Semipermeable Membrane Patents (Class 210/500.21)
  • Patent number: 7491330
    Abstract: A porous grog with a body composition of water, clay and combustible material. Further, an earthenware water purification filter utilizing the porous grog in the body composition of the filter. Further, an earthenware filter utilizing silver chloride treatment for water disinfection is disclosed. A water purification system incorporating said filter, said water purification system capable of removing about 99% of all particles not less than 1.0 micron is size, and removing virtually 100% of fecal coliform indicators. In other embodiments, methods of disinfecting pottery toilet liners including various open surfaces using silver chloride treatment are disclosed.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: February 17, 2009
    Inventor: Anthony Reid Harvey
  • Publication number: 20090039013
    Abstract: A filter medium for liquid filtration of fine texture exhibiting high strength when wetted with water, which filter medium is comprised of a wet-laid nonwoven fabric. There is provided a filter medium for liquid filtration comprised of a wet-laid nonwoven fabric, characterized in that through blending of 0.5 to 40 wt. % of unbeaten natural fibers, it exhibits a very fine texture, a lowering ratio, calculated from bursting strength in ordinary state and bursting strength when wetted with water, of 30% or below, and a bursting strength, had when wetted with water, of 300 kPa or greater.
    Type: Application
    Filed: July 21, 2004
    Publication date: February 12, 2009
    Inventors: Nobuyuki Sakadume, Eiko Meguro, Toshihiko Soyama
  • Patent number: 7481941
    Abstract: The present invention relates to a process and apparatus for separating blood plasma, having a mixing unit in the form of a first injection having a first connecting tube and a first piston to provide a compartment for a mixture composed of plasma to be separated and the protein-precipitating agent; a separating unit composed of a filtering tube for separating and preserving a solid material after separation. The filtering tube includes a third connecting tube a filter and a third piston, the third connecting tube communicates with the fourth injection tube having a fourth piston for receiving a separated liquid; and a storage unit in the form of a fifth injection tube having a fifth connecting tube, a second connecting valve and a fifth piston.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: January 27, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Chen-Chi Tsai, Yung-Chih Wu
  • Patent number: 7479243
    Abstract: The present invention provides a microporous polyolefin membrane of high permeability and novel structure, and also provides a method of producing the same, wherein its average pore size is gradually decreases from at least one membrane surface towards its center. The method of producing the microporous polyolefin membrane comprises the steps of extruding the solution, composed of 10 to 50 weight % of (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing this polyolefin and 50 to 90 weight % of a solvent, into a gel-like formed article and removing the solvent therefrom, wherein a treatment step with a hot solvent is incorporated.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: January 20, 2009
    Assignee: Tonen Chemical Corporation
    Inventors: Hidehiko Funaoka, Kotaro Takita, Norimitsu Kaimai, Shigeaki Kobayashi, Koichi Kono
  • Patent number: 7470639
    Abstract: Nonwoven fabric laminates suitable for use as semipermeable membrane supports are produced by forming a spunbond nonwoven fabric first layer of continuous thermoplastic polymer filaments; forming a wet-laid nonwoven fabric second layer of discrete length thermoplastic polymer fibers; and bonding the first and second layers in opposing face-to-face relationship to form a composite support, where the first and second layers define first and second outer surfaces of the composite support. The resulting semipermeable membrane supports provide an advantageous balance of properties, including smoothness, porosity, interlaminar adhesion, and flux properties.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: December 30, 2008
    Assignee: Fiberweb, Inc.
    Inventors: Peter J. Angelini, Clement J. Haley
  • Publication number: 20080314820
    Abstract: The invention relates to a permeable membrane repelling one or more liquids. The membrane includes at least one face, based on a material repelling said liquids, provided with a plurality of protrusions. The membrane is provided with a plurality of through-holes opening out at said face the protrusions are regularly distributed in a determined way in at least one area on said face. The protrusions also include at least one irregular surface provided with microprotrusions.
    Type: Application
    Filed: December 4, 2006
    Publication date: December 25, 2008
    Inventors: Jean-Paul Prulhiere, Virginie Saavedra
  • Publication number: 20080308491
    Abstract: The invention relates to membranes made from polybenzimidazole, doped with low-molecular-weight phosphonic acids and optionally with phosphoric acids. Membranes, doped with phosphoric acid and an aminophosphonic acid have an increased proton conductivity with relation to doping with only one of the components.
