Field Effect Device Patents (Class 257/20)
  • Patent number: 11908742
    Abstract: A semiconductor device and method of forming the same is disclosed. The semiconductor device includes a semiconductor substrate, a first fin and a second fin extending from the semiconductor substrate, a first lower semiconductor feature over the first fin, a second lower semiconductor feature over the second fin. Each of the first and second lower semiconductor features includes a top surface bending downward towards the semiconductor substrate in a cross-sectional plane perpendicular to a lengthwise direction of the first and second fins. The semiconductor device also includes an upper semiconductor feature over and in physical contact with the first and second lower semiconductor features, and a dielectric layer on sidewalls of the first and second lower semiconductor features.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Jeng-Wei Yu, Li-Wei Chou, Tsz-Mei Kwok, Ming-Hua Yu
  • Patent number: 11887848
    Abstract: A nucleation layer comprised of group III and V elements is directly deposited onto the surface of a substrate made of a group IV element. Together with a first gaseous starting material containing a group III element, a second gaseous starting material containing a group V element is introduced at a process temperature of greater than 500° C. into a process chamber containing the substrate. It is essential that at least at the start of the deposition process of the nucleation layer, a third gaseous starting material containing a group IV element is fed into the process chamber, together with the first and second gaseous starting material. The third gaseous starting material develops an n-doping effect in the deposited III-V crystal, which causes a decrease in damping at a dopant concentration of less than 1×1018 cm?3.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: January 30, 2024
    Assignee: AIXTRON SE
    Inventor: Christof Martin Mauder
  • Patent number: 11817240
    Abstract: The invention relates to heterostructures including a layer of a two-dimensional material placed on a multiferroic layer. An ordered array of differing polarization domains in the multiferroic layer produces corresponding domains having differing properties in the two-dimensional material. When the multiferroic layer is ferroelectric, the ferroelectric polarization domains in the layer produce local electric fields that penetrate the two-dimensional material. The local electric fields can influence properties of the two-dimensional material, including carrier density, transport properties, optical properties, surface chemistry, piezoelectric-induced strain, magnetic properties, and interlayer spacing. Methods for producing the heterostructures are provided. Devices incorporating the heterostructures are also provided, including tunable sensors, optical emitters, and programmable logic gates.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: November 14, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Berend T Jonker
  • Patent number: 11508781
    Abstract: A stacked quantum computing device including: a first chip including a superconducting qubit, where the superconducting qubit includes a superconducting quantum interference device (SQUID) region, a control region, and a readout region, and a second chip bonded to the first chip, where the second chip includes a first control element overlapping with the SQUID region, a second control element displaced laterally from the control region and without overlapping the control region, and a readout device overlapping the readout region.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: November 22, 2022
    Assignee: Google LLC
    Inventors: Julian Shaw Kelly, Joshua Yousouf Mutus
  • Patent number: 11424321
    Abstract: The present invention provides a semiconductor structure and a preparation method thereof. A transition metal and an impurity are co-doped on a buffer layer above a substrate layer to reduce the leakage current of a semiconductor device, to improve the pinch-off behavior, and to avoid the device current collapse, moreover, the ranges of the concentration of the transition metal and the impurity in the buffer layer are controlled to ensure the balance of the leakage current during the dynamic characteristics of the device.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: August 23, 2022
    Assignee: ENKRIS SEMICONDUCTOR, INC.
