Substrate Is Glass Patents (Class 216/97)
  • Publication number: 20020124378
    Abstract: The present invention provides a method for manufacturing an erect image, unity magnification, resin lens array by injection molding. Two injection-molded lens plates are stacked such that convexly warped sides thereof face each other or such that a convexly warped side of the lens plate whose warp is greater than that of the other lens plate faces a concavely warped side of the other lens plate, while directions of resin injection thereof are aligned so as to optically avoid the influence of molding shrinkage. Engagement spigots and engagement sockets are employed in order to align the two lens plates. The two stacked lens plates are secured by clipping of peripheral portions thereof.
    Type: Application
    Filed: March 7, 2001
    Publication date: September 12, 2002
    Inventors: Hiroyuki Nemoto, Takashi Kishimoto, Kenjiro Hamanaka
  • Patent number: 6444133
    Abstract: A method is provided for making a photonic band gap fiber including the steps of etching a preform and then drawing the preform into a photonic band gap fiber. Glass tubes are bundled and then formed into a photonic crystal perform having a number of passageways by reducing the cross-section of the bundle. One of the passageways is enlarged by flowing an etchant through it. After cleaning, the band gap fiber is made from the etched photonic preform, for example, by drawing.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: September 3, 2002
    Assignee: Corning Incorporated
    Inventors: James C. Fajardo, Thomas A. Cook, Michael T.. Gallagher
  • Patent number: 6413437
    Abstract: The invention is a method of forming the art work for chemically etching that produces uniform through-etch and lateral-etch. The artwork that defines the pattern to be etched utilizes lines equal to the narrowest feature that is to be etched. Rather than etch away large areas, section are removed by etching by cutting them out of the material that is being etched. The artwork or pattern is designed with the same compensation factors throughout the entire pattern and the etch rate will be completely uniform for the entire pattern.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: July 2, 2002
    Assignee: Texas Instruments Incorporated
    Inventor: Robert M. Fritzsche
  • Publication number: 20020078886
    Abstract: A silica glass jig for semiconductor industry, which is does not contaminate semiconductor elements, and generates less cracks and a production method thereof are provided.
    Type: Application
    Filed: September 25, 2001
    Publication date: June 27, 2002
    Inventors: Tohru Segawa, Tatsuhiro Sato, Yoichiro Maruko, Kyoichi Inaki
  • Publication number: 20020079289
    Abstract: The present invention discloses an etching apparatus comprising an etching bath having an etchant; an etchant recycling part in the etching bath; a DI and undiluted etchant supply part for supplying a DI water and a undiluted etchant; an etchant mixing part for mixing the DI water and the undiluted etchant; and an etchant heating part for heating the mixed etchant.
    Type: Application
    Filed: December 19, 2001
    Publication date: June 27, 2002
    Inventor: Yong II Doh
  • Patent number: 6406639
    Abstract: A method of partially forming oxide layers on a surface of a glass substrate by forming an oxide layer on the surface of the substrate, partially contacting the surface of the oxide layer formed on the substrate with a paste comprising an inorganic compound different from the oxide, organic solvents and silicon powder to partially dissolving the oxide layer with the paste, and removing the dissolved components of the layer together with the paste, by which the oxide layers are partially formed on the surface of the substrate efficiently and surely.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: June 18, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Koichi Sakaguchi, Osamu Ishii, Yasunori Shiraishi
  • Patent number: 6399504
    Abstract: A surface having exposed doped silicon dioxide such as BPSG is cleaned with a solution that etches thermal oxide at least one-third as fast as it etches the exposed doped silicon dioxide, resulting in more thorough cleaning with less removal of the exposed doped silicon dioxide. Specific applications to formation of container capacitors are disclosed. Preferred cleaning solutions include about 46 parts ammonium fluoride, about 9.5 parts hydrogen fluoride, and about 8.5 parts ammonium hydroxide in about 100 parts water by weight; and about 670 parts ammonium fluoride and about 3 parts hydrogen fluoride in about 1000 parts water by weight. The latter solution is also useful in cleaning methods in which a refractory metal silicide is exposed to the cleaning solution such as in cleaning prior to spacer formation or prior to a gate stack contact fill, in which case about 670 parts ammonium fluoride and about 1.6 parts hydrogen fluoride in about 1000 parts water is most preferred.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: June 4, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Richard C. Hawthorne, Li Li, Pai Hung Pan
  • Patent number: 6395634
