Multi-level Metallization Patents (Class 257/211)
  • Patent number: 8198733
    Abstract: A semiconductor device includes a conductive pattern formed on a substrate, a conductive land formed to come into contact with at least part of the top surface of the conductive pattern, and a conductive section formed on the conductive land. The conductive section is electrically connected through the conductive land to the conductive pattern.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: June 12, 2012
    Assignee: Panasonic Corporation
    Inventor: Masaki Tamaru
  • Publication number: 20120132964
    Abstract: A semiconductor device includes a transistor array including a plurality of transistors each having a gate electrode extended in a first direction, the plurality of transistors being arranged in a second direction intersecting the first direction, and a pad electrode arranged in the first direction of the transistor array and electrically connected to source regions of the plurality of transistors.
    Type: Application
    Filed: September 2, 2011
    Publication date: May 31, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Masashi Shima, Kaoru Saigoh, Nobuhiro Misawa, Takao Sasaki
  • Patent number: 8188517
    Abstract: A three-dimensional nonvolatile memory device includes: a plurality of channel structures extending in parallel in a first direction and comprising a plurality of channel layers that are alternatively stacked with a plurality of interlayer insulating layers over a substrate; a plurality of memory cells stacked along sidewalls of the channel structures and arranged in the first direction and a second direction crossing the first direction; and a plurality of word lines extending in parallel in the second direction and connected to the memory cells arranged in the second direction.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: May 29, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Eun-Seok Choi
  • Patent number: 8183602
    Abstract: A nonvolatile semiconductor memory device comprises a semiconductor substrate; a cell array block formed on the semiconductor substrate and including plural stacked cell array layers each with a plurality of first lines, a plurality of second lines crossing the plurality of first lines, and memory cells connected at intersections of the first and second lines between both lines; and a plurality of via-holes extending in the stacked direction of the cell array layers to individually connect the first or second line in the each cell array layer to the semiconductor substrate. The via-holes are formed continuously through the plural cell array layers, and multiple via-holes having equal lower end positions and upper end positions are connected to the first or second lines indifferent cell array layers.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: May 22, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Tabata, Eiji Ito, Hirofumi Inoue
  • Patent number: 8183598
    Abstract: A semiconductor device includes a process monitoring pattern overlapping with an input/output (I/O) pad. The semiconductor device may include a semiconductor substrate having a cell array region and a peripheral circuit array region, and a plurality of process monitoring patterns disposed in the peripheral circuit array region. The semiconductor device may further include a plurality of input/output (I/O) pads, where each I/O pad is disposed on a corresponding process monitoring pattern.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 22, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Hyun Han
  • Patent number: 8178909
    Abstract: An improved integrated circuit cell architecture is provided for configurability between a memory cell or logic elements. The cell architecture is configured on variable layers above a first layer of metal, with the first layer of metal and layers therebelow reserved as fixed layers. By coupling a maximum of two layout cells together, a single-port or dual-port memory cell is realized. Likewise, by interconnecting transistors within a single cell or transistors among two or more cells, a logic device is realized. Within each cell, the bit lines are arranged on a layer separate from the wordlines, and extend orthogonal to each other.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 15, 2012
    Assignee: LSI Corporation
    Inventors: Ramnath Venkatraman, Carl Anthony Monzel, III, Subramanian Ramesh
  • Patent number: 8178907
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: May 15, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Thomas Rueckes, Ernesto Joselevich, Kevin Kim
  • Patent number: 8178908
    Abstract: An electrical contact structure distributes current along a length thereof. The electrical contact structure includes a plurality of n metal rectangles on n levels of metal. The rectangle on one metal level is at least as wide in width and vertically covers in width the rectangle on the metal level immediately below. The rectangle on one metal level is shorter in length than and substantially aligned at a first end with the rectangle on the metal level immediately below. Rectangle first ends are substantially aligned. Features of an exemplary FET transistor of this invention are a source and drain terminal electrical contact structure, a multi-level metal ring connecting gate rectangles on both ends, and a wider-than-minimum gate-to-gate spacing. The invention is useful, for example, in an electromigration-compliant, high performance transistor.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: May 15, 2012
    Assignee: International Business Machines Corporation
    Inventors: David Ross Greenberg, Jean-Olivier Plouchart, Alberto Valdes-Garcia
  • Patent number: 8174010
    Abstract: A unified test structure which is applicable for all levels of a semiconductor device including a current path chain having a first half chain and a second half chain, wherein each half chain comprises lower metallization segments, upper metallization segments, an insulating layer between the lower metallization segments and the upper metallization segments, and connection segments. Each of the connection segments is electrically connected to a contact region of one of the lower metallization segments and to a contact region of one of the upper metallization segments to thereby electrically connect the respective lower metallization segment and the respective upper metallization segment, and the first half chain and the second half chain are of different configuration.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: May 8, 2012
    Assignee: GlobalFoundries, Inc.
