Substrate Is Glass Patents (Class 216/97)
  • Patent number: 8500517
    Abstract: A synthetic quartz glass substrate is prepared by (1) polishing a synthetic quartz glass substrate with a polishing slurry comprising colloidal particles, an ionic organic compound having an electric charge of the same type as the colloidal particles, and water, and (2) immersing the polished substrate in an acidic or basic solution for etching the substrate surface to a depth of 0.001-1 nm. The method produces a synthetic quartz glass substrate while preventing formation of defects of a size that is detectable by the high-sensitivity defect inspection tool, and providing the substrate with a satisfactory surface roughness.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: August 6, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Daijitsu Harada, Masaki Takeuchi
  • Patent number: 8465662
    Abstract: Provided is an etching composition for electively removing silicon dioxide at a high etch rate, more particularly, a composition for wet etching of silicon dioxide, including 1 to 40 wt % of hydrogen fluoride (HF); 5 to 40 wt % of ammonium hydrogen fluoride (NH4HF2); and water, and further including a surfactant to improve selectivity of the silicon dioxide and a silicon nitride film. Since the composition for wet etching of silicon dioxide has the high etch selectivity of the silicon dioxide to the silicon nitride film, it is useful for selectively removing silicon dioxide.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: June 18, 2013
    Assignee: Techno Semichem Co., Ltd.
    Inventors: Jung Hun Lim, Dae Hyun Kim, Chang Jin Yoo, Seong Hwan Park
  • Patent number: 8460965
    Abstract: A manufacturing method for a solar cell including an upper electrode extracting an electrode at an incident light side, the upper electrode including a transparent conductive film, a basic structural element of the transparent conductive film being any one of an indium (In), a zinc (Zn), and tin (Sn), the manufacturing method including: a step A forming a texture on a front surface of a transparent substrate using a wet etching method, the transparent conductive film being formed on the transparent substrate, wherein in the step A, when the texture is formed, a metal thin film is formed on the transparent substrate, and an anisotropic etching is performed with the metal thin film being a mask.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: June 11, 2013
    Assignee: ULVAC, Inc.
    Inventors: Hirohisa Takahashi, Satoru Ishibashi, Kyuzo Nakamura
  • Patent number: 8454851
    Abstract: A method for manufacturing a flexible display device in which a flexible substrate is acquired by forming display devices on one side of the substrate and thinning the substrate by removing surface portions on an opposite side of the substrate. The thickness of the substrate is changed from a first thickness, which gives rigidity to the substrate to the second thickness, which gives flexibility to the substrate.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: June 4, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Chang Dong Kim, Hyun Sik Seo, Yong In Park, Seung Han Paek, Jung Jae Lee, Sang Soo Kim
  • Patent number: 8419965
    Abstract: A method for texturing a glass substrate includes cleaning the glass substrate with at least one surfactant and etching the glass substrate using a caustic solution. The percentage of caustic solution is provided by controlling a fluid flow and temperature to control the depth of the etching. The method also includes acid cleaning the etched glass substrate to remove glass residuals and surfactants.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: April 16, 2013
    Assignee: Rockwell Collins, Inc.