    Abstract: In a method of manufacturing a glass substrate for a magnetic recording medium for forming a predetermined roughness, a principal surface of the glass substrate is precisely polished by the use of polishing material containing free abrasive grain. Remaining stress distribution for a portion of a polishing trace due to the free abrasive grain is generated on the surface of the glass substrate. A surface process is performed for at least the principal surface of the glass substrate by the use of hydrosilicofluoric acid. A portion having relatively high remaining distortion in the generated remaining stress distribution is decided as an island portion. The glass substrate is heated after precisely polishing before performing the surface process by the use of the hydrosilicofluoric acid.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: May 28, 2002
    Assignee: Hoya Corporation
    Inventor: Takemi Miyamoto
  • Patent number: 6391137
    Abstract: An object of the present invention is to provide a method for producing a display device by which a substrate is thinned efficiently. Onto one original substrate having an area for a plurality of display devices, the other original substrate is bonded via a sealing resin layer, the pair of bonded original substrates is divided and separated into a plurality of pairs of substrates of a size of each individual display device, and thereafter a substrate thinning process of thinning the substrates is performed in a state where the substrates are held by substrate holding means.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: May 21, 2002
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Yasuhiro Matsushima
  • Patent number: 6391221
    Abstract: A method for effectively removing the thermal-hardened frit seal (solder glass) which is used for assembling the electronic parts is disclosed. By utilizing the solution which contains sulfonic acid ion, the frit seal can be effectively removed without generating the noxious gas. Additionally there are merits of reducing the discharge volume of wastes and conveniences of wastes treatment.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: May 21, 2002
    Inventor: Ki Won Lee
  • Patent number: 6383404
    Abstract: In a glass substrate for use in a magnetic recording medium, a surface roughness of at least a principal surface of the glass substrate is measured by the use of the interatomic force microscope (AFM), Ra falls within the range between 0.2 and 2.5 nm, Rmax falls within the range between 3 and 25 nm, and Rmax/Ra falls within the range between 3 and 35.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: May 7, 2002
    Assignee: Hoya Corporation
    Inventors: Hiroyuki Sakai, Katsutoshi Ono, Syoji Matsuda
  • Patent number: 6378338
    Abstract: Magnetic disk substrates are produced by subjecting glass substrates to at least steps of degreasing, etching, sensitization with tin chloride, activation and sensitivity-enhancing treatment in that order, then plating the pretreated substrates with a nickel/phosphorus film, and thereafter polishing the plated substrates. In the process, the substrates being processed are washed with hot pure water at a temperature of not lower than 50° C. for a period of from 20 to 90 seconds, after the sensitization step but before the activation step, and heated at a temperature of not lower than 70° C. for a period of from 5 to 100 minutes, after the sensitization step but before the nickel/phosphorus-plating step.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: April 30, 2002
    Assignee: Showa Denko K.K.
    Inventors: Kurata Awaya, Kazuyoshi Nishizawa, Kiyoshi Tada
  • Patent number: 6374482
    Abstract: A method for manufacturing liquid discharge heads is provided with discharge ports for discharging liquid, liquid flow paths communicated with the discharge ports for supplying liquid to the discharge ports, a substrate having heat generating members for creating bubbles in liquid, and movable members facing the heat generating members, each being arranged in each liquid flow path, having the free end on the discharge port side with a specific gap with the heat generating member. This method comprises the steps of forming the boundary layer used for providing a gap between the movable member and the substrate above the heat generating member on the substrate, of laminating the movable member on the boundary layer so as to position the free end above the heat generating member, at the same time fixing the movable member on the substrate, and of forming the gap between the movable member and the heat generating member by use of the boundary layer.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: April 23, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroaki Mihara, Masahiko Ogawa, Kazuaki Masuda, Masami Ikeda, Ichiro Saito, Hiroyuki Ishinaga, Toshio Kashino, Shuji Koyama, Tomoyuki Hiroki, Yoshiyuki Imanaka, Teruo Ozaki, Masahiko Kubota
  • Publication number: 20010040143
    Abstract: A method for extracting sodium elements from a glass surface is provided. The method includes extracting sodium elements from the surface of glass by etching the Na containing glass substrate with strong acid. The corrosion of the glass surface can be prevented at low cost, without a change in the characteristics of glass materials. Also, an adhesive strength between glass and metal can be improved. Further, change in the characteristics of a deposited layer due to diffusion of sodium elements can be prevented.