    Type: Application
    Filed: September 14, 2006
    Publication date: December 18, 2008
    Inventor: Thomas Haring
  • Publication number: 20080308497
    Abstract: A radial flow filter element (10) includes at least one wound body (14) comprising a radially extending filtration zone (20) with alternating co-wound liquid-permeable layers respectively of a predominantly cellulosic material and a predominantly synthetic plastics or polymeric material.
    Type: Application
    Filed: November 29, 2006
    Publication date: December 18, 2008
    Inventors: Malcolm David Walker, Roger William Gemmell, Hector Brian Salzwedel
  • Publication number: 20080290020
    Abstract: Nano-composite membranes and methods for making them are described. The nano-composite membranes a made from a layer of oriented carbon nanotubes fixed in a polymeric matrix. Methods for efficient, facile, and inexpensive fabrication of the nano-composite membranes using a filtration method are also described. The carbon nanotubes may also be modified with chemical functional groups to promote their orientation in the carbon nanotube layer or to confer to them other properties.
    Type: Application
    Filed: August 30, 2007
    Publication date: November 27, 2008
    Inventors: Eva MARAND, Sangil KIM
  • Patent number: 7441666
    Abstract: It is intended to provide asymmetric porous films which are usable in blood dialysis, plasma separation, etc. and particularly excellent in the performance of selectively separating (fractionating) plasma protein, show little endogenous coagulation, complement or quinine activily and have an extremely high biocompatibility. Porous films made mainly of a synthetic polymer and having an asymmetric structure wherein, in the sectional structure, a dense layer substantially not charged at least on the outermost surface is provided in the side on which a liquid to be treated is loaded and at least part of the film other than the outermost surface is negatively charged. In the above films, the dense layer non-charged at least on the outermost surface serves as a size barrier while the part of the film other than the outermost surface serves as a charge barrier.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: October 28, 2008
    Assignee: Asahi Kasei Kuraray Medical Co., Ltd.
    Inventors: Sung-Teh Kim, Chieko Yamamoto, Toshinori Koizumi, Masatoshi Saitoh, Shunji Maniwa
  • Patent number: 7441667
    Abstract: An improved casting substrate is provided for use in a composite membrane for use as a fluid filtration medium. The composite membrane has good adhesion between the casting substrate and the microporous membrane while maintaining high permeability. The casting substrate comprises a single spunbond layer or a multiple spunbond layers formed of thermoplastic fibers, optionally comprising at least one meltblown layer. The casting substrate allows the membrane casting solution to penetrate the casting substrate uniformly to a controlled depth without penetrating through the entire thickness of the substrate. The casting substrate has good uniformity of mean pore size, basis weight, thickness and surface roughness.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: October 28, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Jennifer Marie Galvin, Henricus Jacobus Cornelis Gommeren, Rachel Elizabeth Montejo, Tina Amick Waller
  • Patent number: 7438887
    Abstract: Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: October 21, 2008
    Assignee: The University of Connecticut
    Inventors: Steven Lawrence Suib, Jikang Yuan
  • Publication number: 20080237126
    Abstract: Disclosed are compaction resistant thin film composite membranes having a porous polymeric support; a semi-permeable polymer film polymerized on the porous polymeric support; and particles, of a size in the range of microparticles and nanoparticles, dispersed in the porous polymeric support. Also disclosed are methods of making compaction resistant membranes by polymerizing a polymer film on a porous polymeric support with particles of a size in the range of microparticles and nanoparticles dispersed therein, the particles having been selected to improve flux flow characteristics over time of the semi-permeable membrane. Also disclosed are methods of purifying water using the disclosed membranes. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: October 29, 2007
    Publication date: October 2, 2008
    Inventors: Eric M.V. Hoek, Asim K. Ghosh, Jodie M. Nygaard
  • Publication number: 20080223780