    Inventors: Frank Feustel, Pascal Limbecker, Oliver Aubel
  • Publication number: 20120104463
    Abstract: Each of the first bit lines of a device has an upper surface and a lower surface, with the upper surface being more outwardly located over a semiconductor surface than the lower surface. A second bit line of the device has an upper surface and a lower surface, with the upper surface thereof being more outwardly located over the semiconductor surface than the lower surface. The upper surface of the second bit line is more outwardly located over the semiconductor surface than the upper surfaces of the first bit lines. The first bit lines are each adjacent to the second bit line and the second bit line is configured to be selectively coupled to a memory cell other than memory cells to which the first bit lines are configured to be selectively coupled. The second bit line does not overlap any of the first bit lines.
    Type: Application
    Filed: September 23, 2011
    Publication date: May 3, 2012
    Inventor: Seiichi Aritome
  • Patent number: 8163640
    Abstract: A dielectric material layer is formed on a metal gate layer for a metal gate electrode, and then lithographically patterned to form a dielectric material portion, followed by formation of a polycrystalline semiconductor layer thereupon. A semiconductor device employing a metal gate electrode is formed in a region of the semiconductor substrate containing a vertically abutting stack of the metal gate layer and the polycrystalline semiconductor layer. A material stack in the shape of an electrical fuse is formed in another region of the semiconductor substrate containing a vertical stack of the metal gate layer, the dielectric material portion, and the polycrystalline semiconductor layer. After metallization of the polycrystalline semiconductor layer, an electrical fuse containing a polycrystalline semiconductor portion and a metal semiconductor alloy portion is formed over the dielectric material portion that separates the electrical fuse from the metal gate layer.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: April 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Xiangdong Chen, Deok-kee Kim, Chandrasekharan Kothandaraman
  • Patent number: 8154128
    Abstract: A three-dimensional 3D interconnect structure with a small footprint is described, useful for connection from above to levels of circuit structures in a multi-level device. Also, an efficient and low cost method for manufacturing the 3D interconnect structure is provided.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: April 10, 2012
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiang-Lan Lung
  • Patent number: 8154053
    Abstract: An integrated circuit may include one or more cells, with each cell comprising a first and a second input terminal, a first and a second output terminal, and a number of connection stages configured to couple each input terminal to a corresponding respective output terminal. The stages may include one stage per metal layer of the integrated circuit and one stage per VIA layer of the integrated circuit. Each stage may be configured with a pair of input ports and a pair of output ports. Each output port of a stage may serially connect to a corresponding respective input port of a first adjacent stage, and each input port of the stage may also serially connect to a corresponding respective output port of a second adjacent stage. The pair of input ports may also be configured to programmably connect to the pair of output ports within the same stage, according to one of two different connection patterns, to establish a respective connection within the stage.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: April 10, 2012
    Assignee: Standard Microsystems Corporation
    Inventors: Antonio S. Lopes, Steven Burstein
  • Publication number: 20120061732
    Abstract: According to one embodiment, an information recording/reproducing device including a semiconductor substrate, a first interconnect layer on the semiconductor substrate, a first memory cell array layer on the first interconnect layer, and a second interconnect layer on the first memory cell array layer. The first memory cell array layer comprises an insulating layer having an alignment mark, and a stacked layer structure on the insulating layer and including a storage layer and an electrode layer. All of the layers in the stacked layer structure comprises a material with a permeability of visible light of 1% or more.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Inventors: Takahiro HIRAI, Tsukasa NAKAI, Kohichi KUBO, Chikayoshi KAMATA, Takayuki TSUKAMOTO, Shinya AOKI
  • Patent number: 8136071
    Abstract: The invention relates to multi-planar logic components in a three-dimensional (3D) integrated circuit (IC) apparatus configuration. A multi-planar integrated circuit connected by through silicon vias is configured to connect microprocessor, FPGA and memory components. The integrated circuit components may be on tiles of layers of the 3D IC.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: March 13, 2012
    Inventor: Neal Solomon
  • Patent number: 8134187
    Abstract: Integrated mask-programmable device, having a plurality of metal levels including a top metal level, a bottom metal level and a first intermediate metal level formed between the top and bottom metal levels, and a plurality of via levels arranged between the bottom and the first intermediate metal levels and between the first intermediate and the top metal levels and connecting each metal level to adjacent metal levels. The plurality of metal levels forms a first, a second and at least a third terminal, the top and bottom metal levels having at least two metal regions, and the first intermediate metal level having at least three metal regions. The first terminal is connected to third terminal or the second terminal is connected to the third terminal by modifying a single metal or via level.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: March 13, 2012
    Assignee: STMicroelectronics Design and Application s.r.o.