    Type: Application
    Filed: February 28, 2001
    Publication date: November 15, 2001
    Inventors: Hong Kyu Jang, Chung-Nam Whang, Taek-Jung Shin
  • Patent number: 6294058
    Abstract: Compositely micro-textured thin film, magnetic disc media, with methods and apparatus for producing such, which are characterized by the incorporation of a first stage of micro-texturing provided by etching of a disc substrate, with a second, disparate, micro-texturing stage depositing rounded globules of eutectic alloy on the etched substrate.
    Type: Grant
    Filed: July 15, 1994
    Date of Patent: September 25, 2001
    Assignee: United Module Corporation
    Inventors: Edward F. Teng, Atef H. Eltoukhy, Bryan K. Clark, Wilfred M. Goh
  • Patent number: 6287972
    Abstract: Chemical Mechanical Processing (CMP) is widely used for manufacturing semiconductors. CMP is very effective for planarizing geometry that are not widely isolated. One limiting aspect of CMP is that the deposition of the layer being planarized generally has an effective distance over which gaps can be filled. These gaps can fill with a residue that adversely effects the resultant semiconductor. A technique that inhibits the accumulation of residue deposits a sacrificial layer of material after deposition of a planarizing layer, but before CMP. This layer is selected so that it fills the gaps from the manufacturing process, but has little abrasive or solvent resistance. CMP is performed after the sacrificial layer is performed. However, since the gaps are filled, residues cannot collect. Then, after the CMP is performed, the sacrificial layer is removed by applying a solvent to the sacrificial layer. The choice of material for the sacrificial layer is also important.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: September 11, 2001
    Assignee: Philips Semiconductor, Inc.
    Inventors: David Ziger, Hunter Brugge
  • Patent number: 6281136
    Abstract: An apparatus for etching a glass substrate includes a first bath containing an etchant, at least one porous panel having a plurality of jet holes in the first bath, the porous panel containing the etchant to jet the etchant against the glass substrate, a container storing the etchant, and a pump supplying the etchant from the container to the porous panel, the pump being connected to the container and the porous panel.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: August 28, 2001
    Assignee: LG.Philips LCD Co., Ltd.
    Inventor: Woong Kwon Kim
  • Patent number: 6280647
    Abstract: In a method for sharpening a probe, a probe preform having a longitudinal axis is at least partially immersed in a mixture containing at least an etch solution and a non-etch solution having a lower specific gravity than and which is not miscible with the etch solution. The probe preform is moved in the mixture along the longitudinal axis thereof during etching at a speed which does not exceed a taper length forming speed for a probe preform which is not moved in the etch solution during etching. An end of the probe preform is etched into a sharp tapered tip having a taper angle greater than that obtained for the probe preform which is not moved during etching.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: August 28, 2001
    Assignee: Seiko Instruments Inc.
    Inventors: Hiroshi Muramatsu, Katsunori Honma, Norio Chiba, Noritaka Yamamoto, Akira Egawa
  • Publication number: 20010013507
    Abstract: A method for chemical-mechanical polishing of a low dielectric constant inorganic polymer surface such as an organo silicate glass wherein a slurry comprising high purity fine zirconium oxide particles uniformly dispersed in a stable aqueous medium is used.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 16, 2001
    Inventors: Sharath D. Hosali, Vikas Sachan
  • Patent number: 6254796
    Abstract: A silicate glass is selectively etched employing a composition containing a fluoride containing compound and certain organic solvents. Preferred compositions also include water.