    Abstract: An improved oil filter, for use with an internal combustion engine, comprises a hollow filter housing defining a chamber therein and having an inlet and an outlet with a flow path therebetween; a mechanically active filter member disposed inside the filter housing in the flow path; and a chemically active filter member disposed inside the filter housing in the flow path. The chemically active filter member comprises a plurality of composite oil additive pellets. The plurality of pellets is interconnected to form a substantially integral permeable member, and the substantially integral permeable member is impregnated with an alkaline composition. The alkaline composition is provided to counteract acidic combustion products in lubricating oil in an internal combustion engine.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 18, 2008
    Inventors: Peter D. Unger, Ronald P. Rohrbach, Zafar Hussain, Weston H. Gerwin, Brian K. Artz, Daniel E. Bause
  • Publication number: 20080217239
    Abstract: A liquid filter with a composite medium that has a nanoweb adjacent to and optionally bonded to a microporous membrane. The membrane is characterized by an LRV value of 3.7 at a rated particle size, and the nanoweb has a fractional filtration efficiency of greater than 0.95 at the rated particle size of the membrane. The nanoweb also has a thickness efficiency ratio of greater than 0.01 at that efficiency. The nanoweb acts to provide depth filtration to the membrane, prefilters particles and extends the lifetime of the membrane.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 11, 2008
    Inventors: Guanghui Chen, Henricus Jacobus Cornelis Gommeren, Lawrence Mark Knorr
  • Publication number: 20080210606
    Abstract: Systems, methods, and devices for preparation of water for various uses including blood treatment are described. In embodiments, fluid is passed either by pump or passively by gravity feed, through various filtration elements from a fluid source to a treatment fluid container. The latter forms a batch that may be used during treatment. The advantage of forming the batch before treatment is that the rate of filtering needn't match the rate of consumption during treatment which provides multiple benefits and liabilities to overcome, as discussed herein. Mechanisms for preparing pure water for infusion or medicaments are described such as elimination of chlorine and colloidal aluminum. Also various control mechanisms to help avoid contamination are describe.
    Type: Application
    Filed: January 7, 2005
    Publication date: September 4, 2008
    Inventor: Jeffrey Burbank
  • Publication number: 20080214686
    Abstract: A process for producing a zeolite membrane comprising a seed crystal forming step of placing, in a pressure-resistant vessel, a seeding sol containing silica, water and a structure-directing agent and a support in a state that the support is immersed in the seeding sol and heating the heat-resistant vessel to form a zeolite seed crystal on the surface of the support, and a membrane formation step of allowing the zeolite seed crystal to grow to form a zeolite membrane on the surface of the support. In the seed crystal forming step, the molar ratio of water/silica in the seeding sol is set 10 to 50 and the heating of the pressure-resistant vessel is conducted at 90 to 130° C. The crystal c-axis of the present zeolite membrane is oriented in a direction vertical to the surface of the support and its thickness is uniform.
    Type: Application
    Filed: May 12, 2008
    Publication date: September 4, 2008
    Applicant: NGK Insulators, Ltd.
    Inventors: Kenji SUZUKI, Shinji NAKAMURA, Miyuki YABUKI, Toshihiro TOMITA
  • Publication number: 20080210634
    Abstract: The present invention concerns a semi-permeable membrane for use in osmosis consisting of one thin layer of a non-porous material (the diffusion skin), and one or more layers of a porous material (the porous layer), where the porous layer has a structure where porosity ?, thickness of the porous layer (m), and tortuosity ?, are related to one another as given by the expression: x·?=?·S wherein S is a structure parameter having a value equal to or less than 0.0015 meter. Further a method for providing elevated pressure by osmosis as well as a device for providing an elevated osmotic pressure and electric power is described.
    Type: Application
    Filed: February 4, 2008
    Publication date: September 4, 2008
    Inventors: Thor Thorsen, Torleif Holt
  • Publication number: 20080203011
    Abstract: A porous support (1) for the tangential filtration of a fluid to be processed, which has at least one surface (3) oriented toward the fluid to be processed flowing in a given direction of flow, and a surface (11) for extraction of a fraction called the filtrate, flowing through the porous support, this support being created by modification of an initial support, characterised in that it has a reduced permeability in relation to the initial support, and which is homogeneous when one moves parallel to the surface (3) of the support oriented toward the fluid to be processed in the direction of flow of the fluid to be processed.