    Inventors: Kai Cheng, Kai Liu
  • Patent number: 11411101
    Abstract: A TFT substrate and a manufacturing method thereof are provided. In the manufacturing method, a metal oxide semiconductor layer is irradiated with UV light by using a gate as a shielding layer, such that a portion of the metal oxide semiconductor layer irradiated by the UV light is conductorized to form a source, a drain, and a pixel electrode, and a portion of the metal oxide semiconductor layer shielded by the gate still retains semiconductor properties to form a semiconductor channel. The invention achieves the alignment of the source and the drain with the gate by processes of self-alignment of the gate and conductorization of the metal oxide semiconductor layer, and can effectively control an overlapping region of the source and drain and the gate. Thereby, the parasitic capacitance is reduced, and the display quality is improved. Also, the manufacturing method is simple, and the production efficiency is improved.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: August 9, 2022
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Xianwang Wei
  • Patent number: 11362182
    Abstract: A semiconductor device includes; a substrate including a first region and a second region, a first active pattern extending upward from the first region, a first superlattice pattern on the first active pattern, a first active fin centrally disposed on the first active pattern, a first gate electrode disposed on the first active fin, and first source/drain patterns disposed on opposing sides of the first active fin and on the first active pattern. The first superlattice pattern includes at least one first semiconductor layer and at least one first blocker-containing layer, and the first blocker-containing layer includes at least one of oxygen, carbon, fluorine and nitrogen.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: June 14, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ilgyou Shin, Minyi Kim, Myung Gil Kang, Jinbum Kim, Seung Hun Lee, Keun Hwi Cho
  • Patent number: 11276756
    Abstract: Disclosed herein are quantum dot devices with single electron transistor (SET) detectors. In some embodiments, a quantum dot device may include: a quantum dot formation region; a group of gates disposed on the quantum dot formation region, wherein the group of gates includes at least first, second, and third gates, spacers are disposed on sides of the first and second gates, wherein a first spacer is disposed on a side of the first gate proximate to the second gate, and a second spacer, physically separate from the first spacer, is disposed on a side of the second gate proximate to the first gate, and the third gate is disposed between the first and second gates and extends between the first and second spacers; and a SET disposed on the quantum dot formation region, proximate to the group of gates.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 15, 2022
    Assignee: Intel Corporation
    Inventors: Hubert C. George, Ravi Pillarisetty, Nicole K. Thomas, Jeanette M. Roberts, James S. Clarke
  • Patent number: 11043515
    Abstract: A display substrate, a manufacturing method thereof, and a display device. The manufacturing method of a display substrate includes: providing a substrate; and forming, on the substrate, a first thin film transistor including a first active layer and a second thin film transistor including a second active layer. The second active layer includes a central area and doped regions located at two sides of the central area, respectively. Forming a first thin film transistor including a first active layer and a second thin film transistor including a second active layer on the substrate includes forming the first active layer and the doped regions of the second active layer using a single mask.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: June 22, 2021
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Shuang Sun, Kuanjun Peng
  • Patent number: 10971613
    Abstract: A semiconductor device includes a base substrate, a doped region at an upper surface of the base substrate, and a transistor over the upper surface of the base substrate and formed from a plurality of epitaxially-grown semiconductor layers. The doped region includes one or more ion species, and has a lower boundary above a lower surface of the base substrate. The base substrate may be a silicon substrate, and the transistor may be a GaN HEMT formed from a plurality of heteroepitaxial layers that include aluminum nitride and/or aluminum gallium nitride. The doped region may be a diffusion barrier region and/or an enhanced resistivity region. The ion species may be selected from phosphorus, arsenic, antimony, bismuth, argon, helium, nitrogen, and oxygen. When the ion species includes oxygen, the doped region may include a silicon dioxide layer formed from annealing the doped region after introduction of the oxygen.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: April 6, 2021
    Assignee: NXP USA, Inc.
    Inventors: Yuanzheng Yue, David Cobb Burdeaux, Jenn Hwa Huang, Bruce McRae Green, James Allen Teplik
  • Patent number: 10964806
    Abstract: A heterojunction power device includes a substrate; a III-nitride semiconductor region over the substrate; a source operatively connected to the semiconductor region; a drain operatively connected to the semiconductor region; a gate between the source and drain and over the semiconductor region. The source is in contact with a first portion located between the source and gate and having a two dimensional carrier gas. The drain is in contact with a second portion located between the drain and gate and having a two dimensional carrier gas. At least one of the first and second portions has a trench having vertical sidewalls and formed within the semiconductor region; mesa regions extend away from each sidewall of the trench. The two dimensional carrier gas is located alongside the mesa regions and the trench. At least one of the source and drain is in contact with the respective two dimensional carrier gas.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: March 30, 2021