    Type: Grant
    Filed: December 29, 1998
    Date of Patent: July 3, 2001
    Assignee: International Business Machines Corporation
    Inventors: David L. Rath, Glenn W. Gale, Rangarajan Jagannathan, Kenneth J. McCullough, Karen P. Madden, Harald F. Okorn-Schmidt, Keith R. Pope
  • Patent number: 6231924
    Abstract: The present invention provides a method of partially forming oxide layers on a surface of a substrate such as a glass plate by forming an oxide layer on the surface of the substrate, partially contacting the surface of the oxide layer formed on the substrate with an inorganic compound different from the oxide, dissolving partially the layer with the inorganic compound and removing the dissolved components of the layer together with the inorganic compound, by which the oxide layers are partially formed on the surface of the substrate efficiently and surely.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: May 15, 2001
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Koichi Sakaguchi, Shigeki Nakagaki, Yasuto Sakai
  • Patent number: 6223562
    Abstract: The surface quality of halide, preferably fluoride, articles, e.g., articles used in the preparation of halide fibers is improved by cleaning the surface with an aqueous etchant and thereafter removing the etchant by washing the surface with methanol. The aqueous etchant is preferably a solution which contains hydrochloric acid and zirconium oxychloride.
    Type: Grant
    Filed: October 17, 1996
    Date of Patent: May 1, 2001
    Assignee: British Telecommunications Public Limited Company
    Inventors: Daryl Szebesta, John Richard Williams, Steven Terrence Davey
  • Patent number: 6218305
    Abstract: A method is provided for polishing a composite comprised of silica and silicon nitride wherein a polishing composition is used comprising: an aqueous medium, abrasive particles, a surfactant, an organic polymer viscosity modifier which increases the viscosity of the composition, and a compound which complexes with the silica and silicon nitride wherein the complexing agent has two or more functional groups each having a dissociable proton, the functional groups being the same or different.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: April 17, 2001
    Assignee: Rodel Holdings, Inc.
    Inventors: Sharath D. Hosali, Anantha R. Sethuraman, Jiun-Fang Wang, Lee Melbourne Cook, Michael R. Oliver
  • Patent number: 6214250
    Abstract: A composite material suitable for labeling a substrate. The composite material, which is preferably a ceramic composite, comprises a fired ceramic body and a layer thereon. The fired ceramic body includes a base layer that comprising a glassy phase and a refractory phase, the glassy phase being capable of wetting a substrate at an application temperature. There is sufficient color contrast between the top layer and the fired ceramic body such that a code pattern (e.g., a bar code) present (or formed) is optically discernible. Methods of making and using the same are also taught.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: April 10, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Kyung H. Moh, Daniel Lacave, Bernardus M. Sueoss
  • Patent number: 6203660
    Abstract: A two-phase etching system having an etchant solution and an overlayer of a protective solvent. The physical properties of the etchant solution and the protective solvent are matched to form a flat meniscus on the top surface of the etchant solution around a fiber immersed in the protective solvent and the etchant solution. Convective flows within the etchant solution are maintained in order to form a smooth and sharp fiber probe with a small tip apex.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: March 20, 2001
    Assignee: California Institute of Technology
    Inventors: Marc A. Unger, Dmitri A. Kossakovski
  • Patent number: 6192899
    Abstract: A method for cleaning polymer film residues from in-process integrated circuit devices is disclosed. Specifically, a method for forming a contact via in an integrated circuit is disclosed in which the formation of a metallization conductive element is exposed through a dry anisotropic etch. During the etch, a polymer film residue forms from masking materials, and coats the newly-formed via. The polymer film may have metals incorporated metals therein from the metallization conductive element. A fluorine based etchant is used to remove the polymer film. Protection of the metallization conductive element during the cleaning process is accomplished with passivation additives comprising straight, branched, cyclic, and aromatic hydrocarbons. Attached to the hydrocarbons are functional groups comprising at least 3 hydroxyls.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: February 27, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Li Li, Donald L. Westmoreland, Donald L. Yates
  • Patent number: 6171512