    Inventors: Patrik Vacula, Milos Vacula, Milan Lzicar
  • Patent number: 8129833
    Abstract: Microelectronic packages are fabricated by stacking integrated circuits upon one another. Each integrated circuit includes a semiconductor layer having microelectronic devices and a wiring layer on the semiconductor layer having wiring that selectively interconnects the microelectronic devices. After stacking, a via is formed that extends through at least two of the integrated circuits that are stacked upon one another. Then, the via is filled with conductive material that selectively electrically contacts the wiring. Related microelectronic packages are also described.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 6, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-kyu Kang, Jung-Ho Kim, Jong-Wook Lee, Seung-woo Choi, Dae-Lok Bae
  • Patent number: 8129759
    Abstract: Embodiments of the invention include a semiconductor integrated circuit package that includes a substrate which can have an integrated circuit die attached thereto. The package includes a dedicated high-speed ground plane that is electrically isolated from the ground plane used to ground the low speed circuitry of the package.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 6, 2012
    Assignee: LSI Logic Corporation
    Inventors: Maurice O. Othieno, Chok J. Chia, Amar J. Amin
  • Patent number: 8120068
    Abstract: A three-dimensional non-volatile memory system is disclosed including a memory array utilizing shared pillar structures for memory cell formation. A shared pillar structure includes two non-volatile storage elements. A first end surface of each pillar contacts one array line from a first set of array lines and a second end surface of each pillar contacts two array lines from a second set of array lines that is vertically separated from the first set of array lines. Each pillar includes a first subset of layers that are divided into portions for the individual storage elements in the pillar. Each pillar includes a second subset of layers that is shared between both non-volatile storage elements formed in the pillar. The individual storage elements each include a steering element and a state change element.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: February 21, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Roy E Scheuerlein, Eliyahou Harari
  • Patent number: 8115325
    Abstract: A semiconductor integrated circuit includes a plurality of bonding pads formed along an edge of a semiconductor substrate; a plurality of I/O cells arranged along the edge under the plurality of bonding pads; an upper layer wire mesh including a plurality of upper layer wirings; and a core region formed on the semiconductor substrate. In the semiconductor integrated circuit, the core region has an area larger than an area occupied by the upper layer wire mesh in a plane parallel to a surface of the semiconductor substrate.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: February 14, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Kenichi Ishikawa
  • Patent number: 8110907
    Abstract: A semiconductor device includes a semiconductor chip, a first substrate, and a second substrate. The first substrate includes a plurality of wires and a plurality of first electrodes, each first electrode being connected with each wire. The second substrate includes the semiconductor chip that is mounted thereon, and a plurality of second electrodes with, each second electrode being connected with the each first electrode of the first substrate. The widths of the wires of the first substrate are different depending on the lengths of the wires. By changing the widths of the wires depending on their lengths, it is possible to reduce variation in stiffness of the electrodes and vicinities of electrodes, whereby variation in ultrasonic bonding strength can be reduced.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: February 7, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Masahiro Yamaguchi, Emi Sawayama, Hiroshi Oyama, Shigeharu Tsunoda, Yasuo Amano, Naoki Matsushima
  • Publication number: 20120025273
    Abstract: A standard cell semiconductor integrated circuit device design provides a standard cell semiconductor device that includes first standard cells and user-defined target standard cells which consume more power or include other operational characteristics that differ from the operational characteristics of the first standard cells. The standard cells are routed to ground and power wires using one power rail and the target cells are routed to the ground and power lines using the first power rail and a second power rail to alleviate electromigration in either of the power rails. The two power rails include an upper power rail and a lower power rail. An intermediate conductive layer may be disposed between the upper and lower power rails to provide for signal routing by lateral interconnection between cells.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lee-Chung LU, Wen-Hao CHEN, Yuan-Te HOU, Shen-Feng CHEN, Meng-Fu YOU
  • Patent number: 8097903
