Substrate Contains Elemental Metal, Alloy Thereof, Or Metal Compound Patents (Class 216/75)
  • Patent number: 8643128
    Abstract: The present invention discloses an MEMS sensor and a method for making the MEMS sensor. The MEMS sensor according to the present invention includes: a substrate including an opening; a suspended structure located above the opening; and an upper structure, a portion of which is at least partially separated from a portion of the suspended structure; wherein the suspended structure and the upper structure are separated from each other by a step including metal etch.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: February 4, 2014
    Assignee: Pixart Imaging Incorporation
    Inventor: Chuan Wei Wang
  • Patent number: 8632687
    Abstract: The invention relates to a method for electron beam induced etching of a layer contaminated with gallium, with the method steps of providing at least one first halogenated compound as an etching gas at the position at which an electron beam impacts on the layer, and providing at least one second halogenated compound as a precursor gas for removing of the gallium from this position.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: January 21, 2014
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Nicole Auth, Petra Spies, Rainer Becker, Thorsten Hofmann, Klaus Edinger
  • Patent number: 8628672
    Abstract: A method for fabricating a magnetic recording transducer having a magnetic writer pole with a short effective throat height is provided. In an embodiment, a writer structure comprising a magnetic writer pole having a trailing bevel and a nonmagnetic stack on the top surface of the writer pole is provided. A dielectric write gap layer comprising alumina is deposited over the trailing bevel section and the nonmagnetic stack; and at least one etch stop layer is deposited over the dielectric write gap layer. A layer of nonmagnetic fill material is deposited over the etch stop layer and to form a nonmagnetic bevel by performing a dry etch process. The etch stop layer(s) are removed from the short throat section; and a trailing shield is deposited over the short throat section, nonmagnetic bevel, and nonmagnetic stack top surface.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: January 14, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Weimin Si, Ying Hong, Zhigang Bai, Yunhe Huang, Fenglin Liu, Hong Zhang, Jikou Zhou, Xiaoyu Yang, Yuan Yao, Iulica Zana, Feng Liu, Ling Wang
  • Publication number: 20140008327
    Abstract: Provided in one embodiment is a method of forming a movable joint or connection between parts that move with respect to one another, wherein at least one part is at least partially enclosed by at least one second part. The method includes positioning an etchable material over an at least one first part, molding or forming an at least one second part over at least the etchable material, and removing the etchable material.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 9, 2014
    Inventors: CHRISTOPHER D. PREST, Joseph C. Poole, Matthew S. Scott, Dermot J. Stratton
  • Publication number: 20130323066
    Abstract: A method of treating a surface includes the steps of providing a plating including at least some nickel over a nickel alloy surface in a thickness less than 0.0005? (0.001 cm), and exposing the surface to a fluoride ion cleaning to remove impurities on the surface, and leaving at least some of the plating.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Inventor: Monika D. Kinstler
  • Patent number: 8597527
    Abstract: The invention provides a method of forming a concavo-convex pattern by partly removing a magnetic layer and a carbon protective layer in an intermediate product of a magnetic recording medium having at least the magnetic layer and the protective layer formed on a substrate surface, wherein the magnetic layer is partly removed to form the concavo-convex pattern by a dry etching method using a etching gas of a mixture gas of argon and a deposition gas containing one or more types of carbon compounds. Also disclosed is a method of manufacturing a patterned medium type magnetic recording medium employing the method of forming a concavo-convex pattern. As a result a concavo-convex pattern free of after-corrosion and exhibiting good productivity is provided.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: December 3, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Katsumi Taniguchi
  • Patent number: 8568599
    Abstract: A touch panel fabricating method is disclosed. A first conductive layer, a second conductive layer and a first photo-resist layer are sequentially formed on a substrate. Next, the first photo-resist layer is patterned by using a gray-level mask. Then, the first conductive layer and the second conductive layer are etched according to the patterned first photo-resist layer to define a plurality of first sensing electrodes. Then, an insulation layer is formed on the substrate and the first sensing electrodes. The insulation layer is patterned by using a gray-level mask. Then, a third conductive layer is formed on the patterned insulation layer. A second photo-resist layer is formed on the third conductive layer. The second photo-resist layer is patterned to expose partial third conductive layer. Then, the exposed third conductive layer is etched to define a plurality of second sensing electrodes.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: October 29, 2013
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Chia-Wei Yu, Chi-Ming Chiou, Ya-Ju Lu
  • Patent number: 8551349
    Abstract: A method for producing a magnetic recording medium having a magnetically partitioned magnetic recording pattern on at least one surface of a nonmagnetic substrate, characterized by comprising a step of reacting portions of a magnetic layer, formed on the non-magnetic substrate, with ozone to modify magnetic properties of said portions of the magnetic layer for forming the magnetically partitioned magnetic recording pattern. The magnetic layer can be a two-layer structure comprising a magnetic layer having a granular structure and formed thereon a magnetic layer having a non-granular structure. The produced magnetic recording medium exhibits a greatly enhanced recording density while recording/reproducing characteristics equal to or better than those of the heretofore proposed magnetic recording mediums are maintained, and it can be produced with an enhanced efficiency.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: October 8, 2013
    Assignee: Showa Denko K.K.