    Type: Application
    Filed: April 21, 2005
    Publication date: August 28, 2008
    Inventor: Philippe Lescoche
  • Publication number: 20080173539
    Abstract: A method of enhancing the concentration of a first inorganic compound in a first aqueous solution of a first process of a heavy chemical plant, the method comprising (a) feeding the first solution having the first compound at a first concentration and a first water vapor pressure to an osmotic membrane distillation means comprising a hydrophobic, gas and water vapor permeable membrane separating (i) a first chamber for receiving the first solution, from (ii) a second chamber for receiving a receiver feed aqueous solution having a second water vapor pressure lower than the first water vapor pressure; (b) feeding the receiver aqueous feed solution to the second chamber as to effect transfer of water vapor through the membrane from the first chamber to the second chamber, and to produce (i) a resultant first solution having a second concentration of the first compound greater than the first concentration and (ii) a diluted receiver feed aqueous solution; and (c) collecting the resultant first solution.
    Type: Application
    Filed: March 3, 2008
    Publication date: July 24, 2008
    Inventors: Zbigniew Twardowski, Thomas S. Drackett, Dmitri Bessarabov, Peter E. Fetissoff
  • Publication number: 20080164208
    Abstract: A membrane has a permeate channel including a 3D spacer fabric having an upper and a lower fabric surface (2,3) spaced apart by monofilament thread (4) at a predefined distance, the permeate channel being interposed between two membrane layers (12, 13), wherein the membrane layers are linked at a multitude of points with the upper and lower fabric surfaces to form an integral structure with a high bonding strength suitable for backflush operations. A method provides an integrated permeate channel membrane, including the steps of:—Providing a 3D spacer fabric having an upper and lower surface fabric (2,3) spaced apart by monofilament thread (4) at a predefined distance; and—Applying a membrane layer to both the upper and the lower surface fabric.
    Type: Application
    Filed: August 10, 2005
    Publication date: July 10, 2008
    Inventors: Wim Doyen, Herman Beckers, Walter Adriansens, Chris Dotremont
  • Patent number: 7396465
    Abstract: The present invention provides a positively charged microporous membrane having a protein binding capacity of about 25 mg/ml or greater comprising a hydrophilic porous substrate and a crosslinked coating that provides a fixed positive charge to the membrane. The present invention further provides a positively charged microporous membrane comprising a porous substrate and a crosslinked coating comprising pendant cationic groups. The membranes of the present invention find use in a variety of applications including ion-exchange chromatography, macromolecular transfer, as well as detection, filtration and purification of biomolecules such as proteins, nucleic acids, endotoxins, and the like.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: July 8, 2008
    Assignee: Pall Corporation
    Inventors: Xiaosong Wu, Chung-Jen Hou, Jayesh Dharia, Peter Konstantin, Yujing Yang
  • Publication number: 20080156730
    Abstract: The invention relates to a permeate spacer module comprising a spacer and at least one collection device, which spacer comprises of support members which being spaced apart by at least one inserted element forming flow space or flow channels between the support members and the inserted element for guiding permeates to at least one permeate collection device connected to the flow space or the flow channels. The invention relates further to a membrane system comprising the permeate space module, a process for operating the membrane system, use of the membrane system, a membrane plant and use of the membrane plant.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 3, 2008
    Applicant: Alfa Laval Corporate AB
    Inventor: Nicolas Heinen
  • Patent number: 7393391
    Abstract: Anisotropic hydrophobic/hydrophilic nanoporous membranes and methods of forming anisotropic hydrophobic/hydrophilic nanoporous membranes are disclosed. The method of forming the nanoporous membrane includes growing a nanoporous oxide film on a substrate. A nanoporous membrane having a top side and a bottom side can then be formed by partially separating the nanoporous oxide film from the substrate. A fluorocarbon film can be deposited on the top side of the nanoporous membrane by plasma polymerization. The disclosed anisotropic hydrophobic/hydrophilic nanoporous membranes can have extremely different hydrophobicity between the top side and the bottom side of the nanoporous membrane.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: July 1, 2008
    Assignee: STC.UNM
    Inventors: Gabriel P. Lopez, Plamen B. Atanassov, Dmitri A. Brevnov, Marcos Barela
  • Patent number: 7393388
    Abstract: A deoxygenator includes a plurality of permeable membranes spirally wound about an exhaust tube for removing dissolved oxygen from a hydrocarbon fuel. The permeable membrane is spirally wrapped about the exhaust tube and defines fuel passages and exhaust passages. The fuel passages and exhaust passages alternate such that each fuel passage is bounded on each adjacent side by an exhaust passage. An oxygen partial pressure differential is generated across the permeable membrane to draw dissolved oxygen from fuel in the fuel passage. The dissolved oxygen is then communicated through openings about the circumference of the exhaust tube and out the deoxygenator.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: July 1, 2008