    Inventors: Paul R. Nemeth, John W. Sackfield
  • Patent number: 8409450
    Abstract: An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: April 2, 2013
    Assignee: The Regents of the University of California
    Inventors: Alexander K. Zettl, Jannik Christian Meyer
  • Patent number: 8388854
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a first block on a nanodot material, forming a first spacer on the first block, removing the first block to form a free standing spacer, removing exposed portions of the nanodot material and then the free standing spacer to form nanowires, forming a second block at an angle to a length of the nanowires, forming a second spacer on the second block, forming a second free standing spacer on the nanowires by removing the second block, and removing exposed portions of the nanowires and then the second free standing spacer to form an ordered array of nanodots.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: March 5, 2013
    Assignee: Intel Corporation
    Inventors: Brian Doyle, Been-Yih Jin, Jack Kavalieros, Robert Chau
  • Patent number: 8375559
    Abstract: A method of manufacturing a quartz crystal unit comprises disposing a metal film on opposite surfaces of a quartz crystal wafer and then etching the wafer to form a two-line tuning fork resonator vibratable in a flexural mode of an inverse phase. A groove is formed in the opposite main surfaces of both tines, and the length of each groove is determined relative to the length of the resonator so that the series resistance of the fundamental mode of vibration of the resonator is less than the series resistance of the second overtone mode of vibration thereof. The resonator is then mounted in case after which the resonant frequency of the resonator is adjusted.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: February 19, 2013
    Assignee: Piedek Technical Laboratory
    Inventor: Hirofumi Kawashima
  • Publication number: 20130032571
    Abstract: A method for manufacturing an aluminosilicate glass substrate for a hard disk of the present invention includes polishing an aluminosilicate glass substrate to be polished with a polishing composition that includes silica particles, a polymer having a sulfonic acid group, and water, wherein an adsorption constant of the polymer having the sulfonic acid group on aluminosilicate glass is 1.5 to 5.0 L/g. The polymer having the sulfonic acid group is preferably a polymer having an aromatic ring. The weight average molecular weight of the polymer having the sulfonic acid group is 3000 to 100000.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 7, 2013
    Applicant: KAO CORPORATION
    Inventors: Haruhiko Doi, Yosuke Uchino, Kazuhiko Nishimoto
  • Patent number: 8361333
    Abstract: This invention provides an inexpensive and rapid method for fabricating a high-anisotropic-etch ratio, shaped glass structures using a novel photosensitive glass composition. Structures of the photosensitive glass may include micro-channels, micro-optics, microposts, or arrays of hollow micro-needles. Furthermore, such shaped glass structures can be used to form a negative mold for casting the shape in other materials.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 29, 2013
    Assignee: Life Bioscience, Inc.
    Inventors: Jeb H. Flemming, Colin T. Buckley, Carrie Schmidt
  • Patent number: 8349739
    Abstract: The present disclosure provides a method for etching a substrate. The method includes forming a resist pattern on the substrate; applying an etching chemical fluid to the substrate, wherein the etching chemical fluid includes a diffusion control material; removing the etching chemical fluid; and removing the resist pattern.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: January 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ching-Yu Chang
  • Patent number: 8318606
    Abstract: An etchant for dielectrics, such as silicon dioxide, that leaves monocrystalline silicon surface exposed by the etchant free of etch damage, such as etch pits, when the etch is done in the presence of transition metals, such as copper, tungsten, titanium, gold, etc. The etchant comprises hydrofluoric acid and a source of halide anion, such as hydrochloric acid or a metal-halide. The etchant is useful in microelectromechanical system device fabrication and in deprocessing integrated circuits or the like.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: November 27, 2012
    Assignee: LSI Corporation
    Inventors: Frank Baiocchi, David Kern, John DeLucca
  • Patent number: 8313662
    Abstract: A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: November 20, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Philip Edward Miller, Tayyab Ishaq Suratwala, Jeffrey Devin Bude, Nan Shen, William Augustus Steele, Ted Alfred Laurence, Michael Dennis Feit, Lana Louie Wong
  • Patent number: 8298431
    Abstract: A first etching stop layer and an active layer are formed on an inner surface of a first glass substrate, and a second etching stop layer and a cover layer are formed on an inner surface of a second glass substrate. A display media is formed between the first glass substrate and the second glass substrate. A first passivation layer is formed on an outer surface of the second glass substrate. A first etching process is performed to expose the first etching stop layer. A first flexible substrate is formed on the exposed first etching stop layer, and a second passivation layer is formed on the first flexible substrate. The first passivation layer is removed. A second etching process is performed to expose the second etching stop layer. A second flexible substrate is formed on the exposed second etching stop layer, and the second passivation layer is removed.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: October 30, 2012