    Assignee: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Giorgia Longobardi, Florin Udrea
  • Patent number: 10923584
    Abstract: Techniques are disclosed for forming III-N transistor structures that include a graded channel region. The disclosed transistors may be implemented with various III-N materials, such as gallium nitride (GaN) and the channel region may be graded with a gradient material that is a different III-N compound, such as indium gallium nitride (InGaN), in some embodiments. The grading of the channel region may provide, in some cases, a built in polarization field that may accelerate carriers travelling between the source and drain, thereby reducing transit time. In various embodiments where GaN is used as the semiconductor material for the transistor, the GaN may be epitaxially grown to expose either the c-plane or the m-plane of the crystal structure, which may further contribute to the built-in polarization field produced by the graded channel.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: February 16, 2021
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic
  • Patent number: 10916637
    Abstract: A method of forming a gate-all-around semiconductor device, includes providing a substrate having a layered fin structure thereon. The layered fin structure includes a channel portion and a sacrificial portion each extending along a length of the layered fin structure, wherein the layered fin structure being covered with replacement gate material. A dummy gate is formed on the replacement gate material over the layered fin structure, wherein the dummy gate having a critical dimension which extends along the length of the layered fin structure. The method further includes forming a gate structure directly under the dummy gate, the gate structure including a metal gate region and gate spacers provided on opposing sides of the metal gate region, wherein a total critical dimension of the gate structure is equal to the critical dimension of the dummy gate.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: February 9, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Jeffrey Smith, Anton deVilliers
  • Patent number: 10840336
    Abstract: A semiconductor device may include a semiconductor layer and at least one contact in the semiconductor layer. The contact may include at least one oxygen monolayer constrained within a crystal lattice of adjacent semiconductor portions of the semiconductor layer and spaced apart from a surface of the semiconductor layer by between one and four monolayers, and a metal layer on the surface of the semiconductor layer above the at least one oxygen monolayer. The semiconductor portion between the oxygen monolayer and the metal layer may have a dopant concentration of 1×1021 atoms/cm3 or greater.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 17, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Daniel Connelly, Marek Hytha, Hideki Takeuchi, Richard Burton, Robert J. Mears
  • Patent number: 10833284
    Abstract: Manufacturing an electrical device including providing a substrate having a surface and forming a radiofrequency field effect transistor on the surface, including forming a CNT layer on the surface and depositing a pin-down layer on the CNT layer. The pin-down layer is patterned to form separate pin-down anchor layers. A first portion of the CNT layer, located in-between the pin-down anchor layers and second portions of the CNT layer are covered by the pin-down anchor layers. For cross-sections in a direction perpendicular to a common alignment direction of the electrically conductive aligned carbon nanotubes in the first portion of the CNT layer the electrically conductive aligned carbon nanotubes have an average linear density in a range from 20 to 120 nanotubes per micron along the cross-sections, and at least 40 percent of the electrically conductive aligned carbon nanotubes are discrete from any carbon nanotubes of the CNT layer.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: November 10, 2020
    Assignee: Carbonics Inc.
    Inventors: Alexander Allen Kane, Christopher Michael Rutherglen, Tyler Andrew Cain, Philbert Francis Marsh, Kosmas Galatsis
  • Patent number: 10832969
    Abstract: Semiconductor devices and methods of forming the same include forming a dummy gate over a fin, which has a lower semiconductor layer, an insulating intermediate layer, and an upper semiconductor layer, to establish a channel region and source/drain regions. Source/drain extensions are grown on the lower semiconductor layer. Source/drain extensions are grown on the upper semiconductor layer. The dummy gate is replaced with a gate stack.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xin Miao, Choonghyun Lee, Shogo Mochizuki, Hemanth Jagannathan
  • Patent number: 10833238
    Abstract: A configuration of wirebonds for reducing cross-talk in a quantum computing chip includes a first wirebond coupling a first conductor of a quantum computing circuit with a first conductor of an external circuit. The embodiment further includes in the configuration a second wirebond coupling a second conductor of the quantum computing circuit with a second conductor of the external circuit, wherein the first wirebond and the second wirebond are separated by a first vertical distance in a direction of a length of the first conductor.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dongbing Shao, Markus Brink