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Harry Cordatos, Thomas Gregory Tillman, Alexander G. Chen, Louis Chiappetta, James R. Irish, Foster Phillip Lamm, Stephen R. Jones
  • Patent number: 7393483
    Abstract: A polymetaphenylene isophthalamide porous hollow fiber membrane is produced by extruding a film-forming solution comprising polymetaphenylene isophthalamide, polyvinylpyrrolidone and an inorganic salt through a concentric double annular spinning nozzle while keeping the film-forming solution at 70° C. or higher, thereby conducting dry-and-wet spinning, followed by moisture retention treatment, where it is preferable to subject the resulting porous hollow fiber membrane obtained by dry-and-wet spinning to heat treatment in water at 80° C. or higher before the moisture retention treatment. The polymetaphenylene isophthalamide porous hollow fiber membrane resulting from wet heat treatment under wet heat conditions at the temperature of 100° C.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: July 1, 2008
    Assignee: NOK Corporation
    Inventor: Toru Uda
  • Publication number: 20080142434
    Abstract: Objects of the present invention are to provide a blood purifier package which shows a less increase in the amounts of extracts from the materials of its blood purifier, particularly of its selective permeable separation membranes, attributed to the deterioration of the same materials with time after exposure to a radioactive ray or an electron ray, and which is therefore highly reliable in safety in use for hemocatharsis, and to provide a process for manufacturing the same. The present invention relates to a blood purifier package obtained by packing a blood purifier which comprises selectively permeable separation membranes as a main component, and this blood purifier package is characterized in that the blood purifier is packed and sealed together with an oxygen scavenger in a packaging material capable of shutting out an external air and a water vapor, under a condition of a relative humidity of above 40% RH at 25° C.
    Type: Application
    Filed: December 20, 2005
    Publication date: June 19, 2008
    Applicant: Nipro Corporation
    Inventors: Kimihiro Mabuchi, Noriko Monden, Noriaki Kato, Yuuki Hatakeyama, Takashi Sunohara, Toshiaki Masuda
  • Publication number: 20080128350
    Abstract: A water separation unit includes a water separation portion. The water separation portion includes a component separation wall, a liquid chamber, and a gas chamber. The separation wall divides the water separation portion between the liquid chamber and the gas chamber. Liquid fuel is led to the liquid chamber. The separation wall includes a separation membrane, which water selectively permeates to be separated from liquid fuel in the liquid chamber. Water passing through the separation wall is temporarily stored in the gas chamber. A fuel supply apparatus supplies liquid fuel in a fuel tank to an internal-combustion engine. The apparatus includes the water separation unit. The water separation portion is disposed integrally in one of the fuel tank and a passage leading from a filler opening into the fuel tank, such that the liquid chamber is located above the gas chamber in a vertical direction of the water separation portion.
    Type: Application
    Filed: December 4, 2007
    Publication date: June 5, 2008
    Applicant: DENSO CORPORATION
    Inventors: Miyao ARAKAWA, Yoshiaki Nishijima, Masatoshi Kuroyanagi, Yoshimichi Kiyozumi
  • Patent number: 7368056
    Abstract: Water-desalination and/or water purification devices. Alternatively, devices that are implantable in animal bodies, possibly configured as self-inflating spinal disc prostheses. The devices include specified types of water-absorbing solute encapsulated by non-porous, water-permeable polymer membranes having specified properties. Also, methods of using the devices in biomedical applications or water treatment.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: May 6, 2008
    Assignee: The Polymer Technology Group, Incorporated
    Inventors: Robert S. Ward, Sallie K. Coviello
  • Publication number: 20080087599
    Abstract: The present invention provides a method for sterilizing a blood purifier, which method is effective to decrease the amounts of extracts from the blood purifier attributed to the deterioration of the selectively permeable separation membranes with time during and after exposure to a radioactive ray or an electron ray, and which method is highly reliable in safety when employed for hemocatharsis therapy. The present invention also provides a blood purifier package. The present invention relates to a method for sterilizing a blood purifier which comprises substantially dried selectively permeable separation membranes as a main component, by way of the exposure of the same blood purifier to a radioactive ray and/or an electron ray, and this method is characterized in that the blood purifier is sealed in a packaging bag, together with an oxygen scavenger and a humectant or together with an oxygen scavenger capable of releasing a moisture, and is then sterilized in such a sealed state by the above exposure.