    Abstract: A semiconductor memory device comprises a semiconductor substrate; a memory block formed on the semiconductor substrate and including plural stacked cell array layers of cell arrays each comprising a plurality of first lines, a plurality of second lines crossing the plurality of first lines, and memory cells connected at intersections of the first and second lines between both lines; and a plurality of contacts extending in the stack direction of the cell array layers and connecting the first lines in the cell arrays with diffusion regions formed on the semiconductor substrate. A certain one of the cell array layers is smaller in the number of the first lines divided and the number of contacts connected than the cell array layers in a lower layer located closer to the semiconductor substrate than the certain one.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: January 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsuneo Inaba, Hideo Mukai
  • Patent number: 8093679
    Abstract: In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: January 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, John M. Cotte, Ebenezer E. Eshun, Zhong-Xiang He, Anthony K. Stamper, Eric J. White
  • Publication number: 20110298014
    Abstract: Some embodiments include cross-point memory structures. The structures may include a line of first electrode material extending along a first horizontal direction, a multi-sided container of access device materials over the first electrode material, a memory element material within the multi-sided container, and a line of second electrode material over the memory element material and extending along a second horizontal direction that is orthogonal to the first horizontal direction. Some embodiments include methods of forming memory arrays. The methods may include forming a memory cell stack over a first electrode material, and then patterning the first electrode material and the memory cell stack into a first set of spaced lines extending along a first horizontal direction. Spaced lines of second electrode material may be formed over the first set of spaced lines, and may extend along a second horizontal direction that is orthogonal to the first horizontal direction.
    Type: Application
    Filed: August 19, 2011
    Publication date: December 8, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Scott Sills, Gurtej S. Sandhu
  • Patent number: 8072070
    Abstract: A barrier layer is deposited over a layer of passivation including in an opening to a contact pad created in the layer of passivation. A column of three layers of metal is formed overlying the barrier layer and aligned with the contact pad and having a diameter that is about equal to the surface of the contact pad. The three metal layers of the column comprise, in succession when proceeding from the layer that is in contact with the barrier layer, a layer of pillar metal, a layer of under bump metal and a layer of solder metal. The layer of pillar metal is reduced in diameter, the barrier layer is selectively removed from the surface of the layer of passivation after which reflowing of the solder metal completes the solder bump of the invention.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 6, 2011
    Assignee: Megica Corporation
    Inventors: Jin-Yuan Lee, Mou-Shiung Lin, Ching-Cheng Huang
  • Patent number: 8063416
    Abstract: In a substrate power supply cell, a portion of a substrate power supply wiring is exposed by forming a power supply wiring in a U-shape, and a connection portion to an upper-layer wiring is provided at a boundary portion of the substrate power supply cell. Thereby, a leakage current is reduced without a decrease in signal wiring efficiency.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: November 22, 2011
    Assignee: Panasonic Corporation
    Inventor: Keisuke Kishishita
  • Patent number: 8053777
    Abstract: A detector including an electrode formed from a first layer of conductive material, a readout line formed from a second layer of conductive material, and a via electrically connecting the readout line and the electrode. In one embodiment, the detector includes a source electrode and a drain electrode formed from the first layer of conductive material, and a data line formed from the second layer of conductive material, such that the source and drain electrodes are vertically offset from the data line. Alternatively, in another embodiment, the detector includes a gate electrode formed from the first layer of conductive material, and a scan line formed from the second layer of conductive material, such that the gate electrode is vertically offset from the scan line.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: Douglas Albagli, William Andrew Hennessy
  • Patent number: 8053814
    Abstract: An apparatus comprises a first layer within a semiconductor chip having active structures electrically connected to other active structures and having electrically isolated first inactive structures. A second layer within the semiconductor chip is physically connected to the first layer. The second layer comprises an insulator and has second inactive structures. The first inactive structures are physically aligned with the second inactive structures.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Fen Chen, Jeffrey P. Gambino, Alvin W. Strong
  • Patent number: 8054673