    Inventors: Masato Fukushima, Akira Sakawaki, Akira Yamane
  • Publication number: 20130240478
    Abstract: Methods of depositing a tin-containing layer on a substrate are disclosed herein. In some embodiments, a method of depositing a tin-containing layer on a substrate may include flowing a tin source comprising a tin halide into a reaction volume; flowing a hydrogen plasma into the reaction volume; forming one or more tin hydrides within the reaction volume from the tin source and the hydrogen plasma; and depositing the tin-containing layer on a first surface of the substrate using the one or more tin hydrides.
    Type: Application
    Filed: February 27, 2013
    Publication date: September 19, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ERROL ANTONIO C. SANCHEZ, YI-CHIAU HUANG
  • Patent number: 8518282
    Abstract: A method for etching features of different aspect ratios in a tungsten containing layer is provided. An etch gas is provided containing a tungsten etch component and a deposition component. A plasma is formed from the provided etch gas. A tungsten containing layer patterned with wide and narrow features is etched with the provided plasma.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: August 27, 2013
    Assignee: Lam Research Corporation
    Inventors: Wonchul Lee, Qian Fu, Shenjian Liu, Bryan Pu
  • Patent number: 8512583
    Abstract: A method for making a master disk to be used in the nanoimprinting process to make patterned-media disks uses an electrically conductive substrate and guided self-assembly of a block copolymer to form patterns of generally radial lines and/or generally concentric rings of one of the block copolymer components. A metal is electroplated onto the substrate in the regions not protected by the lines and/or rings. After removal of the block copolymer component, the remaining metal pattern is used as an etch mask to fabricate either the final master disk or two separate molds that are then used to fabricate the master disk.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: August 20, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Christian Reneā€² Bonhote, Jeffrey S. Lille, Ricardo Ruiz, Georges Gibran Siddiqi
  • Patent number: 8512584
    Abstract: An etching method that uses an etch reactant retained within at least a semi-solid media (120, 220, 224, 230). The etch reactant media is applied to selectively etch a surface layer (106, 218, 222). The etch reactant media may be applied to remove metal shorts (222), smearing and eaves resulting from CMP or in failure analysis for uniform removal of a metal layer (218) without damaging the vias, contact, or underlying structures.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: August 20, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Darwin Rusli
  • Patent number: 8512586
    Abstract: A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the GCIB etch processing includes setting one or more GCIB properties of a GCIB process condition for the GCIB to achieve one or more target etch process metrics.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: August 20, 2013
    Assignee: TEL Epion Inc.