    Abstract: A method for preparing a semiconductor member comprises: forming a substrate having a non-porous silicon monocrystalline layer and a porous silicon layer; bonding another substrate having a surface made of an insulating material to the surface of the monocrystalline layer; and etching to remove the porous silicon layer by immersing in an etching solution.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 9, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kiyofumi Sakaguchi, Takao Yonehara, Nobuhiko Sato
  • Patent number: 6136210
    Abstract: A method of fabricating a lens comprising providing a photosoluble substrate having opposed first and second surfaces; exposing one of the surfaces of the substrate to a photoactive etchant; and exposing said etchant to patterned light such that a convex or concave, generally semi-spherical bulge or recess is formed in said substrate.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: October 24, 2000
    Assignee: Xerox Corporation
    Inventors: David K. Biegelsen, Scott A. Elrod, Raj B. Apte, Donald Smith
  • Patent number: 6110396
    Abstract: A slurry containing abrasive particles and a dual-valent rare earth ion or suspension of its colloidal hydroxide is especially useful for polishing surfaces, including those used in microelectronics. A suspension of a colloidal dual-valent rare earth hydroxide is especially useful for polishing silica.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: August 29, 2000
    Assignee: International Business Machines Corporation
    Inventor: Maria Ronay
  • Patent number: 6103177
    Abstract: A mastering apparatus for recording optical information onto a glass master 6, includes an objective lens 3, a slider 5 for controlling the movement of the objective lens 3 in the tracking direction, a turn table 7 for rotating the glass master 6, a spindle motor 8 for controlling the rotation of the turn table 7, a positioning beam generator 9, a positioning beam detector 10 for detecting a positioning beam reflected and/or diffracted by positioning units 16 and 17 and a slider controller 11 for moving the slider 5 based on the result of reception of a beam at the positioning beam detector 10. The positioning unit 16 is mounted on the vicinity of the objective lens 3, and the positioning unit 17 is mounted on the upper surface of a spindle stationary portion 13. Since the position of the positioning unit 17 is always stable, relative positional deviation between the positioning units 16 and 17 can be accurately detected by detecting the beam diffracted by the positioning units 16 and 17.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: August 15, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jun Nishida, Nobutaka Kikuiri
  • Patent number: 6086775
    Abstract: A method for preparing coated optical fibers wherein an outer coating is a colored ink coating, and an inner coating is a protective coating, which removes the ink coating while minimizing damage to the protective coating. The method includes uimersing the fiber in a dilute acid bath at a predetermined length of time, removing the fiber from the bath and neutralizing the acid thereon, wiping the remnant ink coating off, and removing the protective coating.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: July 11, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Louis Ray Pritchett, Jr., Shahabuddin Siddiqui, John Russell Szwec
  • Patent number: 6071374
    Abstract: An apparatus for etching a glass substrate includes a first bath 13 containing an etchant, at least one porous panel 15 having a plurality of jet holes 16 in the first bath, the porous panel containing the etchant to jet the etchant against the glass substrate 30, a container 20 storing the etchant, and a pump 24 supplying the etchant from the container to the porous panel, the pump being connected to the container and the porous panel.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: June 6, 2000
    Assignee: LG Electronics Inc.
    Inventor: Woong Kwon Kim
  • Patent number: 6048466
    Abstract: To propose a method of cleaning a surface of a glass substrate fabricated by a process of strengthening a surface thereof by alkaline ion exchange reaction by selectively removing alkaline metal on the surface by cleaning the surface by using an activated ionic water produced by electric polarization and as a result, to provide a glass substrate for a magnetic disk having a magnetic medium with insignificant corrosion and excellent S/N ratio, in cleaning a glass substrate for a magnetic disk using a glass substrate pulled up from a chemically strengthening treatment solution produced by an alkaline ion exchange reaction, after a final polishing step of fabricating the glass substrate for a magnetic disk, the glass substrate is cleaned by an activated anodically electrolyzed water produced by electric polarization to thereby selectively remove the alkaline metal at the vicinity of the surface.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: April 11, 2000
    Assignee: Fine Glass Technology Co., Ltd.