  • Patent number: 10822231
    Abstract: Novel and useful quantum structures that provide various control functions. Particles are brought into close proximity to interact with one another and exchange information. After entanglement, the particles are moved away from each other but they still carry the information contained initially. Measurement and detection are performed on the particles from the entangled ensemble to determine whether the particle is present or not in a given qdot. A quantum interaction gate is a circuit or structure operating on a relatively small number of qubits. Quantum interaction gates implement several quantum functions including a controlled NOT gate, quantum annealing gate, controlled SWAP gate, a controlled Pauli rotation gate, and ancillary gate. These quantum interaction gates can have numerous shapes including double V shape, H shape, X shape, L shape, I shape, etc.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: November 3, 2020
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10800654
    Abstract: Novel and useful quantum structures that provide various control functions. Particles are brought into close proximity to interact with one another and exchange information. After entanglement, the particles are moved away from each other but they still carry the information contained initially. Measurement and detection are performed on the particles from the entangled ensemble to determine whether the particle is present or not in a given qdot. A quantum interaction gate is a circuit or structure operating on a relatively small number of qubits. Quantum interaction gates implement several quantum functions including a controlled NOT gate, quantum annealing gate, controlled SWAP gate, a controlled Pauli rotation gate, and ancillary gate. These quantum interaction gates can have numerous shapes including double V shape, H shape, X shape, L shape, I shape, etc.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 13, 2020
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10793431
    Abstract: Novel and useful quantum structures that provide various control functions. Particles are brought into close proximity to interact with one another and exchange information. After entanglement, the particles are moved away from each other but they still carry the information contained initially. Measurement and detection are performed on the particles from the entangled ensemble to determine whether the particle is present or not in a given qdot. A quantum interaction gate is a circuit or structure operating on a relatively small number of qubits. Quantum interaction gates implement several quantum functions including a controlled NOT gate, quantum annealing gate, controlled SWAP gate, a controlled Pauli rotation gate, and ancillary gate. These quantum interaction gates can have numerous shapes including double V shape, H shape, X shape, L shape, I shape, etc.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 6, 2020
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10734512
    Abstract: A high electron mobility transistor (HEMT) device with epitaxial layers that provide an electron Hall mobility of 1080±5% centimeters squared per volt-second (cm2/V·s) at room temperature for a charge density of 3.18×1013/cm2 and method of making the HEMT device is disclosed. The epitaxial layers include a channel layer made of gallium nitride (GaN), a first spacer layer made of aluminum nitride (AlN) that resides over the channel layer, a first spacer layer made of AlXGa(1-X)N that resides over the first spacer layer, and a first barrier layer made of ScyAlzGa(1-y-z)N that resides over the second spacer layer. In at least one embodiment, a second barrier layer made of AlXGa(1-X)N is disposed over the first barrier layer.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: August 4, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Edward A. Beam, III, Jinqiao Xie
  • Patent number: 10644155
    Abstract: Disclosed is a semiconductor device, which includes: forming a first channel layer including a Group III-V compound or germanium (Ge) and having a first semiconductor characteristics on a first substrate; forming a second channel layer including a Group III-V compound or germanium (Ge) and having a second semiconductor characteristics different from the first semiconductor characteristics on the first channel layer; forming a bonding layer containing an oxide on a second channel layer; allowing the bonding layer to be bound to the second substrate so that a structure including the bonding layer, the second channel layer, the first channel layer and the first substrate may be stacked on the second substrate; removing the first substrate stacked on the second substrate; and removing the first channel layer from a partial region of the structure stacked on the second substrate.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: May 5, 2020
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyung-jun Kim, Sanghyeon Kim, Jae-Phil Shim
  • Patent number: 10608171
    Abstract: Embodiments of the invention disclose magnetic memory cell configurations in which a magnetic storage structure is coupled to an upper metal layer with minimal overlay margin. This greatly reduces a size of the memory cell.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: March 31, 2020
    Assignee: III HOLDINGS 1, LLC
    Inventor: Krishnakumar Mani
  • Patent number: 10593655
    Abstract: A light-emitting device of an embodiment of the present application comprises light-emitting units; a transparent structure having cavities configured to accommodate at least one of the light-emitting units; and a conductive element connecting at least two of the light-emitting units.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: March 17, 2020