    Assignee: Au Optronics Corporation
    Inventors: Jong-Wen Chwu, Chao-Cheng Lin, Che-Yao Wu, Yu-Chen Liu, Wei-Chieh Yang
  • Patent number: 8298434
    Abstract: A method of forming an electrode having an electrochemical catalyst layer is disclosed. The method includes etching a surface of a substrate, followed by immersing the substrate in a solution containing surfactants to form a conditioner layer on the surface of the substrate, and immersing the substrate in a solution containing polymer-capped noble metal nanoclusters dispersed therein to form a polymer-protected electrochemical catalyst layer on the conditioner layer.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: October 30, 2012
    Assignee: Tripod Technology Corporation
    Inventors: Tzu-Chien Wei, Hai-Peng Cheng, Shien-Ping Feng, Jo-Lin Lan, Chao Peng, Wen-Chi Hsu, Ya-Huei Chang, Wen-Hsiang Chen
  • Patent number: 8273262
    Abstract: The invention provides a method for etching which is intended for reducing the thickness of a glass substrate, and which attains a high etching rate and is capable of inhibiting haze generation on the glass substrate surface. The invention relates to a method for etching a glass substrate surface, comprising etching the glass substrate surface in an amount of 1-690 ?m in terms of etching amount, in which the etching is conducted with an etchant having an HF concentration of 1-5 wt % and an HCl concentration of 1 wt % or higher.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: September 25, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Yoshitaka Saijo, Yuichi Suzuki, Ryoji Akiyama, Atsuyoshi Takenaka, Junichiro Kase
  • Patent number: 8268185
    Abstract: A method of analyzing a quartz member includes the step of supplying an etchant to the quartz member so as to etch the quartz member. The method also includes analyzing the etchant used in the supplying step. The etchant is supplied to a concave etchant receiving portion that is formed in the quartz member prior to the supplying step and has an inner wall thereof formed of the quartz member.
    Type: Grant
    Filed: May 28, 2007
    Date of Patent: September 18, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Kazuya Dobashi, Teruyuki Hayashi, Kohei Tsugita, Misako Saito
  • Patent number: 8257599
    Abstract: In a thermal head manufacturing method, at least one concave portion is formed on a surface of a first substrate, and a second substrate comprised of a first layer and a second layer that is denser and harder than the first layer is provided. The first and second substrates are bonded to one another so that the second layer of the second substrate covers the concave portion of the first substrate. The first layer of the second substrate is then etched until a surface of the second layer of the second substrate is exposed. At least one heating resistor is formed on the exposed surface of the second layer of the second substrate after the etching step so that the heating resistor is disposed over the concave portion of the first substrate.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: September 4, 2012
    Assignee: Seiko Instruments Inc.
    Inventors: Norimitsu Sanbongi, Toshimitsu Morooka, Keitaro Koroishi, Noriyoshi Shoji, Yoshinori Sato
  • Patent number: 8246847
    Abstract: There are provided an aqueous solution for separation of a conductive ceramics sintered body in which a conductive ceramic sintered body separated form a glass can be collected in a recyclable condition, and a separating method therefor, and an aqueous solution for separation with which a dark ceramics sintered body, a conductive ceramics sintered body and a glass are separately collected from a glass with a dark ceramics sintered body in which a conductive ceramics sintered body is formed on the dark ceramics sintered body, and a separating method therefor. A treatment liquid having an etching ability for at least one of a glass and a conductive ceramic sintered body is prepared as an aqueous solution 20 for separation of the conductive ceramics sintered body, then the aqueous solution 20 for separation is filled in a container 11, and a glass with a conductive ceramics sintered body 30 is immersed into the aqueous solution 20 for separation in the container 11.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: August 21, 2012
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Masahiro Hori, Kazuishi Mitani, Yasuhiro Saito, Nobuyuki Takatsuki, Kyouichi Shukuri, Shunji Kuramoto
  • Patent number: 8240023
    Abstract: A method for manufacturing a quartz crystal unit comprises the steps of forming a quartz crystal tuning fork resonator vibratable in a flexural mode of an inverse phase and having a quartz crystal tuning fork base and first and second quartz crystal tuning fork tines connected to the quartz crystal tuning fork base, forming at least one groove having at least three stepped portions in at least one of opposite main surfaces of each of first and second quartz crystal tuning fork tines, disposing an electrode on a surface of one of the at least three stepped portions of the at least one groove and an electrode on one of opposite side surfaces of each of the first and second quartz crystal tuning fork tines, mounting the quartz crystal tuning fork resonator on a mounting portion of a case, and connecting a lid to the case to cover an open end of the case, wherein the step of forming the quartz crystal tuning fork base and the first and second quartz crystal tuning fork tines is performed before the step of formin