    Inventors: Martin D. Tabat, Christopher K. Olsen, Yan Shao, Ruairidh MacCrimmon
  • Patent number: 8507829
    Abstract: A method for producing rough surface structures comprising the following step: running a laser beam along filling lines (1) over an area to be processed, wherein the filling line (1) is broken down into particular laser dots (2) with a distance a, and wherein the laser dots (2) are moved in a X direction and in a Y direction in a plane with a random factor b relative to the filling line (1) so that they form a cloud of dots.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: August 13, 2013
    Assignee: ACSYS Lasertechnik GmbH
    Inventors: Silvo Heinritz, Uwe Heinritz, Marcus Polster, Claudia Hartmann, Mirko Jedynak
  • Patent number: 8501023
    Abstract: An apparatus for use with a digital micromirror device includes a hinge layer that is disposed outwardly from a substrate. The hinge layer including a hinge that is capable of at least partially supporting a micromirror that is disposed outwardly from the hinge. In one particular embodiment, the hinge and the substrate are separated by a first air gap. The device also including a first hinge support that is disposed outwardly from the substrate and inwardly from at least a portion of the hinge layer. The first hinge support being capable of transmitting a voltage to the hinge. At least a portion of the hinge support coupled to at least the portion of the hinge layer. In one particular embodiment, the first hinge support is formed in a process step that is different than a process step that forms the hinge layer.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: August 6, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Brett A. Mangrum
  • Patent number: 8501020
    Abstract: A method for making a three-dimensional nano-structure array includes following steps. First, a substrate is provided. Next, a mask is formed on the substrate. The mask is a monolayer nanosphere array or a film defining a number of holes arranged in an array. The mask is then tailored and simultaneously the substrate is etched by the mask. Lastly, the mask is removed.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: August 6, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Zhen-Dong Zhu, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 8491799
    Abstract: A method for forming a magnetic tunnel junction cell includes forming a pinning layer, a pinned layer, a dielectric layer and a free layer over a first electrode, forming a second electrode on the free layer, etching the free layer and the dielectric layer using the second electrode as an etch barrier to form a first pattern, forming a prevention layer on a sidewall of the first pattern, and etching the pinned layer and the pinning layer using the second electrode and the prevention layer as an etch barrier to form a second pattern.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: July 23, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin-Ki Jung
  • Patent number: 8480911
    Abstract: A read sensor for a read transducer is fabricated. The read transducer has field and device regions. A read sensor stack is deposited. A mask covering part of the stack corresponding to the read sensor is provided. The read sensor having inboard and outboard junction angles is defined from the stack in a track width direction. A critical junction (CJ) focused ion beam scan (FIBS) polishing that removes part of the read sensor based on the junction angles is performed. A hard bias structure is deposited and the transducer planarized. A remaining portion of the mask is removed. A stripe height mask covering part of the read sensor and hard bias structure in a stripe height direction is provided. The read sensor stripe height is defined. A tunneling magnetoresistance (TMR) FIBS polishing that removes part of the stack in the field region is performed. An insulating layer is provided.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 9, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Masahiro Osugi, Guanghong Luo, Lily Yao, Ming Jiang
  • Patent number: 8454847
    Abstract: A method of lifting off includes forming a first material layer on a substrate; forming a photoresist pattern including first and second holes and on the first material layer; patterning the first material layer using the photoresist pattern as a patterning mask to form a material pattern having first and second grooves within the material pattern, the first and second grooves corresponding to the first and second holes, respectively; forming a second material layer on an entire surface of the substrate including the photoresist pattern and the first and second grooves; and removing the photoresist pattern and the second material layer on the photoresist pattern at the same time, wherein a portion of the material pattern between the first and second grooves and portions of the material pattern at sides of the first and second grooves constitute a line as a whole.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: June 4, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Hee-Young Kwack, Hyun-Seok Hong, Joo-Soo Lim, Hong-Sik Kim
  • Patent number: 8449786
    Abstract: A bonded assembly to reduce particle contamination in a semiconductor vacuum chamber such as a plasma processing apparatus is provided, including an elastomeric sheet adhesive bond between mating surfaces of a component and a support member to accommodate thermal stresses. The elastomeric sheet comprises a silicone adhesive to withstand a high shear strain of ?800% at a temperature range between room temperature and 300Ā° C. such as heat curable high molecular weight dimethyl silicone with optional fillers. The sheet form has bond thickness control for parallelism of bonded surfaces. The sheet adhesive may be cut into pre-form shapes to conform to regularly or irregularly shaped features, maximize surface contact area with mating parts, and can be installed into cavities. Installation can be manually, manually with installation tooling, or with automated machinery. Composite layers of sheet adhesive having different physical properties can be laminated or coplanar.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: May 28, 2013