    Type: Application
    Filed: October 13, 2005
    Publication date: April 17, 2008
    Applicant: NIPRO CORPORATION
    Inventors: Kimihiro Mabuchi, Noriko Monden, Noriaki Kato, Yuuki Hatakeyama, Takashi Sunohara, Toshiaki Masuda
  • Publication number: 20080035571
    Abstract: This invention relates to the composition of an integrally-layered polymeric membrane and a process for utilizing the integrally-layered polymeric membrane components of a feedstream. More particularly, but not by way of limitation, this invention relates to the composition of an integrally-layered polymeric membrane and a process for utilizing the integrally-layered polymeric membrane in the separation of aromatics from a hydrocarbon based feedstream. The polymeric membranes of the present invention are fabricated by chemically crosslinking adjacent polymer membrane layers of the same or differing copolymer solutions to produce an integrally-layered polymeric membrane with improved separations properties.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 14, 2008
    Inventors: Craig Y. Sabottke, Bal K. Kaul, Dennis G. Peiffer
  • Patent number: 7329311
    Abstract: The present invention is directed to porous composite materials comprised of a porous base material and a powdered nanoparticle material. The porous base material has the powdered nanoparticle material penetrating a portion of the porous base material; the powdered nanoparticle material within the porous base material may be sintered or interbonded by interfusion to form a porous sintered nanoparticle material within the pores and or on the surfaces of the porous base material. Preferably this porous composite material comprises nanometer sized pores throughout the sintered nanoparticle material. The present invention is also directed to methods of making such composite materials and using them for high surface area catalysts, sensors, in packed bed contaminant removal devices, and as contamination removal membranes for fluids.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: February 12, 2008
    Assignee: Entegris, In.
    Inventors: Robert Zeller, Christopher Vroman
  • Patent number: 7323033
    Abstract: A nanostructured substrate is disclosed having a plurality of substrate openings disposed between the nanostructures on the substrate. When a desired fluid comes into contact with the substrate, at least a portion of the fluid is allowed to pass through at least one of the openings. In a first embodiment, the fluid is caused to pass through the openings by causing the fluid to penetrate the nanostructures. In a second embodiment, the substrate is a flexible substrate so that when a mechanical force is applied to the substrate, such as a bending or stretching force, the distance between nanoposts or the diameter of nanocells on the substrate increases and the liquid penetrates the nanostructures. In another embodiment, a first fluid, such as water, is prevented from penetrating the nanostructures on the substrate while a second fluid is permitted to pass through the substrate via the openings in the substrate.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: January 29, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Timofei Nikita Kroupenkine, Mary Louise Mandich, Joseph Ashley Taylor
  • Patent number: 7309428
    Abstract: The present invention relates to a process and apparatus for separating blood plasma, having a mixing unit in the form of a first injection having a first connecting tube and a first piston to provide a compartment for a mixture composed of plasma to be separated and the protein-precipitating agent; a separating unit composed of a filtering tube for separating and preserving a solid material after separation. The filtering tube includes a third connecting tube a filter and a third piston, the third connecting tube communicates with the fourth injection tube having a fourth piston for receiving a separated liquid; and a storage unit in the form of a fifth injection tube having a fifth connecting tube, a second connecting valve and a fifth piston.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: December 18, 2007
    Assignee: Industrial Technology Research Institute
    Inventors: Chen-Chi Tsai, Yung-Chih Wu
  • Patent number: 7309385
    Abstract: There is provided a high efficient gas separation membrane of two or more layers, which comprises a separating layer of 3-dimensional nanostructure and a supporting layer, wherein the 3-dimensional nanostructure can maximize a surface area per unit permeation area.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: December 18, 2007
    Assignee: Korea Institute of Science and Technology
    Inventors: Jae-Min Hong, Won Il Son
  • Patent number: 7306105
    Abstract: An object of the present invention is to provide a composite porous membrane, which has not only excellent filtration capacity, but also excellent adhesion between a porous membrane and a braid and mechanical properties, and a method for producing the composite porous membrane. The present invention relates to a composite porous membrane comprising a braid, and a membrane material; wherein the membrane material comprises a first porous layer comprising a dense layer which is arranged on the outer surface of the braid, and a second porous layer comprising a dense layer which is arranged on the first porous layer, and a method for producing the composite porous membrane.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: December 11, 2007
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Katsuhiko Shinada, Kei Murase, Teruyuki Yamada, Yuuichi Shirasu, Masahiko Mizuta, Hiroyuki Fujiki
  • Patent number: 7276042
    Abstract: A cartridge for treating medical or biological fluid includes a first cap having an inlet for the fluid, a container including a plurality of compartments and a second cap including an outlet for the fluid, wherein each compartment contains a plurality of particles, wherein the fluid is adapted to flow through the compartments and react with the plurality of particles.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: October 2, 2007
    Assignee: National Quality Care, Inc.
