light fraction recovered can be further processed into a feed for gasoline products. Any middle fraction recovered can be hydrotreated and isodewaxed to form diesel, diesel blending and jet fuel, or can be oligomerized, hydrotreated and isodewaxed to form high VI lubricating base oil. The heavy fraction is hydrotreated and isodewaxed to yield high VI lubricating base oil. The process can be conducted on a continuous basis.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 23, 2003
    Inventor: Stephen J. Miller
  • Publication number: 20030196933
    Abstract: A process and apparatus is disclosed for contacting feed with mixed catalyst in a secondary reactor that is incorporated into an FCC reactor. The mixed catalyst used in the secondary reactor is regenerated catalyst from a regenerator that regenerates spent catalyst from an FCC reactor that is mixed with spent catalyst from either the FCC reactor or the secondary reactor. The mixing of spent and regenerated catalyst reduces the catalyst temperature and tempers catalyst activity to inhibit both thermal and catalytic cracking reactions.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 23, 2003
    Inventors: David A. Lomas, Rusty M. Pittman
  • Publication number: 20030132137
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: October 2, 2002
    Publication date: July 17, 2003
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Publication number: 20030127357
    Abstract: The present invention provides a process for the preparation of an electrode binder, which process comprises:
    Type: Application
    Filed: November 8, 2002
    Publication date: July 10, 2003
    Inventors: Maik Beutler, Carsten Karl Puls
  • Publication number: 20030127358
    Abstract: The present invention provides a catalytic cracking reactor system and process in which a riser reactor is configured to have two sections of different radii in order to produced improved selectivity to propene and butenes as products.
    Type: Application
    Filed: January 10, 2002
    Publication date: July 10, 2003
    Inventor: Warren S. Letzsch
  • Publication number: 20030102253
    Abstract: A method of increasing the selective desulfurization of naphtha feed streams that includes: combining a naphtha feed stream with a hydrogen containing gas to form a combined feed stream and reacting the combined feed stream over a monolithic honeycomb catalyst bed containing hydrodesulfurization catalyst components to give a desulfurized naphtha. In conducting such an illustrative embodiment, the percent desulfurization of the naphtha is preferably greater than about 50% and the percent olefin hydrogenation of the naphtha is preferably less than about 50 %. The monolithic honeycomb catalyst bed of one alternative and illustrative embodiment preferably has a channel density of about 25 to 1600 cells per square inch; a channel size from about 0.1 to 10 mm; and a channel wall thickness of about 0.01 to about 2.0 mm. The illustrative method should be carried out such that the octane number (R+M/2) of the naphtha feed stream is reduced by no more than 3.0 at 95% desulfurization and preferably no more than 1.
    Type: Application
    Filed: November 28, 2001
    Publication date: June 5, 2003
    Inventors: Wei Liu, Tinghong Tao
  • Publication number: 20030019790
    Abstract: Improved heavy oil conversion processes are disclosed in which the heavy oil feed is first thermally cracked using visbreaking or hydrovisbreaking technology to produce a product that is lower in molecular weight and boiling point than the feed. The product is then deasphalted using an alkane solvent at a solvent to feed volume ratio of less than 2 wherein separation of solvent and deasphalted oil from the asphaltenes is achieved through the use of a two-stage membrane separation system in which the second stage is a centrifugal membrane.
    Type: Application
    Filed: September 24, 2002
    Publication date: January 30, 2003
    Applicant: Trans Ionics Corporation
    Inventor: Robert C. Schucker
  • Publication number: 20020166797
    Abstract: A slurry phase reactor is designed to treat extra heavy petroleum crude in a combination of thermal-zone and catalytic-zone in a counterflow system where liquid feed is added to the top and hydrogen at the bottom. Feed enters the gas-phase thermal zone, where it passes to a liquid-phase thermal zone. In the liquid-phase thermal zone, the hydrocarbon is thermally cracked and the unreacted liquid is further passed to a catalytic-zone below in communication with the thermal-zone. Catalyst can be added or removed as required in a continuous mode without shutting down the system. The heat generated inside the catalytic cracking zone is distributed to the entire reactor as the gaseous product flows upward. Feed is brought to the reaction conditions by the heat recovered from the gas-phase zone. Reaction temperature could be controlled by feed temperature.
    Type: Application
    Filed: May 9, 2001
    Publication date: November 14, 2002
    Inventor: Dwijen K. Banerjee
  • Patent number: 6433235
    Abstract: An improved process for the conversion of normally gaseous methane-containing hydrocarbon mixtures, such as natural gas, to a normally liquid hydrocarbon product comprises separating the methane component of the gaseous mixture from the heavier hydrocarbon component, cracking the separated heavier: hydrocarbon component at a relatively low temperature and optionally cracking the methane component at a relatively high temperature. The low temperature cracking product and any high temperature cracking product are separated into a light product of principally hydrogen and a heavy product comprising unsaturated hydrocarbons. This heavy product is reacted with methane in the presence of an acidic alkalization catalyst. The resulting product mixture is separated into a light product, a portion of which is recycled, and the normally liquid hydrocarbon product.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: August 13, 2002
    Assignee: Bryan Research & Engineering, Inc.