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: August 14, 2012
    Assignee: Piedek Technical Laboratory
    Inventor: Hirofumi Kawashima
  • Patent number: 8211320
    Abstract: A carbon nanotube device includes a flexible substrate and a patterned carbon nanotube layer. The flexible substrate defines a plurality of recesses. The patterned carbon nanotube layer is formed on the flexible substrate. The carbon nanotube layer includes a plurality of carbon nanotube arrays. Each carbon nanotube array is fixedly attached in the corresponding recess.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 3, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Shao-Kai Pei
  • Publication number: 20120152403
    Abstract: A microplate apparatus having a bottom plate defining a plurality of very small microwells (for example, each having a volume of 0.02 or less) for containing sample material and a top plate defining a plurality of domes, each of which housing a sensors for measuring biological parameters, such as cellular oxygen consumption, pH changes, calcium uptake, and metabolic reduction of fluorescent dyes. The top and bottom plates may be composed of quartz. The microplate assembly may be fabricated using a method involving applying an etching solution to each of the top and bottom plates to create the domes and microwells. Additionally, etching solution may be applied to the bottom plate to create a raised lip region around each of the microwells. The etched-away areas surrounding the lip regions facilitate the changing of microwell solution without disrupting the samples.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Applicant: UNIVERSITY OF MIAMI
    Inventor: John Barrett
  • Patent number: 8173038
    Abstract: A method for forming microstructure cavities in a glass substrate includes directing a first laser pulse onto the glass substrate thereby forming a first microstructure cavity having a tapered configuration. The first laser pulse may have first spot area on the surface of the glass substrate. A second laser pulse having a second spot area on the surface of the glass substrate may be directed onto the glass substrate thereby forming a second microstructure cavity having a tapered configuration. The second spot area may be substantially the same as the first spot area and may overlap the first spot area such that a portion of the sidewall disposed between first microstructure cavity and the second microstructure cavity is ablated. After the portion of the sidewall is ablated, the diameter of each of the first and second microstructure cavities may be less than the diameter of the first spot area.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: May 8, 2012
    Assignee: Corning Incorporated
    Inventor: Robert Stephen Wagner
  • Patent number: 8137574
    Abstract: The present invention is to provide a processing method for manufacturing a highly flat and highly smooth glass substrate with good productivity. A highly flat and highly smooth glass substrate is obtained with good productivity by processing of a glass substrate, which comprises a step of measuring the surface shape of the glass substrate prior to processing, a step of processing the surface of the substrate by changing a processing condition for each site (first processing step), and a step of finish-polishing the surface of the glass substrate that has been subjected to the first processing step (second processing step).
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: March 20, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Koji Otsuka, Hiroshi Kojima, Masabumi Ito
  • Patent number: 8127426
    Abstract: An electronic apparatus has a display portion, and first and second oscillating circuits each having a quartz crystal resonator, the quartz crystal resonator of each of the first and second oscillating circuits vibrating in a different mode from each other. One of the quartz crystal resonators is a quartz crystal tuning fork resonator having first and second tuning fork tines. Electrodes are disposed on side surfaces of each of the first and second tuning fork tines so that the electrodes of the first tuning fork tine have an electrical polarity opposite to an electrical polarity of the electrodes of the second tuning fork tine. The capacitance ratio r1 of a fundamental mode of vibration of the quartz crystal tuning fork resonator is less than a capacitance ratio r2 of a second overtone mode of vibration thereof. An output signal of the oscillating circuit having the quartz crystal tuning fork resonator is a clock signal used to display time information at the display portion of the electronic apparatus.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: March 6, 2012
    Assignee: Piedek Technical Laboratory
    Inventor: Hirofumi Kawashima
  • Publication number: 20120053042
    Abstract: The present invention discloses a method for treating at least a portion of at least one surface of a glass article which comprises the following steps, whatever their order: dry application of at least one high-pH solid material on said portion; heating of said glass article to a temperature at least equal to the melting temperature of the said high-pH solid.