    Assignee: Lam Research Corporation
    Inventors: Dean J. Larson, Tom Stevenson, Victor Wang
  • Patent number: 8435419
    Abstract: Methods of processing substrates having metal layers are provided herein. In some embodiments, a method of processing a substrate comprising a metal layer having a patterned mask layer disposed above the metal layer, the method may include etching the metal layer through the patterned mask layer; and removing the patterned mask layer using a first plasma formed from a first process gas comprising oxygen (O2) and a carbohydrate. In some embodiments, a two step method with an additional second process gas comprising chlorine (Cl2) or a sulfur (S) containing gas, may provide an efficient way to remove patterned mask residue.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: May 7, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Guowen Ding, Herrick Ng, Teh-Tien Sue, Benjamin Schwarz, Zhuang Li
  • Patent number: 8409453
    Abstract: A method and system for fabricating magnetic recording transducer are described. The magnetic recording transducer has a main pole, a nonmagnetic gap covering the main pole, and a field region distal from the main pole. A portion of the nonmagnetic gap resides on the top of the main pole. The method and system include providing a patterned seed layer. A thick portion of the patterned seed layer is thicker than a thin portion of the patterned seed layer. At least part of the thick portion of the patterned seed layer resides on a portion of the field region. A wrap-around shield is on the patterned seed layer. At least part of the thin portion of the patterned seed layer is in proximity to and exposed by the wrap-around shield. The method and system also include field etching the field region distal from the wrap-around shield.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: April 2, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ming Jiang, Changqing Shi
  • Patent number: 8404135
    Abstract: A method for cleaning and refurbishing a chamber component includes placing a chamber component having process deposits on an exterior surface in a plasma vapor deposition chamber. The chamber component is bombarded with a plasma comprising Argon for a period of time sufficient to remove the process deposits from the exterior surface of the chamber component.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: March 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jian-Bin Chiou, Wen-Cheng Cheng, Wen-Sheng Wu
  • Patent number: 8404130
    Abstract: A method of manufacturing a discrete track medium type perpendicular magnetic recording layer with reduced magnetic interference between tracks and enhanced magnetic recording density is disclosed in which protruding parts of a pattern of protrusions and recesses provided in a composite magnetic recording layer are formed in high quality having a similar film thickness and equivalent perpendicular magnetic recording performance to a perpendicular magnetic recording layer designed for a continuous film type medium.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: March 26, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Akira Sato
  • Patent number: 8343363
    Abstract: A method for fabricating an air-bearing surface (ABS) in a substrate having a surface is described. The substrate is for a magnetic recording head. The method includes providing a mask on the surface of substrate. The mask has an edge adjacent to a portion of the substrate exposed by the mask. The method also includes forming a taper in the portion of the substrate adjacent to the edge. The taper has an angle from the surface of the substrate of at least thirty degrees and not more than seventy degrees. The method also includes performing a reactive ion etching (RIE) to remove the portion of the substrate to form a cavity in the substrate. The angle of the taper is configured to substantially eliminated redeposition from the RIE on the edge.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: January 1, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Chupong Pakpum, Laddawan Supadee
  • Patent number: 8343364
    Abstract: A method of forming a near field transducer (NFT) for energy assisted magnetic recording is disclosed. A structure comprising an NFT metal layer and a first hardmask layer over the NFT metal layer is provided A first patterned hardmask is formed from the first hardmask layer, the first patterned hardmask disposed over a disk section and a pin section of the NFT to be formed. An etch process is performed on the NFT metal layer via the first patterned hardmask, the etch process forming the NFT having the disk section and the pin section.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: January 1, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Wei Gao, Guanxiong Li, Zhongyan Wang, Yufeng Hu, Ge Yi
  • Patent number: 8343373
    Abstract: A method of forming an aligned connection between a nanotube layer and an etched feature is disclosed. An etched feature is formed having a top and a side and optionally a notched feature at the top. A patterned nanotube layer is formed such that the nanotube layer contacts portions of the side and overlaps a portion of the top of the etched feature. The nanotube layer is then covered with an insulating layer. Then a top portion of the insulating layer is removed to expose a top portion of the etched feature.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: January 1, 2013
    Assignee: Nantero Inc.