    Inventors: Toshinori Morizane, Masao Kawaguchi, Tadao Tokushima
  • Patent number: 6044851
    Abstract: A composition prepared from water, hydrofluoric acid (HF) and tetraalkylammonium hydroxide (TAAH, preferably tetramethylammonium hydroxide (TMAH)) or tetraalkylammonium fluoride and solvent with or without HF or TAAH is used to clean residue from a semiconductor wafer, where the residue is formed as a result of a planarization process, such as chemical mechanical polishing. Incorporation of TMAH into an aqueous HF composition retards the rate at which the composition dissolves borophosphosilicate (BPSG) without effecting the rate at which silica is dissolved. Thus, the aqueous HF/TMAH composition may be used to completely remove silica-containing residue from a BPSG surface, with a tolerable level of BPSG removal.
    Type: Grant
    Filed: June 15, 1998
    Date of Patent: April 4, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Eric K. Grieger, Michael T. Andreas, Michael A. Walker
  • Patent number: 6033988
    Abstract: There is provided a spin coating process of forming a coating film through spin coating of a solution on a substrate, wherein periphery portions of the coating film are removed. The film forming method comprises the steps of: (a) initiating dropwise dispensing of a first solvent having a relatively low affinity for the coating film at a position slightly insider a periphery of the substrate covered by the coating film; (b) initiating dropwise dispensing of a second solvent having a relatively high affinity for the coating film at a position closer to the periphery of the substrate as compared to the position of the dropwise dispensing of the first solvent, where the dropwise dispensing of the second solvent is initiated simultaneous to or after the initiation of the dropwise dispensing of the first solvent; (c) stopping the dropwise dispensing of the first solvent; and (d) stopping the dropwise dispensing of the second solvent after stopping the dropwise dispensing of the first solvent.
    Type: Grant
    Filed: January 27, 1998
    Date of Patent: March 7, 2000
    Assignee: Kawasaki Steel Corporation
    Inventor: Shinji Hirano
  • Patent number: 6033583
    Abstract: A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant.
    Type: Grant
    Filed: May 5, 1997
    Date of Patent: March 7, 2000
    Assignee: The Regents of the University of California
    Inventors: Ronald G. Musket, John D. Porter, James M. Yoshiyama, Robert J. Contolini
  • Patent number: 6022485
    Abstract: A catalytic method and an apparatus for selectively removing material from a solid substrate is provided. The method comprises contacting a surface of a solid substrate with a catalyst material in the presence of a reactant under conditions effective to selectively remove material from those areas of said solid substrate in contact with said catalyst material and said reactant.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: February 8, 2000
    Assignee: International Business Machines Corporation
    Inventor: Roger W. Cheek
  • Patent number: 6001437
    Abstract: A glass fiber capable of withstanding temperatures in excess of 1900.degree. F. is produced by treating a glass, preferably E-glass, fiber. The glass fiber is first leached with selected acids, and then the leached fiber is treated with organo-metallic materials of low viscosity, such as a dispersion of low molecular weight water-in-oil emulsion of dimethyl polysiloxane. The fiber is used in such applications as embedding it in a fire-resistant active coating material or embedding it into one surface of a polyolefin or composite plastic, such as a polypropylene sheet. The treated fiberglass can be used as a sole component or in concert with a fire-resistant or fire retardant material to further enhance its fire-resistant properties.
    Type: Grant
    Filed: July 17, 1997
    Date of Patent: December 14, 1999
    Assignee: Nu-Chem, Inc.
    Inventors: Allen W. Thorpe, Edward W. Taylor, Jr., Rubin Feldman, Malkit S. Deogon
  • Patent number: 5989450
    Abstract: An etchant for etching a glass substrate includes distilled water containing HF of more than 5 vol % and about 5 vol % of alcohol. The HF etches a glass substrate and the alcohol dissolves the residue particles attached to a surface of the substrate to apply the etchant to the total area for uniform thickness and smooth surface.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: November 23, 1999
    Assignee: LG Electronics Inc.