    Type: Application
    Filed: June 2, 2010
    Publication date: March 1, 2012
    Applicant: AGC Glass Europe
    Inventors: Ronny Pieters, Florent Scarso
  • Publication number: 20120052302
    Abstract: A method of strengthening an edge of a glass article while maintaining the optical clarity of the major surfaces or protecting layers or structures deposited on the surfaces of the article. A protective coating or film of a polymer or polymer resin is applied to at least one surface of the glass article. The surface may either be melt-derived or polished, and/or chemically or thermally strengthened. The edge is etched with an etchant to reduce the size and number of flaws on the edge, thereby strengthening the edge. A glass article having an edge strengthened by the method is also provided.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Inventors: Joseph M. Matusick, Michael T. Preston, Robert A. Schaut, Daniel A. Sternquist, Heather Debra Boek, Mark Owen Weller
  • Patent number: 8122587
    Abstract: A method for manufacturing a quartz crystal unit comprises the steps of adjusting an oscillation frequency of a quartz crystal tuning fork resonator that is vibratable in a flexural mode of an inverse phrase and that has first and second quartz crystal tuning fork tines, forming at least one groove in each of two of opposite main surfaces of each of first and second quartz crystal tuning fork tines, disposing an electrode on a surface of the at least one groove formed in each of two of the opposite main surfaces and each of two of opposite side surfaces of each of the first and second quartz crystal tuning fork tines so that the electrodes of the grooves of the first quartz crystal tuning fork tine are connected to the electrodes of the side surfaces of the second quartz crystal tuning fork tine and the electrodes of the grooves of the second quartz crystal tuning fork tine are connected to the electrodes of the side surfaces of the first quartz crystal tuning fork tine, the quartz crystal tuning fork resonat
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: February 28, 2012
    Assignee: Piedek Technical Laboratory
    Inventor: Hirofumi Kawashima
  • Publication number: 20120003779
    Abstract: A method for texturing a surface of a substrate comprising creating micro-fractures in the surface of the substrate to be textured, and etching the surface of the substrate to be textured to open the micro-fractures.
    Type: Application
    Filed: August 29, 2008
    Publication date: January 5, 2012
    Inventor: Trevor Lindsay Young
  • Patent number: 8084280
    Abstract: A method of manufacturing a solar cell wherein a pre-cleaning step is completed prior to a saw damage removal step and prior to texturization, thereby resulting in the subsequently formed textured surface to have a more homogeneous textural morphology.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: December 27, 2011
    Inventors: Ismail Kashkoush, Gim-Syang Chen
  • Patent number: 8070973
    Abstract: Apparatus including: a substrate layer having a substantially planar top surface; an optically conductive peak located and elongated on, and spanning a first thickness measured in a direction generally away from, the top surface; the optically conductive peak having first and second lateral walls each including distal and proximal lateral wall portions, the proximal lateral wall portions intersecting the top surface; and first and second sidewall layers located on the distal lateral wall portions, the sidewall layers not intersecting the top surface and spanning a second thickness that is less than the first thickness measured in the same direction.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: December 6, 2011
    Assignee: Alcatel Lucent
    Inventors: Young-Kai Chen, Andreas Bertold Leven, Yang Yang
  • Patent number: 8069549
    Abstract: A quartz crystal device includes a crystal resonator element and a package including a plurality of components. The plurality of components are bonded using a metal paste sealing material containing a metallic particle having an average particle size from 0.1 to 1.0 ?m, an organic solvent, and a resin material in proportions of from 88 to 93 percent by weight from 5 to 15 percent by weight, and from 0.01 to 4.0 percent by weight, respectively, to hermetically seal the crystal resonator element in the package.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: December 6, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Yoji Nagano, Tatsuya Anzai, Hideo Tanaya
  • Patent number: 8066898