    Assignee: EPISTAR CORPORATION
    Inventor: Min Hsun Hsieh
  • Patent number: 10572815
    Abstract: Methods, systems, and apparatus for individual qubit excitation control. In one aspect, a method includes accessing a quantum system that comprises a plurality of qubits; a plurality of qubit frequency control lines, each qubit frequency control line corresponding to an individual qubit and controlling the frequency of the qubit; a driveline; a plurality of couplers, each coupler coupling a corresponding qubit to the driveline so that a plurality of qubits are coupled to the driveline; determining one or more qubits that require a rotation operation; for each qubit requiring a rotation operation: tuning the qubit frequency to the corresponding driveline frequency of the rotation operation; performing the rotation operation using a microwave pulse on the excitation drive; and tuning the qubit away from the driveline frequency of the rotation operation.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: February 25, 2020
    Assignee: Google LLC
    Inventor: Rami Barends
  • Patent number: 10559634
    Abstract: An organic light emitting diode display device can include a substrate; a plurality of pixels disposed on the substrate; a plurality of anodes corresponding to the plurality of pixels, respectively; an organic light emitting layer disposed on the plurality of anodes; a cathode layer disposed on the organic light emitting layer; and a step difference compensation layer partitioning at least two adjacent pixels among the plurality of pixels, in which the step difference compensation layer includes a base layer, and a plurality of spike patterns disposed on the base layer, the plurality of spike patterns including protrusions that extend into at least a portion of the organic light emitting layer in a region between the at least two adjacent pixels.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: February 11, 2020
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Seungmin Baik, Hojin Kim, Goeun Jung
  • Patent number: 10541025
    Abstract: A configuration bit for a switching block routing array comprising a non-volatile memory cell is provided. By way of example, the configuration bit and switching block routing array can be utilized for a field programmable gate array, or other suitable circuit(s), integrated circuit(s), application specific integrated circuit(s), electronic device or the like. The configuration bit can comprise a switch that selectively connects or disconnects a node of the switching block routing array. A non-volatile memory cell connected to the switch can be utilized to activate or deactivate the switch. In one or more embodiments, the non-volatile memory cell can comprise a volatile resistance switching device connected in serial to a gate node of the switch, configured to trap charge at the gate node to activate the switch, or release the charge at the gate node to deactivate the switch.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: January 21, 2020
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo
  • Patent number: 10510844
    Abstract: Provided is a semiconductor device includes a first semiconductor layer provided on a first main surface of the semiconductor substrate, a plurality of first semiconductor regions selectively provided at upper layer parts of the semiconductor layer, a second semiconductor region selectively provided at an upper layer part of each of the first semiconductor regions, a second semiconductor layer provided on a JFET region corresponding to the first semiconductor layer between the first semiconductor regions, and configured to cover at least a part of the JFET region, a gate insulating film covering the first semiconductor regions and the second semiconductor layer, a third semiconductor layer provided on the second semiconductor layer, a gate electrode provided on the gate insulating film, an interlayer insulating film covering the gate electrode and the gate insulating film, a contact hole penetrating through the gate insulating film and the interlayer insulating film, at least the second semiconductor region b
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: December 17, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Munetaka Noguchi, Toshiaki Iwamatsu
  • Patent number: 10483472
    Abstract: A Schottky diode includes an insulating substrate and at least one Schottky diode unit. The at least one Schottky diode unit is located on a surface of the insulating substrate. The at least one Schottky diode unit includes a first electrode, a semiconductor structure and a second electrode. The semiconductor structure comprising a first end and a second end. The first end is laid on the first electrode, the second end is located on the surface of the insulating substrate. The semiconducting structure includes a carbon nanotube structure. The second electrode is located on the second end.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: November 19, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Yuan-Hao Jin, Tian-Fu Zhang, Qun-Qing Li
  • Patent number: 10483354
    Abstract: In one embodiment, a nitride semiconductor device is provided with a first semiconductor layer that is a layer of Alx1Ga(1-x1)N (0<x1?1), a second semiconductor layer that is on the first semiconductor layer and is a layer of a nitride semiconductor Iny2Alx2Ga(1-x2-y2)N (0<x2<1, 0<y2<1, 0<x2+y2?1) containing indium, a third semiconductor layer that is on the second semiconductor layer and is a layer of Alx3Ga(1-x3)N (0?x3<1), and a fourth semiconductor layer that is on the third semiconductor layer and is an layer of Iny4Alx4Ga(1-x4-y4)N (0<x4<1, 0?y4<1, 0<x4+y4?1).