    Inventor: Colin D. Yates
  • Patent number: 8338311
    Abstract: A method for the production of a structured metal layer (7) made from an alloy composed of titanium and nickel includes the following process steps: a sacrificial layer composite (3) is provided, which comprises a second sacrificial layer (2) applied onto a first sacrificial layer (1), the first sacrificial layer (1) is subjected for the purpose of structuring to a wet-chemical etching process in such a manner that undercutting of the sacrificial layer (1) occurs, a metal layer (7) of the alloy is applied indirectly or directly to the structured sacrificial layer composite (3). The first sacrificial layer (1) is at a greater distance from the metal layer (7). The second sacrificial layer (2) facing the metal layer (7) to be deposited is subjected to a dry etching process prior to wet-chemical etching of the first sacrificial layer (1) so that the second sacrificial layer (2) is provided with a structure that corresponds to the desired structure of the metal layer (7).
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: December 25, 2012
    Assignee: Acandis GmbH & Co. KG
    Inventors: Eckhard Quandt, Clemens Schmutz, Christiane Zamponi
  • Patent number: 8333801
    Abstract: A method of forming a stent includes the steps of forming an elongated composite member or plurality of elongated composite members into a stent pattern having struts interconnected by crowns, the composite member including an outer member and a core member. Openings are formed through the outer member of the composite member. The composite member is processed to remove the core member from at least a plurality of the struts of the stent without adversely affecting the outer member and such that the core member is not removed from at least a plurality of the crowns of the stent, thereby leaving the outer member with a lumen in at least a plurality of the struts and the outer member with the core member in at least a plurality of the crowns. The lumens may then be filled with a biologically or pharmacologically active substance.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: December 18, 2012
    Assignee: Medtronic Vascular, Inc.
    Inventor: Ryan Bienvenu
  • Publication number: 20120312781
    Abstract: The present invention relates to a method of manufacturing a bearing component, in which a visually undetectable identification mark is created on a surface of the component by means of laser marking performed in a protective gas environment. The protective gas environment prevents the formation of a visible oxide layer, while the temperatures induced at the component surface and below the component surface, due to the laser marking, are sufficient to alter the microstructure of the bearing steel from which the component is made. The altered microstructure is revealable by applying an etchant to the visually undetectable mark, thereby allowing authentication of the bearing component.
    Type: Application
    Filed: December 22, 2009
    Publication date: December 13, 2012
    Inventors: John Van de Sanden, Hendrik Johannes Krock, Hendrik Anne Mol
  • Patent number: 8318030
    Abstract: A method of fabricating a magnetic device is described. A mask removing layer is formed on a layered sensing stack and a hard mask layer is formed on the mask removing layer. A first reactive ion etch is performed with a non-oxygen-based chemistry to define the hard mask layer using an imaged layer formed on the hard mask layer as a mask. A second reactive ion etch is performed with an oxygen-based chemistry to define the mask removing stop layer using the defined hard mask layer as a mask. A third reactive ion etch is performed to define the layered sensing stack using the hard mask layer as a mask. The third reactive ion etch includes an etching chemistry that performs at a lower etching rate on the hard mask layer than on the layered sensing stack.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: November 27, 2012
    Assignee: Seagate Technology LLC
    Inventors: Xilin Peng, Stacey C. Wakeham, Yifan Zhang, Zhongyan Wang, Konstantin R. Nikolaev, Mark Henry Ostrowski, Yonghua Chen, Juren Ding
  • Publication number: 20120181249
    Abstract: There are provided a processing liquid for suppressing pattern collapse of a fine metal structure, containing at least one member selected from an imidazolium halide having an alkyl group containing 12, 14 or 16 carbon atoms, a pyridinium halide having an alkyl group containing 14 or 16 carbon atoms, an ammonium halide having an alkyl group containing 14, 16 or 18 carbon atoms, a betaine compound having an alkyl group containing 12, 14 or 16 carbon atoms, and an amine oxide compound having an alkyl group containing 14, 16 or 18 carbon atoms, and a method for producing a fine metal structure using the same.