    Abstract: A surface treatment solution for finely processing a glass substrate containing multiple ingredients is used for the construction of liquid crystal-based or organic electroluminescence-based flat panel display devices without invoking crystal precipitation and/or increasing surface roughness. An etching solution of the invention contains, in addition to hydrofluoric acid (HF) and ammonium fluoride (NH4F), at least one acid whose dissociation constant is larger than that of HF. The concentration of the acid in the solution can advantageously be adjusted to maximize the etching rate.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: November 29, 2011
    Assignee: Stella Chemifa Kabushiki Kaisha
    Inventors: Hirohisa Kikuyama, Tatsuhiro Yabune, Masayuki Miyashita, Tadahiro Ohmi
  • Patent number: 8021561
    Abstract: The optical device includes a plurality of waveguides and an optical grating. A first portion of the waveguides act as input waveguide configured to carry a light beam that includes multiple light signals to the optical grating. The optical grating is configured to demultiplex the light signals. A second portion of the waveguides act as output waveguides configured to carry the demultiplexed light signals away from the optical grating. A method of forming the optical device includes sequentially forming the waveguides and the optical grating while a single mask defines the location of the waveguides and the optical grating.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: September 20, 2011
    Assignee: Kotura, Inc.
    Inventors: Wei Qian, Joan Fong, Dazeng Feng
  • Publication number: 20110175487
    Abstract: The invention relates to a method for producing a dielectric layer (3) in an electroacoustic component (1), in particular a component operating with acoustic surface waves or bulk acoustic waves, comprising a substrate and an associated electrode structure, in which the dielectric layer (3) is formed at least in part by depositing by a thermal vapour deposition process at least one evaporation material selected from the following group of layer vaporising materials: vapour deposition glass material such as borosilicate glass, silicon nitride and aluminium oxide. The invention further relates to an electroacoustic component.
    Type: Application
    Filed: July 23, 2009
    Publication date: July 21, 2011
    Inventors: Ulli Hansen, Jürgen Leib, Simon Maus
  • Patent number: 7977251
    Abstract: Methods of selectively etching BPSG over TEOS are disclosed. In one embodiment, a TEOS layer may be used to prevent contamination of other components in a semiconductor device by the boron and phosphorous in a layer of BPSG deposited over the TEOS layer. An etchant of the present invention may be used to etch desired areas in the BPSG layer, wherein the high selectivity for BPSG to TEOS of etchant would result in the TEOS layer acting as an etch stop. A second etchant may be utilized to etch the TEOS layer. The second etchant may be less aggressive and, thus, not damage the components underlying the TEOS layer.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: July 12, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Whonchee Lee, Kevin J. Torek
  • Patent number: 7975364
    Abstract: A method for producing a tuning-fork type crystal vibrating piece relates to a crystal tuning fork comprising a basal portion, a first vibrating arm, and a second vibrating arm, wherein both arms extend from the basal portion. The method for producing a crystal tuning fork comprises a step of forming a first metallic film into a shape including the contours of the basal portion, the first vibrating arm and second vibrating arm on a first surface of a quartz wafer; a step of forming a second metallic film on the second surface opposite to the first surface of the quartz wafer into a shape covering at least a root area near the basal portion between the first vibrating arm and the second vibrating arm, and a step of wet-etching the quartz substrate in etching solution after forming the first and second metallic films.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: July 12, 2011
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventor: Takehiro Takahashi
  • Patent number: 7972570
    Abstract: A distributor nozzle for a two-phase charge, to be used in fixed-bed reactors in order to increase the area over which the mixture is dispersed and to make its flow rate the same over the whole area of the bed in the reactor. The device includes a number of fixing bars and a deflector cone frustum. The deflector cones or cone frusta may have more than one angle in order to improve the distribution, and they have a number of apertures or slits and a number of vertical directing elements or a directing cage or frame to direct the stream of the two-phase charge in order to increase the area over which the mixture is dispersed and to make its flow rate the same over the entire area of the bed in the reactor.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: July 5, 2011