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: November 19, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenjiro Uesugi, Shigeya Kimura, Toshiki Hikosaka
  • Patent number: 10475802
    Abstract: A semiconductor device includes: a substrate; a first nitride semiconductor layer and a second nitride semiconductor layer having a band gap wider than a band gap of the first nitride semiconductor layer; a first active region which includes a source electrode, a drain electrode, and a gate electrode, and has a first carrier layer located in the first nitride semiconductor layer; and a second active region which is on an extension of a long-side direction of the drain electrode and has a second carrier layer located in the first nitride semiconductor layer via an element isolation region, and a potential of the second carrier layer is substantially same as a potential of a source extraction electrode in the second active region or is an intermediate potential between a potential of a gate extraction electrode and the potential of the source extraction electrode opposite a short side of the drain electrode.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: November 12, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Ayanori Ikoshi, Manabu Yanagihara
  • Patent number: 10403628
    Abstract: Embodiments of the present invention provide improved methods and structures for fabrication of capacitor-less DRAM devices, sometimes referred to as ZRAM devices. A channel is formed in a fin-type field effect transistor (finFET) that is comprised of a finned channel portion and a convex channel portion. The finned channel portion may be comprised of a first semiconductor material and the convex channel portion may be comprised of a second, different semiconductor material. In embodiments, a metal gate is disposed around the elongated surface of the channel region, but is not disposed on the short surface of the channel region. A first spacer is disposed adjacent to the gate and in direct physical contact with the short surface of the channel region, and a second spacer is disposed adjacent to the first spacer.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: September 3, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ravikumar Ramachandran, Reinaldo Ariel Vega
  • Patent number: 10381059
    Abstract: A magnetic memory element includes a contact with a magnetic layer portion between a conductive layer portion and a non-magnetic layer portion. The magnetic layer has a magnetization perpendicular to the plane of the layers, and an angled conductive track-having a central portion extended by two arms, the contact being entirely arranged on the track. For each arm, a current flowing towards the contact along the median axis of the arm encounters the portion of the contact nearest to the arm primarily on the left thereof for one of the arms, and primarily on the right thereof for the other arm.
    Type: Grant
    Filed: October 15, 2016
    Date of Patent: August 13, 2019
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Gilles Gaudin, Ioan Mihai Miron, Olivier Boulle, Safeer Chenattukuzhiyil
  • Patent number: 10374037
    Abstract: A semiconductor junction may include a first semiconductor material and a second material. The first and the second semiconductor materials are extrinsically undoped. At least a portion of a valence band of the second material has a higher energy level than at least a portion of the conduction band of the first semiconductor material (type-III band alignment). A flow of a majority of free carriers across the semiconductor junction is diffusive. A region of generation and/or recombination of a plurality of free carriers is confined to a two-dimensional surface of the second material, and at the interface of the first semiconductor material and the second material.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: August 6, 2019
    Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Raphael Tsu, Ian T. Ferguson, Nikolaus Dietz
  • Patent number: 10347856
    Abstract: The present disclosure relates to a light detector. The light detector includes a first electrode, a second electrode, a current detector, a power source and a nano-heterostructure. The nano-heterostructure is electrically coupled with the first electrode and the second electrode. The nano-heterostructure includes a first carbon nanotube, a second carbon nanotube and a semiconductor layer. The semiconductor layer includes a first surface and a second surface opposite to the first surface. The first carbon nanotube is located on the first surface, the second carbon nanotube is located on the second surface.