    Inventors: Hans-Dietrich Polaschegg, Victor Gura
  • Patent number: 7264724
    Abstract: A fluid path control element which when stacked alternatively with a fluid porous sheet can be formed into a filtration module. The fluid path control element comprises a porous membrane having sealed to a portion of its periphery a thermoplastic element that extends into an opening either through the membrane or in an opening through the thermoplastic element. The portion of the thermoplastic element that extends into the opening can be heat sealed with a second thermoplastic element to prevent fluid flow between the opening and the membrane.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: September 4, 2007
    Assignee: Millipore Corporation
    Inventors: James J. Vigna, James E. Kelly, Jr., Wayne S. Merrill
  • Patent number: 7244811
    Abstract: The present invention relates to a process for the treatment of polyazole films, in which a film is passed at least twice through a trough filled with a liquid, with the film being unrolled from a spool and rolled up on a further spool and the direction of travel of the film is changed during the treatment by altering the direction of rotation of the spools.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: July 17, 2007
    Assignee: PEMEAS GmbH
    Inventor: Joachim Petersen
  • Patent number: 7226978
    Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: June 5, 2007
    Assignee: DexCom, Inc.
    Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
  • Patent number: 7223341
    Abstract: The present invention provides a positively charged microporous membrane having a protein binding capacity of about 25 mg/ml or greater comprising a hydrophilic porous substrate and a crosslinked coating that provides a fixed positive charge to the membrane. The present invention further provides a positively charged microporous membrane comprising a porous substrate and a crosslinked coating comprising pendant cationic groups. The membranes of the present invention find use in a variety of applications including ion-exchange chromatography, macromolecular transfer, as well as detection, filtration and purification of biomolecules such as proteins, nucleic acids, endotoxins, and the like.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: May 29, 2007
    Assignee: Pall Corporation
    Inventors: Xiaosong Wu, Chung-Jen Hou, Jayesh Dharia, Peter Konstantin, Yujing Yang
  • Patent number: 7169213
    Abstract: A multi-channel modular device (10) processes between two fluid streams of different compositions. The device (10) includes a porous body (150) having a first plurality of feed-flow pathways (110) disposed in the body (150) for transporting a first stream (180). A pathway wall (114) surrounds each of the first plurality of feed-flow pathways (110) for processing the first stream (180) into a first composition (1852) and a second composition (1802). At least one feed-flow inlet (1101) is disposed in the body (150) for introducing the first stream (180) into the first plurality of feed-flow pathways (110). At least one feed-flow outlet (1102) is disposed in the body (150) for discharging the remaining first stream containing the second composition (1802). At least one second pathway (210) is disposed in the body (150) for transporting a second stream (280) having a second inlet (2101) and a second outlet (2102).