    Assignee: Petróleo Brasileiro S.A.—Petrobas
    Inventors: Jose Antonio Vidal Vieira, Wilson Kenzo Huziwara, Donizeti Aurelio Silva Belato, Ademaro Marchiori, Jorge Roberto Duncan Lima, Fabricio Torres, Carlos Otavio Brito
  • Patent number: 7968468
    Abstract: In a substrate treatment method for supplying a coating solution to a substrate with projections and depressions on a front surface thereof to form a coating film on the front surface of the substrate, the coating solution is supplied to the rotating substrate to form a coating film on the front surface of the substrate, and the substrate having the coating film formed thereon is heated to adjust an etching condition of the coating film. Next, the etching solution is supplied to the rotating substrate to etch the coating film, and thereafter the coating solution is supplied to the substrate to form a flat coating film on the front surface of the substrate. Thereafter, the substrate is heated to cure the coating film. This flattens the coating film with uniformity and high accuracy without undergoing a high-load process such as chemical mechanical polishing.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: June 28, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Shouichi Terada, Tsuyoshi Mizuno, Takeshi Uehara
  • Patent number: 7955440
    Abstract: After a water film is formed on a wafer front surface in a chamber, the water film is supplied sequentially with an oxidizing component of an oxidation gas, an organic acid component of an organic acid mist, an HF component of an HF gas, the organic acid mist, and the oxidizing component of the oxidation gas. As a result, the HF component and the organic acid component provide cleaning effect on the wafer surface, and a concentration of the cleaning components in the water film within a wafer surface can be even.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: June 7, 2011
    Assignee: Sumco Corporation
    Inventors: Shigeru Okuuchi, Kazushige Takaishi
  • Patent number: 7938980
    Abstract: A method of using a chemical compound as an etchant for the removal of unmodified areas of a chalcogenide-based glass, while leaving the imagewise modified areas un-removed, wherein the compound contains a secondary amine, R1 R2 NH, with R1 and/or R2 having a sterically bulky group with more than 5 atoms.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: May 10, 2011
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventors: Sean Wong, Georg von Freymann, Martin Wegener, Geoffrey Alan Ozin
  • Patent number: 7935265
    Abstract: A method for producing a ceramic substrate material having a first layer and possibly a further layer is specified. The first layer comprises at least one first component made of a crystalline ceramic material and/or a glass material as a matrix and a second component made of a further crystalline ceramic material, which is provided in the matrix. An etching step is performed, mantle areas of the crystals and/or crystal agglomerates of the second component being etched selectively in the first layer to generate a cavity structure in the first layer. The present invention also relates to a corresponding ceramic substrate material, an antenna or an antenna array, and the use of the ceramic substrate material for an antenna or an antenna array.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: May 3, 2011
    Assignee: Biotronik CRM Patent AG
    Inventors: Dieter Schwanke, Achim Bittner, Ulrich Schmid, Mirco Harnack
  • Patent number: 7923626
    Abstract: The invention relates to a glass substrate (1) provided with an electrode comprising at least one metal oxide-based transparent conducting layer (3), characterized in that said layer has an RMS roughness of at least 3 nm, especially of at least 5 nm and/or a mean feature size for this roughness of at least 50 nm.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: April 12, 2011
    Assignee: Saint-Gobain Glass France
    Inventors: Ulf Blieske, Anne Durandeau
  • Patent number: 7879736
    Abstract: In a composition for etching silicon oxide, and a method of forming a contact hole using the composition, the composition which includes from about 0.01 to about 2 percent by weight of ammonium bifluoride, from about 2 to about 35 percent by weight of an organic acid, from about 0.05 to about 1 percent by weight of an inorganic acid, and a remainder of a low polar organic solvent. The composition may reduce damages to a metal silicide pattern that may be exposed in an etching process performed for forming the contact hole.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: February 1, 2011
    Assignees: Samsung Electronics Co., Ltd., Cheil Industries, Inc.