    Type: Grant
    Filed: June 3, 2017
    Date of Patent: July 9, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10319703
    Abstract: A light-emitting device of an embodiment of the present application comprises light-emitting units; a transparent structure having cavities configured to accommodate at least one of the light-emitting units; and a conductive element connecting at least two of the light-emitting units.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: June 11, 2019
    Assignee: EPISTAR CORPORATION
    Inventor: Min Hsun Hsieh
  • Patent number: 10283629
    Abstract: A method of forming an electrical device that includes forming a gate dielectric layer over a gate electrode, forming source and drain electrodes on opposing sides of the gate electrode, wherein one end of the source and drain electrodes provides a coplanar surface with the gate dielectric, and positioning a 1D or 2D nanoscale material on the coplanar surface to provide the channel region of the electrical device.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: May 7, 2019
    Assignee: International Business Machines Corporation
    Inventors: Michael Engel, Mathias B. Steiner
  • Patent number: 10276693
    Abstract: A semiconductor device includes a substrate, a bottom semiconductor fin, at least one sidewall structure, a top semiconductor fin, and a gate structure. The bottom semiconductor fin is disposed on the substrate. The sidewall structure protrudes from the semiconductor fin. The top semiconductor fin is disposed on the bottom semiconductor fin. The top semiconductor fin includes a channel portion and at least one source/drain portion. The source/drain portion is disposed between the channel portion and the sidewall structure. The gate structure covers the channel portion of the top semiconductor fin.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-An Lin, Chun-Hsiung Lin, Chia-Ta Yu, Sai-Hooi Yeong, Ching-Fang Huang, Wen-Hsing Hsieh
  • Patent number: 10269400
    Abstract: Embodiments disclosed herein generally relate to a multilayer magnetic device, and specifically to a spin-torque transfer magnetoresistive random access memory (STT-MRAM) device which provides for a reduction in the amount of current required for switching individual bits. As such, a polarizing reference layer consisting of a synthetic antiferromagnet (SAF) structure with an in-plane magnetized ferromagnet film indirectly exchange coupled to a magnetic film with perpendicular magnetic anisotropy (PMA) is disclosed. By tuning the exchange coupling strength and the PMA, the layers of the SAF may both be canted such that either may be used as a tilted polarizer for either an in-plane free layer or a free layer with PMA.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: April 23, 2019
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Patrick M. Braganca, John C. Read
  • Patent number: 10263069
    Abstract: The present disclosure is related to a III-Nitride semiconductor device comprising a base substrate, a buffer layer, a channel layer, a barrier layer so that a 2-dimensional charge carrier gas is formed or can be formed near the interface between the channel layer and the barrier layer, and at least one set of a first and second electrode in electrical contact with the 2-dimensional charge carrier gas, wherein the device further comprises a mobile charge layer (MCL) within the buffer layer or near the interface between the buffer layer and the channel layer, when the device is in the on-state. The device further comprises an electrically conductive path between one of the electrodes and the mobile charge layer. The present disclosure is also related to a method for producing a device according to the present disclosure.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: April 16, 2019
    Assignee: IMEC VZW
    Inventors: Steve Stoffels, Yoganand Saripalli
  • Patent number: 10262904
    Abstract: An nFET vertical transistor is provided in which a p-doped top source/drain structure is formed in contact with an n-doped semiconductor region that is present on a topmost surface of a vertical nFET channel. The p-doped top source/drain structure is formed utilizing a low temperature (550° C. or less) epitaxial growth process.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 16, 2019
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Sanjay C. Mehta, Shogo Mochizuki, Alexander Reznicek
  • Patent number: 10249715
    Abstract: Properties of a semiconductor device are improved. A semiconductor device is configured so as to include a voltage clamp layer, a channel underlayer, a channel layer, and a barrier layer, which are formed in order above a substrate, a trench that extends up to the middle of the channel layer while penetrating through the barrier layer, a gate electrode disposed within the trench with a gate insulating film in between, a source electrode and a drain electrode formed above the barrier layer on both sides of the gate electrode, and a fourth electrode electrically coupled to the voltage clamp layer. The fourth electrode is electrically isolated from the source electrode, and a voltage applied to the fourth electrode is different from a voltage applied to the source electrode. Consequently, threshold control can be performed. For example, a threshold of a MISFET can be increased.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: April 2, 2019
    Assignee: Renesas Electronics Corporation
    Inventors: Hironobu Miyamoto, Tatsuo Nakayama, Atsushi Tsuboi, Yasuhiro Okamoto, Hiroshi Kawaguchi
  • Patent number: 10235635
    Abstract: A tunable resonator is formed by shunting a set of asymmetric DC-SQUIDs with a capacitive device. An asymmetric DC-SQUID includes a first Josephson junction and a second Josephson junction, where the critical currents of the first and second Josephson junctions are different. A coupling is formed between the tunable resonator and a qubit such that the capacitively-shunted asymmetric DC-SQUIDs can dispersively read a quantum state of the qubit. An external magnetic flux is set to a first value and applied to the tunable resonator. A first value of the external magnetic flux causes the tunable resonator to tune to a first frequency within a first frequency difference from a resonance frequency of the qubit, the tunable resonator tuning to the first frequency causes active reset of the qubit.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: March 19, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Baleegh Abdo