    Inventor: Joel G. Cantrell
  • Publication number: 20020096452
    Abstract: This present invention concerns a procedure for cracking, in a fluidized bed, a hydrocarbon charge wherein the cooling particles, which may optionally also be catalytic particles, circulate in two successive reaction chambers (1; 16), in each of which they are brought into contact with at least one cut of hydrocarbons, and the reaction effluents from each of said chambers are directed towards one and the same fractionating unit.
    Type: Application
    Filed: July 3, 2001
    Publication date: July 25, 2002
    Applicant: TOTAL RAFFINAGE DISTRIBUTION S.A.
    Inventors: Marcellin Espeillac, Pierre Crespin
  • Patent number: 6388152
    Abstract: A process for producing polymers from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is introduced into a process unit comprised of a reaction zone, a stripping zone, a catalyst regeneration zone, and a fractionation zone. The naphtha feedstream is contacted in the reaction zone with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures ranging from about 500° to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia. Vapor products are collected overhead and the catalyst particles are passed through the stripping zone on the way to the catalyst regeneration zone. Volatiles are stripped with steam in the stripping zone and the catalyst particles are sent to the catalyst regeneration zone where coke is burned from the catalyst, which is then recycled to the reaction zone.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: May 14, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, Tan-Jen Chen
  • Publication number: 20020043477
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin, preferably propylene. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking in a second FCC reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: April 18, 2002
    Inventor: William E. Winter
  • Patent number: 6352638
    Abstract: A two-stage process for converting petroleum residua and other low value oils to high valued gasoline blendstocks and light olefins. The first stage is comprised of a thermal process unit containing a reaction zone comprised of a horizontal moving bed of fluidized hot particles operated at temperatures from about 500 to 600° C. and having a short vapor residence time, and the second stage is comprised of a catalytic conversion zone operated at a temperature of about 525° C. to about 650° C., and also having a short vapor residence time, preferably shorter than that of the first stage reaction zone.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: March 5, 2002
    Assignee: Exxon Research and Engineering Company
    Inventors: Mitchell Jacobson, Willibald Serrand
  • Patent number: 6339180
    Abstract: A process for producing polypropylene from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is contacted with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures from about 500° C. to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: January 15, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, B. Erik Henry
  • Publication number: 20010054571
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefinic naphthas. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking in an out-board FCC reactor it in order to form a naphthenic blend-stock.
    Type: Application
    Filed: March 16, 2001
    Publication date: December 27, 2001
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter
  • Publication number: 20010052482
    Abstract: The invention relates to a two-stage catalytic cracking process for converting cycle oils to more valuable products. More particularly, the invention relates to a process that includes interstage hydroprocessing and a tailored catalyst mixture in a second catalytic cracking stage where the hydroprocessed cycle oil is re-cracked.
    Type: Application
    Filed: March 16, 2001
    Publication date: December 20, 2001
    Inventor: William E. Winter
  • Publication number: 20010046460
    Abstract: In this invention the system and processes for organization of oil refinery from gases and heavy admixtures with a separation of purified oil for fractions obtained in the process of thermal distillation, and thermal and catalytic cracking and subsequent fine separation of products for narrow fractions are presented. The combining of vortex vapor generation processes of preliminary heated oil in the field of inertia forces of rotating liquid with condensation processes of gaseous products at reduced pressure in vortex vapor condensers with cooled walls with utilization of subsequent heating and productions of fuels with narrow fraction composition permits to obtain a high quality product.
    Type: Application
    Filed: December 20, 2000
    Publication date: November 29, 2001
    Inventors: Viacheslav V. Zhurin, Victor B. Tikhonov
  • Publication number: 20010042702
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 22, 2001
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Publication number: 20010042700
    Abstract: The invention relates to a process for converting naphtha and cycle oils produced in catalytic cracking reactions into light olefins. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil, and then re-cracking it along with naphtha in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 22, 2001
    Inventors: George A. Swan,, William E. Winter
  • Publication number: 20010042701
    Abstract: The invention relates to a process for converting cycle oils produced in catalytic cracking reactions into light olefin and naphtha. More particularly, the invention relates to a process for hydroprocessing a catalytically cracked light cycle oil in order to form a hydroprocessed cycle oil containing a significant amount of tetralins. The hydroprocessed cycle oil is then re-cracked in an upstream zone of the primary FCC riser reactor.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 22, 2001
    Inventors: Gordon F. Stuntz, George A. Swan, William E. Winter, Michel Daage, Michele S. Touvelle, Darryl P. Klein
  • Patent number: 6315890
    Abstract: The invention is related to a two step process wherein the first step comprises cracking an olefinic naphtha resulting in a cracked product having a diminished total concentration of olefinic species. The second step comprises hydroprocessing at least a portion of the cracked product, especially a naphtha fraction, to provide a hydroprocessed cracked product having a reduced concentration of contaminant species but without a substantial octane reduction.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: November 13, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul K. Ladwig, Gordon F. Stuntz, Garland B. Brignac, Thomas R. Halbert
  • Patent number: 6241874
    Abstract: The invention is the integration of a process of gasifying asphaltenes in a gasification zone by partial oxidation and the process of asphaltene extraction with a solvent. The integration allows low level heat from the gasification reaction to be utilized in the recovery of solvent that was used to extract asphaltenes from an asphaltene-containing hydrocarbon material. Asphaltenes are extracted from an asphaltene-containing hydrocarbon material by mixing a solvent in quantities sufficient to precipitate at least a fraction of the asphaltenes. The precipitated asphaltenes are then gasified in a gasification zone to synthesis gas. The gasification process is very exothermic. The low level heat in the synthesis gas, either directly, or via an intermediate step of low pressure steam, is used to remove and recover the solvent from the deasphalted hydrocarbon material and from the asphaltenes prior to gasification.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: June 5, 2001
    Assignee: Texaco Inc.