    Inventors: Dong-Won Hwang, Kook-Joo Kim, Jung-In La, Pil-Kwon Jun, Seung-Ki Chae, Yang-Koo Lee
  • Patent number: 7850863
    Abstract: A process for fabricating a hydrogenated amorphous silicon carbide film having through-pores includes the formation on a substrate of a film consisting of an amorphous hydrogenated silicon carbide matrix in which silicon oxide nanowires are dispersed therethrough, and then the selective destruction by a chemical agent of the silicon oxide nanowires present in the film formed at step a). Applications include microelectronics and micro-technology, in all fabrication processes that involve the degradation of a sacrificial material by diffusion of a chemical agent through a film permeable to this agent for the production of air gaps, in particular the fabrication of air-gap interconnects for integrated circuits.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: December 14, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Aziz Zenasni
  • Patent number: 7845064
    Abstract: A control apparatus and method for controlling an image display includes at least one reference object for generating a predetermined spectrum signal, a modulation unit for modulating the predetermined spectrum signal with a predetermined method, and a remote controller. The remote controller includes an image sensor for receiving the modulated predetermined spectrum signal and generating a digital signal and a processing unit for receiving the digital signal, demodulating the digital signal, and calculating an image variation of the image of the reference object formed on the digital image.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: December 7, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jang Ho Park, Tae Hoon Kim, Jong Yeol Jeon
  • Patent number: 7845063
    Abstract: A method for manufacturing a quartz crystal unit comprises forming a quartz crystal tuning fork resonator that is capable of vibrating in a flexural mode of an inverse phase and that has a quartz crystal tuning fork base, and first and second quartz crystal tuning fork tines connected to the quartz crystal tuning fork base. An electrode is disposed on each of two of side surfaces of each of the first and second quartz crystal tuning fork tines so that the electrodes of the first quartz crystal tuning fork tine have an electrical polarity opposite to an electrical polarity of the electrodes of the second quartz crystal tuning fork tine, a motional capacitance C1 of a fundamental mode of vibration of the quartz crystal tuning fork resonator being greater than a motional capacitance C2 of a second overtone mode of vibration thereof.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: December 7, 2010
    Assignee: Piedek Technical Laboratory
    Inventor: Hirofumi Kawashima
  • Publication number: 20100282712
    Abstract: A liquid etching composition comprising: (a) at least one etching agent precursor having an activation temperature of at least 400° C., at which temperature said precursor yields an active agent suitable for chemical etching of glass, said precursor present at a concentration of at least 2.5% w/w; (b) a binder; and (c) a liquid vehicle.
    Type: Application
    Filed: September 22, 2008
    Publication date: November 11, 2010
    Applicant: DIP TECH. LTD.
    Inventors: Matti Ben-Moshe, Michael Kheyfets
  • Patent number: 7824564
    Abstract: A method for flattening a glass substrate includes the steps of preparing plural kinds of etching liquids different from one another in an etching rate, preparing the glass substrate, and etching the glass substrate at least one time with each of the etching liquids and executing the etching a plurality of times in total. When the etchings are executed the plurality of times, an etching rate of the glass substrate with one etching liquid used for one etching of plural etchings is slower than that of the glass substrate with the another etching liquid used for another etching executed after the one etching process of the plural etching processes.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: November 2, 2010
    Assignees: Casio Computer Co., Ltd., Sanwa Frost Industries Co., Ltd., Nagase & Co., Ltd.
    Inventor: Kazuyuki Hiroki
  • Patent number: 7810355
    Abstract: Methods and apparatus for protecting the thin films during chemical and/or thermal edge strengthening treatment. In one embodiment, a portion of each individual sheet is laminated. Pairs of sheets are then sealed together such that the thin film sides face inward to form a thin film sandwich. In some embodiments, the sandwich in then immersed in a chemical strengthener. In other embodiments, a localized treatment is applied to the unstrengthened edges.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: October 12, 2010
    Assignee: Apple Inc.
    Inventors: Casey J. Feinstein, John Z. Zhong