  • Patent number: 10134850
    Abstract: A semiconductor device includes a channel layer formed over a substrate, a barrier layer formed on the channel layer and a gate electrode. A second gate electrode section is formed on the gate electrode via a gate insulating film. It becomes possible to make an apparent threshold voltage applied to the second gate electrode of a MISFET higher than an original threshold voltage applied to the gate electrode for forming a channel under the gate electrode by providing an MIM section configured by the gate electrode, the gate insulating film and the second gate electrode in this way.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: November 20, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshinao Miura, Hironobu Miyamoto
  • Patent number: 10109342
    Abstract: A semiconductor device may include a plurality of memory cells, and at least one peripheral circuit coupled to the plurality of memory cells and comprising a superlattice. The superlattice may include a plurality of stacked groups of layers with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include a first power switching device configured to couple the at least one peripheral circuit to a first voltage supply during a first operating mode, and a second power switching device configured to couple the at least one peripheral circuit to a second voltage supply lower than the first voltage supply during a second operating mode.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: October 23, 2018
    Assignee: ATOMERA INCORPORATED
    Inventor: Richard Stephen Roy
  • Patent number: 10096711
    Abstract: Tunneling field-effect transistors including silicon, germanium or silicon germanium channels and III-N source regions are provided for low power operations. A broken-band heterojunction is formed by the source and channel regions of the transistors. Fabrication methods include selective anisotropic wet-etching of a silicon substrate followed by epitaxial deposition of III-N material and/or germanium implantation of the substrate followed by the epitaxial deposition of the III-N material.
    Type: Grant
    Filed: September 4, 2017
    Date of Patent: October 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Anirban Basu, Bahman Hekmatshoartabari, Davood Shahrjerdi
  • Patent number: 10074720
    Abstract: After forming semiconductor fins including vertically oriented alternating first digital alloy sublayer portions comprised of SiGe and second digital alloy sublayer portions comprised of Si on sidewalls of a sacrificial fin located on a substrate, the sacrificial fin is removed, leaving the semiconductor fins protruding from a top surface of the substrate. The SiGe and Si digital alloy sublayer portions are formed using isotopically enriched Si and Ge source gases to minimize isotopic mass variation in the SiGe and Si digital alloy sublayer portions.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: September 11, 2018
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Stephen W. Bedell, Pouya Hashemi, Bahman Hekmatshoartabari, Alexander Reznicek
  • Patent number: 10056371
    Abstract: A memory structure is provided. The memory structure includes a substrate, an array portion disposed on the substrate, a periphery portion disposed on the array portion, and a plurality of contacts connecting the array portion to the periphery portion.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: August 21, 2018
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventor: Shih-Hung Chen
  • Patent number: 10050142
    Abstract: The characteristics of a semiconductor device are improved. A semiconductor device has a potential fixed layer containing a p type impurity, a channel layer, and a barrier layer, formed over a substrate, and a gate electrode arranged in a trench penetrating through the barrier layer, and reaching some point of the channel layer via a gate insulation film. Source and drain electrodes are formed on opposite sides of the gate electrode. The p type impurity-containing potential fixed layer has an inactivated region containing an inactivating element such as hydrogen between the gate and drain electrodes. Thus, while raising the p type impurity (acceptor) concentration of the potential fixed layer on the source electrode side, the p type impurity of the potential fixed layer is inactivated on the drain electrode side. This can improve the drain-side breakdown voltage while providing a removing effect of electric charges by the p type impurity.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: August 14, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Tatsuo Nakayama, Hironobu Miyamoto, Ichiro Masumoto, Yasuhiro Okamoto, Shinichi Miyake, Hiroshi Kawaguchi
  • Patent number: 9899398
    Abstract: Methods are disclosed herein for fabricating non-volatile memory devices. An exemplary method forms a heterostructure over a substrate. The heterostructure includes at least one semiconductor layer pair having a first semiconductor layer and a second semiconductor layer disposed over the first semiconductor layer, the second semiconductor layer being different than the first semiconductor layer. A gate structure having a dummy gate is formed over a portion of the heterostructure, such that the gate structure separates a source region and a drain region of the heterostructure and a channel region is defined between the source region and the drain region. During a gate replacement process, a nanocrystal floating gate is formed in the channel region from the second semiconductor layer. In some implementations, during the gate replacement process, a nanowire is also formed in the channel region from the first semiconductor layer.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: February 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jean-Pierre Colinge, Carlos H. Diaz