    Type: Application
    Filed: September 29, 2010
    Publication date: July 19, 2012
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Masaru Ohto, Hiroshi Matsunaga, Kenji Yamada
  • Patent number: 8206602
    Abstract: According to one embodiment, there is provided a method of manufacturing a magnetic recording medium, including forming a first hard mask including carbon as a main component, a second hard mask including a main component other than carbon and a resist on a magnetic recording layer, contacting a stamper to the resist to transfer patterns of protrusions and recesses to the resist, removing residues in the recesses of the patterned resist, etching the second hard mask, etching the first hard mask, patterning the magnetic recording layer, and removing the first hard mask, the method further including, between etching the first hard mask and removing the first hard mask, removing the second hard mask remaining on the protrusions of the first hard mask, and removing a contaminating layer on a surface of the first hard mask by a mixed gas of oxygen-based gas and a fluorine compound.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: June 26, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kaori Kimura, Yousuke Isowaki, Yoshiyuki Kamata, Masatoshi Sakurai
  • Patent number: 8202441
    Abstract: Method and apparatus for etching a metal layer disposed on a substrate, such as a photolithographic reticle, are provided. In one aspect, a method is provided for processing a substrate including positioning a substrate having a metal layer disposed on an optically transparent material in a processing chamber, introducing a processing gas processing gas comprising an oxygen containing gas, a chlorine containing gas, and a chlorine-free halogen containing gas, and optionally, an inert gas, into the processing chamber, generating a plasma of the processing gas in the processing chamber, and etching exposed portions of the metal layer disposed on the substrate.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: June 19, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Madhavi R. Chandrachood, Nicole Sandlin, Yung-Hee Yvette Lee, Jian Ding
  • Patent number: 8177989
    Abstract: A copper conducting wire structure is for use in the thin-film-transistor liquid crystal display (LCD) device. The copper conducting wire structure includes at least a buffer layer and a copper layer. A fabricating method of the copper conducting wire structure includes the following steps. At first, a glass substrate is provided. Next, the buffer layer is formed on the glass substrate. The buffer layer is comprised of a copper nitride. At last, the copper layer is formed on the buffer layer.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: May 15, 2012
    Assignee: AU Optronics Inc.
    Inventors: Feng-Yuan Gan, Han-Tu Lin, Kuo-Yuan Tu
  • Patent number: 8153015
    Abstract: The invention concerns article having a surface oxide layer up to 20 nm thick, the surface oxide layer comprising chromium and cobalt oxides where the atomic ratio of Cr/Co is more than 3. The invention also concerns methods for treating a chromium containing material, said method comprising contacting said material with a gas plasma under conditions effective to oxidize at least a portion of the material; and contacting said material with an acid. The treated surface is corrosion resistant and can be used in orthopedic implants, especially the wear surface of the orthopedic implant to reduce wear, and other corrosive environment.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: April 10, 2012
    Assignee: DePuy Products, Inc.
    Inventors: Lawrence Salvati, Sophie Xiaofan Yang
  • Patent number: 8137574
    Abstract: The present invention is to provide a processing method for manufacturing a highly flat and highly smooth glass substrate with good productivity. A highly flat and highly smooth glass substrate is obtained with good productivity by processing of a glass substrate, which comprises a step of measuring the surface shape of the glass substrate prior to processing, a step of processing the surface of the substrate by changing a processing condition for each site (first processing step), and a step of finish-polishing the surface of the glass substrate that has been subjected to the first processing step (second processing step).
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: March 20, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Koji Otsuka, Hiroshi Kojima, Masabumi Ito
  • Patent number: 8133325
    Abstract: This dry cleaning method for a plasma processing apparatus is a dry cleaning method for a plasma processing apparatus that includes: a vacuum container provided with a dielectric member; a planar electrode and a high-frequency antenna that are provided outside the dielectric member; and a high-frequency power source that supplies high-frequency power to both the high-frequency antenna and the planar electrode, to thereby introduce high-frequency power into the vacuum container via the dielectric member and produce an inductively-coupled plasma, the method comprising the steps of: introducing a gas including fluorine into the vacuum container and also introducing high-frequency power into the vacuum container from the high-frequency power source, to thereby produce an inductively-coupled plasma in the gas including fluorine; and by use of the inductively-coupled plasma, removing a product including at least one of a precious metal and a ferroelectric that is adhered to the dielectric member.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: March 13, 2012
    Assignee: ULVAC, Inc.