    Inventors: Paul S. Wallace, Kay A. Johnson, Pradeep S. Thacker, Janice L. Kasbaum, R. Walter Barkley, Jacquelyn Gayle Niccum
  • Patent number: 6238548
    Abstract: An FCC process converts a secondary feed comprising a heart cut of a gasoline product stream with spent catalyst at mild conditions to obtain a surprising increase in the octane number of the resulting gasoline product. More surprisingly, the increase in gasoline stream octane number occurs with very low production of dry gas. Limiting the presence of heavy gasoline components was found to significantly raise the octane number produced by the process.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: May 29, 2001
    Assignee: UOP LLC
    Inventors: Lawrence L. Upson, Julie E. Wesling
  • Publication number: 20010000399
    Abstract: A two-stage process for converting petroleum residua and other low value oils to high valued gasoline blendstocks and light olefins. The first stage is comprised of a thermal process unit containing a reaction zone comprised of a horizontal moving bed of fluidized hot particles operated at temperatures from about 500 to 600° C. and having a short vapor residence time, and the second stage is comprised of a catalytic conversion zone operated at a temperature of about 525° C. to about 650° C., and also having a short vapor residence time, preferably shorter than that of the first stage reaction zone.
    Type: Application
    Filed: December 13, 2000
    Publication date: April 26, 2001
    Inventors: Mitchell Jacobson, Willibald Serrand
  • Patent number: 6153804
    Abstract: A process for producing cyclopentane and cyclopentene by fractional distillation of partly hydrogenated pyrolysis gasoline, in which(a) partly hydrogenated pyrolysis gasoline is fractionally distilled in a first distillation column,(b) a C.sub.5 hydrocarbon mixture containing at least 40% of cyclopentane and cyclopentene is taken off from the distillation column as a sidestream at a suitable tray, and(c) the C.sub.5 hydrocarbon mixture is further fractionally distilled into cyclopentane and cyclopentene in a second distillation column.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: November 28, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Kanne, Jurgen Heners, Thomas Krug
  • Patent number: 6132596
    Abstract: The present invention is directed to a process and apparatus for the reclaiming and re-refining of waste oils. The process comprises raising a temperature of a feed mixture of fresh waste oil and a recycled non-volatile residue to a range of 400.degree. C. to 490.degree. C. for a time sufficient to cause pyrolysis of said heavy hydrocarbons contained in the feed mixture, but insufficient to permit substantial undesired polymerization, oxidation and dehydrogenation reactions to take place in said feed mixture; cooling the resulting pyrolyzed waste oil mixture to a temperature in the range of 300.degree. C. to 425.degree. C.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: October 17, 2000
    Inventor: Heshui Yu
  • Patent number: 6113776
    Abstract: A high efficiency FCC process obtains the necessary regenerated catalyst temperature for a principally thermal cracking stage by cracking a light feedstock such as naphtha or a middle distillate in a first riser that principally performs thermal cracking and then cracks a heavy FCC feed in a second riser with a blend of catalyst from the principally thermal cracking step and recycle catalyst from the heavy feed to provide the necessary coke content on the catalyst that will produce high regenerated catalyst temperatures. The high temperature of the regenerated catalyst in the first riser provides a convenient means of cracking naphtha under high severity conditions and then using the remaining activity of the contacted catalyst for the principally catalytic reaction of the heavier feed. A separate thermal cracked product may be recovered from an intermediate blending vessel downstream of the first riser.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: September 5, 2000
    Assignee: UOP LLC
    Inventor: Lawrence L. Upson
  • Patent number: 6106697
    Abstract: C.sub.2 to C.sub.4 olefins are selectively produced from a gas oil or resid in a two stage process. The gas oil or resid is reacted in a first stage comprised of a fluid catalytic cracking unit wherein it is converted in the presence of conventional large pore zeolitic catalyst to reaction products, including a naphtha boiling range stream. The naphtha boiling range stream is introduced into a second stage comprised of a process unit containing a reaction zone, a stripping zone, a catalyst regeneration zone, and a fractionation zone. The naphtha feedstream is contacted in the reaction zone with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures ranging from about 500 to 650.degree. C. and a hydrocarbon partial pressure from about 10 to 40 psia.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: August 22, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: George A. Swan, Michael W. Bedell, Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, Brian Erik Henry