    Inventor: Woong Kwon Kim
  • Patent number: 5985166
    Abstract: A two-phase etching system having an etchant solution and an overlayer of a protective solvent. The physical properties of the etchant solution and the protective solvent are matched to form a substantially flat meniscus on the top surface of the etchant solution around a fiber immersed in the protective solvent and the etchant solution. Convective flows within the etchant solution are maintained to form a smooth and sharp fiber probe with a small tip apex.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: November 16, 1999
    Assignee: California Institute of Technology
    Inventors: Marc A. Unger, Dmitri A. Kossakovski
  • Patent number: 5962081
    Abstract: A method for the manufacture of a microstructure having a top face and a bottom face, at least one hole or cavity therein extending from the top face to the bottom face, and a polymer membrane which extends over a bottom opening of said hole or cavity, which method comprises the steps of: providing a substrate body having said top and bottom faces, optionally forming at least part of said at least one hole or cavity in the substrate body, providing a membrane support at the bottom face opening of said at least one hole or cavity, depositing a layer of polymer material onto the bottom face of said substrate body against said membrane support, if required, completing the formation of the at least one hole or cavity, and, if not done in this step, selectively removing said membrane support to bare said polymer membrane over the bottom opening of the at least one hole or cavity.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: October 5, 1999
    Assignee: Pharmacia Biotech AB
    Inventors: Ove Ohman, Christian Vieider
  • Patent number: 5928525
    Abstract: An optical fiber made up of a core for propagating the light and a clad covering the core for confining the light propagated in the core. The optical fiber has a tapering protrusion at the apex for entrance and exiting of light. The optical fiber is used in a photon scanning tunneling microscope detecting the evanescent light localized in an area smaller in size than the wavelength of light on the surface of an sample as an optical probe disposed in proximity to the surface of the sample for scattering the evanescent light for detecting the scattered light. The optical fiber is optically coupled to an optical waveguide for constituting an optically coupled element. With this optically coupled element, a protrusion of the optical fiber operates as a collection unit for collecting the light propagated in the core. The light collected by the protrusion enters the optical waveguide.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: July 27, 1999
    Assignee: Kanagawa Academy of Science and Technology
    Inventors: Motoichi Ohtsu, Shuji Mononobe, Uma Maheswari Rajagopalan
  • Patent number: 5897679
    Abstract: The specification describes techniques for chemically machining extruded glass preforms used to draw glass ferrules for optical fiber connectors. Using the chemical machining technique the dimensions of the preform, including OD, ID, and the OD to ID ratio can be adjusted so that the dimensions of drawn ferrules meet strict dimensional standards. The technique is especially useful for adjusting the dimensions of extruded preforms that have an inherent bow along in the length of the preform. The technique allows adjustment in dimensions while preserving a desired OD to ID ratio. Also described are techniques for reducing eccentricity and/or ellipticity of hollow bore glass preforms.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: April 27, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Jerry Max Anderson, Aza E. Mishkevich, Eliezer M. Rabinovich
  • Patent number: 5895582
    Abstract: The present invention relates to a glass substrate for a thin film magnetic data storage disk and to a process for producing such a glass substrate. The process includes the steps of: (a) providing a glass substrate; (b) printing a regular masking pattern of printed dots onto at least a portion of the surface of the substrate; and (c) etching the unmasked surface of the substrate thereby to texture the substrate surface. The glass substrate for a thin film magnetic data storage disk has a roughened surface produced by preferential area etching, the roughened surface being composed of a regular pattern of peaks separated by valleys.