    Abstract: A memory unit including a first transistor spanning a first transistor region in a first layer of the memory unit; a second transistor spanning a second transistor region in a second layer of the memory unit; a first resistive sense memory (RSM) cell spanning a first memory region in a third layer of the memory unit; and a second RSM cell spanning a second memory region in the third layer of the memory unit, wherein the first transistor is electrically coupled to the first RSM cell, and the second transistor is electrically coupled to the second RSM cell, wherein the second layer is between the first and third layers, wherein the first and second transistor have an transistor overlap region, and wherein the first memory region and the second memory region do not extend beyond the first transistor region and the second transistor region.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: November 8, 2011
    Assignee: Seagate Technology LLC
    Inventors: Xuguang Wang, Yong Lu, Hai Li, Hongyue Liu
  • Patent number: 8053346
    Abstract: A gate in a semiconductor device is formed to have a dummy gate pattern that protects a gate. Metal lines are formed to supply power for a semiconductor device and transfer a signal. A semiconductor device includes a quad coupled receiver type input/output buffer. The semiconductor device is formed with a gate line that extends over an active region, and a gate pad located outside of the active region. The gate line and the gate pad are adjoined such that the gate line and a side of the gate pad form a line. Dummy gates may also be applied. The semiconductor device includes a first metal line patterns supplying power to a block having a plurality of cells, a second metal line pattern transferring a signal to the cells, and dummy metal line patterns divided into in a longitudinal direction.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: November 8, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Nam Gyu Ryu, Ho Ryong Kim, Won John Choi, Jae Hwan Kim, Seoung Hyun Kang, Young Hee Yoon
  • Patent number: 8048736
    Abstract: By forming metal capacitors in the metallization structures of semiconductor devices, complex manufacturing sequences in the device level may be avoided. The process of manufacturing the metal capacitors may be performed on the basis of well-established patterning regimes of modern metallization systems by using appropriately selected etch stop materials, which may enable a high degree of compatibility for forming via openings in a metallization layer while providing a capacitor dielectric of a desired high dielectric constant in the capacitor.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 1, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Werner, Frank Feustel, Kai Frohberg
  • Publication number: 20110260218
    Abstract: An exemplary embodiment of the present invention is a semiconductor device having a regular layout region and an irregular layout region formed on one chip, including: a lower conductive layer; an interlayer insulating film formed on the lower conductive layer; an upper interconnect layer formed on the interlayer insulating film; and connection plugs disposed to electrically connect the lower conductive layer and the upper interconnect layer at a substantially shortest distance. In at least part of the regular layout region, the lower conductive layer and the upper interconnect layer are electrically connected to each other through at least two connection plugs and an intermediate connection layer for electrically connecting the at least two connection plugs, the at least two connection plugs being disposed at an immediately above position extending from immediately above the lower conductive layer and a shift position spaced apart from the immediately above position, respectively.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Inventor: Hideyuki OOKA
  • Patent number: 8030776
    Abstract: A structure includes a semiconductor substrate having semiconductor devices formed on or in the substrate. An interconnecting metallization structure is formed over and connected to the devices. The interconnecting metallization structure including at least one dielectric layer. A passivation layer is deposited over the interconnecting metallization structure and the dielectric layer. At least one metal contact pad and at least one dummy metal structure are provided in the passivation layer. The contact pad is conductively coupled to at least one of the devices. The dummy metal structure is spaced apart from the contact pad and unconnected to the contact pad and the devices.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: October 4, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Hua Yu, Shin-Puu Jeng, Shang-Yun Hou, Hao-Yi Tsai, Hsien Wei Chen, Hsiu-Ping Wei
  • Publication number: 20110235407
    Abstract: A semiconductor memory device including a substrate, wherein the substrate includes first, second and third well regions, the first well region is disposed between the second and third well regions, the first well region includes a first type conductor and the second and third well regions each include a second type conductor.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 29, 2011
    Inventors: Sun-me Lim, Han-byung Park, Yong-shik Kim, Hee-bum Hong
  • Patent number: 8026537