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: January 30, 2007
    Assignee: Corning Incorporated
    Inventors: Wei Liu, Jimmie L. Williams, Yuming Xie
  • Patent number: 7156997
    Abstract: A package assembly comprising a sealed water-impermeable bag enclosing: a spiral wound filtration element comprising a piperazine-based membrane, and an aqueous solution comprises a substantially non-oxidizable buffer having capacity to sequester at least 0.0025 moles per liter of hydrogen ions. The assembly preferably further includes a reducing agent. The assembly provides improved preservation for piperazine-based membranes and elements incorporating such membranes.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: January 2, 2007
    Assignees: Dow Global Technologies Inc., Filmtec Corporation
    Inventors: Allyn R. Marsh, Russ Schaffenberg, Steven D. Jons, Roy A. Davis
  • Patent number: 7140497
    Abstract: The invention includes a filtration unit for the selective deleukocytation of a fluid containing blood platelets such as blood or a blood component. The unit includes a medium for deleukocytation by adsorption and/or filtration of the leukocytes. The medium is formed by at least one layer of non-woven polyurethane fabric which has been treated by gas plasma. The invention also includes bag systems containing such a unit, including closed filtration systems.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: November 28, 2006
    Assignee: MacoPharma
    Inventors: Thierry Verpoort, Stéphane Chollet
  • Patent number: 7112237
    Abstract: The present invention is directed to porous composite materials comprised of a porous base material and a powdered nanoparticle material. The porous base material has the powdered nanoparticle material penetrating a portion of the porous base material; the powdered nanoparticle material within the porous base material may be sintered or interbonded by interfusion to form a porous sintered nanoparticle material within the pores and or on the surfaces of the porous base material. Preferably this porous composite material comprises nanometer sized pores throughout the sintered nanoparticle material. The present invention is also directed to methods of making such composite materials and using them for high surface area catalysts, sensors, in packed bed contaminant removal devices, and as contamination removal membranes for fluids.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: September 26, 2006
    Assignee: Entegris, Inc.
    Inventors: Robert Zeller, Christopher Vroman
  • Patent number: 7067058
    Abstract: A process for imparting hydrophilic properties to a polymeric membrane by exposing the membrane to an acrylate monomer containing hydrophilic segments, such as ethylene oxide, and a hydrophilic functional group, a diacrylate monomer containing hydrophilic functional groups, and an initiator for facilitating crosslinking and polymerization reactions.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: June 27, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Eshan B. Yeh, Michael S. Mezhirov
  • Patent number: 7051883
    Abstract: Nonwoven fabric laminates suitable for use as semipermeable membrane supports are provided. The fabric laminates generally include at least two layers: a spunbond layer of continuous filament fibers and a wet-laid layer of discontinuous filaments. The resulting semipermeable membrane supports provide an advantageous balance of properties, including smoothness, porosity, interlaminar adhesion, and flux properties.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: May 30, 2006
    Assignee: Reemay, Inc.
    Inventors: Peter J. Angelini, Clement J. Haley
  • Patent number: 7014049
    Abstract: Bio-affinity material containing at least one biologically active saccharide which is covalently bound via at least one spacer to a cross-linked matrix and that the material is autoclaved. Apparatus for contacting body fluids with the bio-affinity material is disclosed.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: March 21, 2006
    Assignee: Glycorex Transplantation AB
    Inventor: Kurt G. I. Nilsson
  • Patent number: 6960297
    Abstract: A dialyzer for blood treatment including a semipermeable membrane which is made of a hydrophobic polymer and a hydrophilic polymer, and has a water permeating performance drying of ½ or higher relative to that before drying. The dialyzer has a vitamin B12 clearance not smaller than 135 ml/mm per 1.6 m2 or the amount of the hydrophilic polymer eluted from the semipermeable membrane is not higher than 10 ppm. A dialyzer for blood treatment is light-weight, easy to handle, and exhibits a reduced elution of the hydrophilic polymer procedures for producing a dialyzer containing the semipermeable membrane and a process for producing a hollow fiber membrane for use in blood treatment are described.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: November 1, 2005
    Assignee: Toray Industries, Inc.
    Inventors: Hidetoshi Kozawa, Hidekazu Nakashima, Shigehisa Wada
  • Patent number: 6955222
    Abstract: A method and a system for treating seawater to facilitate secondary recovery of petroleum from a location below a body of saline water by flooding a permeable stratum with the treated water. The system utilizes a spirally-wound cross flow semipermeable membrane cartridge incorporating a three layer membrane arrangement preferably having nanofiltration characteristics which facilitates treatment of open ocean water by a single pass without any chemical or mechanical pretreatment to result in a liquid stream of desired character that can have greater ionic strength than the input seawater, e.g. at least about 18,000 ppm of chloride ion and less than 50 ppm of sulfate ion. This surprising objective is obtained even at high operating temperatures, e.g. as high as about 70° C., through the combination of the construction of the feed spacer and the nanofiltration character of the three layer membrane arrangement.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: October 18, 2005
    Assignee: GE Osmonics, Inc.
    Inventor: Larry A. Lien