    Type: Grant
    Filed: July 8, 1993
    Date of Patent: April 20, 1999
    Assignee: Pilkington plc
    Inventors: Christopher John Wilson, Paul Andrew Marshall
  • Patent number: 5879424
    Abstract: An optical micro-machining method of glass characterized in that after light is applied to glass including SiO.sub.2 and 30-70 mol % GeO.sub.2, the irradiated area is removed by etching.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: March 9, 1999
    Assignee: Agency of Industrial Science & Technology
    Inventors: Junji Nishii, Hiroshi Yamanaka
  • Patent number: 5879577
    Abstract: A method is described for selectively etching photoresist on a semiconductor substrate having one or more layers of a spin on glass, including an edge bead that was formed when the glass was originally applied. First the wafer is coated with a layer of unexposed, undeveloped negative photoresist. Then, while spinning the wafer, a vertical jet of photoresist EBR solvent is directed to a point just inside the edge so that photoresist gets removed from an annular area extending inwards from the perimeter. The edge bead is then removed using a liquid etchant and integrated circuit processing can now proceed, making use of the unexposed, undeveloped layer of photoresist in the usual way; that is, exposing it through a mask and then developing and baking it before using it as an etch mask. The method is general and may be used in other situations where selective removal of photoresist along the periphery is required and where the remaining resist is to be used for other purposes.
    Type: Grant
    Filed: January 13, 1997
    Date of Patent: March 9, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Kuo-Yao Weng, Yeh-Jye Wann
  • Patent number: 5871654
    Abstract: To reduce occurrence of flaws in a polishing process by preventing an abrasive grain or metallic particles deposited on the surface of a glass substrate for a magnetic disk in a lapping process from entering into the subsequent polishing process. A lapping process for the main surface is a glass substrate for a magnetic disk is conducted; an etching process for the main surface of the glass substrate is conducted to the extent of a depth of 0.1 .mu.m to 3 .mu.m, followed by conducting a polishing process for the main surface of the glass substrate where the etching process has been conducted.
    Type: Grant
    Filed: December 2, 1996
    Date of Patent: February 16, 1999
    Assignee: AG Technology Co., Ltd.
    Inventors: Kazuo Mannami, Ichiro Hayashi, Atsushi Tokuma
  • Patent number: 5868855
    Abstract: A silicon wafer is set in a processing bath and an HF water solution and ozone water are respectively supplied from an HF line and ozone water line into the processing bath via an HF valve and ozone water valve to create a mixture. The mixture contains an HF water solution with a concentration of 0.01% to 1% and ozone water with a concentration of 0.1 ppm to 20 ppm, has substantially the same etching rate for silicon and for silicon oxide film and is used at a temperature in the range of 10.degree. to 30.degree. C. The silicon wafer and the silicon oxide film formed on part of the surface of the wafer can be simultaneously cleaned by use of the above mixture.
    Type: Grant
    Filed: March 7, 1996
    Date of Patent: February 9, 1999
    Assignee: Kabushki Kaisha Toshiba
    Inventors: Yuji Fukazawa, Kunihiro Miyazaki
  • Patent number: 5863449
    Abstract: This invention relates to a method of making fiber optic interferometers. First, a plurality of optical fibers are bundled and placed into a sleeve. The bundle is then encased in the sleeve and the fiber ends are cut and polished. An area of cladding is stripped back from the polished fiber ends and layers of material are deposited on the fiber ends. These layers of material have varying indexes of refraction and form a grating. The bundle of optical fibers is then removed from encasing in the sleeve.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: January 26, 1999
    Assignee: The Whitaker Corporation
    Inventor: Dimitry G. Grabbe
  • Patent number: 5849640
    Abstract: A method is disclosed for improved planarization and deposition of intermetal dielectric layers in semiconductor substrates. More specifically, the method involves the performance of specific process steps in-situ. That is, unlike in prior art, starting with cured spin-on-glass (SOG), the steps of SOG etchback and deposition of the intermetal dielectric PECVD, all take place sequentially in the same chamber and without a vacuum break. If not in the same chamber, then in the same load lock system. In this manner, it is shown that no longer does the SOG layer delaminate from the oxide layer. Furthermore, because the system is not exposed to moisture due to the absence of vacuum break, there is no adverse reaction when metal is deposited into the via holes.
    Type: Grant
    Filed: April 1, 1996
    Date of Patent: December 15, 1998
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shaw-Tzeng Hsia, Ching-Ying Lee, Chih-Cheng Liao