    Inventors: Masahisa Ueda, Yutaka Kokaze, Mitsuhiro Endou, Koukou Suu
  • Patent number: 8123966
    Abstract: A piezoelectric electronic component for use in a cellular phone or the like and capable of achieving reductions in size and profile is provided. A piezoelectric element oscillating in response to application of an input signal and outputting an output signal corresponding to the oscillations is provided on a substrate. The piezoelectric element includes a pad, the pad inputting and outputting the input and output signals. A shell member serving as a sealing member and having an insulation film covering the piezoelectric element is provided on the substrate, the shell member being remote from the piezoelectric element. The shell member includes a through hole above the pad, and the through hole is occluded with an electrode.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: February 28, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Ryuichi Kubo, Hidetoshi Fujii, Naoko Aizawa
  • Patent number: 8124541
    Abstract: An etchant gas and a method for removing at least a portion of a late transition metal structure. The etchant gas includes PF3 and at least one oxidizing agent, such as at least one of oxygen, ozone, nitrous oxide, nitric oxide and hydrogen peroxide. The etchant gas provides a method of uniformly removing the late transition metal structure or a portion thereof. Moreover, the etchant gas facilitates removing a late transition metal structure with an increased etch rate and at a decreased etch temperature. A method of removing a late transition metal without removing more reactive materials proximate the late transition metal and exposed to the etchant gas is also disclosed.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: February 28, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Eugene P. Marsh
  • Patent number: 8105496
    Abstract: Improvements in an interferometric modulator that cavity defined by two walls.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: January 31, 2012
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventor: Mark W Miles
  • Patent number: 8080167
    Abstract: The present invention relates to a shaping method of a thin film layer and a manufacturing method of a perpendicular recording magnetic head using the same. In the thin film layer shaping method according to the present invention, since a second thin film of a lower etching rate is etched by a preliminary etching amount allowing for a difference between the etching rate of the second thin film and an etching rate of a first thin film in side-by-side relationship with each other, both the first and second thin films can be etched by the same etching amount through a subsequent etching step, so that the thin film layer can be shaped into a given shape. Thus, the surface of the thin film layer can be planarized.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: December 20, 2011
    Assignee: TDK Corporation
    Inventors: Hisayoshi Watanabe, Toshiomi Yokoyama, Nobuyuki Mori, Akihiro Kaneko, Michitaka Nishiyama, Kenji Yokoyama
  • Patent number: 8071413
    Abstract: The present invention discloses an MEMS sensor and a method for making the MEMS sensor. The MEMS sensor according to the present invention includes: a substrate including an opening; a suspended structure located above the opening; and an upper structure, a portion of which is at least partially separated from a portion of the suspended structure; wherein the suspended structure and the upper structure are separated from each other by a step including metal etch.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: December 6, 2011
    Assignee: PixArt Imaging Incorporation, R.O.C.
    Inventor: Chuan Wei Wang
  • Patent number: 8066892
    Abstract: A method for manufacturing a write pole for a perpendicular magnetic write head. The method employs a damascene process to construct the write pole with a very accurately controlled track width. The method includes depositing a layer of material that can be readily removed by reactive ion etching. This material can be referred to as a RIEable material. A mask is formed over the RIEable material and a reactive ion etching is performed to form a tapered trench in the RIEAble material. A CMP stop layer can the be deposited, and a write pole plated into the trench. A CMP can then be performed to define the trailing edge of the write pole. Another masking, etching and plating step can be performed to form a trailing, wrap-around magnetic shield.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: November 29, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hung-Chin Guthrie, Yimin Hsu, Ming Jiang, Sue Siyang Zhang
  • Patent number: 8062536
    Abstract: A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the formation of a cap layer and the formation of gaps into which high density plasma chemical vapor deposition (HDPCVD) dielectric material is deposited. First and second antireflective coatings may be formed on the wiring line layer, the first and second antireflective coatings being made from different materials. Both antireflective coatings and the wiring line layer are etched through to form wiring lines separated by gaps. The gaps between wiring lines may be filled using high density plasma chemical vapor deposition.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: November 22, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Chien Liu, Ta-Shan Tseng, Wen-Bin Shieh, Juan-Yuan Wu, Water Lur, Shih-Wei Sun
  • Patent number: 8057689
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming a first hard mask, a second hard mask and a resist on a magnetic recording layer, imprinting a stamper to the resist to transfer patterns of protrusions and recesses to the resist, removing residues remaining in the recesses of the patterned resist by means of a first etching gas, etching the second hard mask by means of the first etching gas using the patterned resist as a mask to transfer the patterns to the second hard mask, etching the first hard mask by means of a second etching gas different from the first etching gas using the second hard mask as a mask to transfer the patterns to the first hard mask, and performing ion beam etching in order to deactivate the magnetic recording layer exposed in the recesses and to remove the second hard mask.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: November 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yousuke Isowaki, Kaori Kimura, Yoshiyuki Kamata, Masatoshi Sakurai
  • Patent number: 8048323
    Abstract: A method for manufacturing a magnetic recording medium (30) having magnetically separate magnetic recording patterns on at least one surface of a nonmagnetic substrate (1), includes the steps of forming a magnetic layer (2) on the nonmagnetic substrate, forming a mask layer (3) on the magnetic layer, forming a resist layer (4) on the mask layer, transferring negative patterns of the magnetic recording patterns to the resist layer using a stamp (5), removing portions of the mask layer which correspond to the negative patterns of the magnetic recording patterns, implanting ions in the magnetic layer from a resist layer-side surface to partly demagnetize the magnetic layer, and removing the resist layer and the mask layer.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: November 1, 2011
    Assignee: Showa Denko K.K.
    Inventors: Masato Fukushima, Akira Sakawaki
  • Patent number: 8043515
    Abstract: A thin film magnetic head has a configuration in which a main magnetic pole film having a magnetic pole end portion on a medium opposing surface (ABS) side facing a magnetic disk, a write shield film facing the magnetic pole end portion so as to form a recording gap film on the medium opposing surface side, and a thin film coil wound around at least a part of the write shield film are laminated. Further, the thin film magnetic head has an upper yoke magnetic pole film whose size is larger than that of the main magnetic pole film at a part more distant from the ABS than the recording gap film, and this upper yoke magnetic pole film is bonded to the side of the main magnetic pole film close to the thin film coil. In the upper yoke magnetic pole film, an end portion on the ABS side is retracted in a direction apart from the ABS in accordance with an increase in film thickness which is measured from the surface of the main magnetic pole film.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: October 25, 2011
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Takehiro Kamigama, Tatsushi Shimizu
  • Patent number: 8043516
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming protruded magnetic patterns on a substrate, depositing a nonmagnetic material in recesses between the magnetic patterns and on the magnetic patterns, and etching back the nonmagnetic material using an oxygen-containing etching gas while reforming a surface of the nonmagnetic material.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: October 25, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kaori Kimura, Yoshiyuki Kamata, Satoshi Shirotori, Masatoshi Sakurai
  • Patent number: 8029682
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming a first hard mask, a second hard mask and a resist on a magnetic recording layer, imprinting a stamper to the resist to transfer patterns of protrusions and recesses to the resist, removing residues remaining in the recesses of the patterned resist, etching the second hard mask by using the patterned resist as a mask to transfer the patterns of protrusions and recesses to the second hard mask, etching the first hard mask by using the second hard mask as a mask to transfer the patterns of protrusions and recesses to the first hard mask, subjecting the magnetic recording layer exposed in the recesses to modifying treatment to change an etching rate, and deactivating the magnetic recording layer exposed in the recesses.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: October 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yousuke Isowaki, Kaori Kimura, Yoshiyuki Kamata, Masatoshi Sakurai