    Abstract: A semiconductor integrated circuit includes a function block arranged on a substrate, a first buffering cell arranged adjacent to a first side of the function block, a second buffering cell arranged adjacent to a second side adjacent to the first side of the function block, and signal wiring passing over the function block obliquely relative to the first side and the second side, connecting the first buffering cell and the second buffering cell.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: September 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naohito Kojima, Fumihiro Minami, Kimiyoshi Usami
  • Patent number: 8021897
    Abstract: Some embodiments include cross-point memory structures. The structures may include a line of first electrode material extending along a first horizontal direction, a multi-sided container of access device materials over the first electrode material, a memory element material within the multi-sided container, and a line of second electrode material over the memory element material and extending along a second horizontal direction that is orthogonal to the first horizontal direction. Some embodiments include methods of forming memory arrays. The methods may include forming a memory cell stack over a first electrode material, and then patterning the first electrode material and the memory cell stack into a first set of spaced lines extending along a first horizontal direction. Spaced lines of second electrode material may be formed over the first set of spaced lines, and may extend along a second horizontal direction that is orthogonal to the first horizontal direction.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: September 20, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Scott Sills, Gurtej S. Sandhu
  • Patent number: 8024689
    Abstract: It is an object to provide a semiconductor integrated circuit which can easily be designed and has a low wiring resistance, and a method and apparatus for designing the semiconductor integrated circuit. In a semiconductor integrated circuit apparatus according to the invention, a first wiring layer is provided with a plurality of signal wirings having an equal width which is disposed in parallel with each other at a regular interval, and at least two of the signal wirings which are adjacent to each other are electrically connected to each other.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: September 20, 2011
    Assignee: Panasonic Corporation
    Inventors: Noriko Shinomiya, Kiyohito Mukai
  • Patent number: 8022443
    Abstract: An integrated circuit includes a plurality of signal lines. A first signal line layer includes a plurality of first signal lines. A second signal line layer includes a plurality of second signal lines arranged on top of and insulated from the first signal line layer. A third signal line layer includes a plurality of third signal lines arranged on top of and insulated from the second signal line layer. A contact extends through the second signal line layer and connects at least one of the plurality of third signal lines to at least one of the first signal lines. At least one of the second signal lines further extends in a second direction to bend around the contact such that a predetermined distance separates the plurality of second signal lines from the contact.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 20, 2011
    Assignee: Marvell International Ltd.
    Inventors: Qiang Tang, Min She, Ken Liao
  • Patent number: 8022442
    Abstract: A semiconductor device has: a silicon substrate; trench formed downward from the surface of the silicon substrate, the trench defining active regions on the surface of the silicon substrate; a first liner layer of a silicon nitride film covering an inner wall of the trench; a second liner layer of a silicon nitride layer formed on the first liner layer; an element isolation region of an insulator formed on the second liner layer; a p-channel MOS transistor formed in and on one of the active regions; a contact etch stopper layer of a silicon nitride layer not having a ultraviolet shielding ability, formed above the silicon substrate, and covering the p-channel MOS transistor; and a light shielding film of a silicon nitride layer having the ultraviolet shielding ability and formed above the contact etch stopper layer.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: September 20, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Yoshiyuki Ookura
  • Patent number: 8022516
    Abstract: A fabrication method for a BGA or LGA package includes a low-cost metal leadframe with internally extended leads. I/O attach lands can be placed at any location on the metal leadframe, including the center of the package. An I/O attach land can be fabricated at any position upon an extended lead (e.g., near the center of the package). During fabrication of the package, an isolation saw cut to the bottom of the package can be used to electrically disconnect the leadframe circuit from the peripheral extension traces to prevent tampering with the IC die by probing the edge metal traces.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: September 20, 2011
    Assignee: Atmel Corporation
    Inventors: Ken Lam, Julius Andrew Kovats
  • Patent number: 8022547
    Abstract: A non-volatile memory cell that includes a first electrode; a second electrode; and an electrical contact region that electrically connects the first electrode and the second electrode, the electrical contact region has a end portion and a continuous side portion, and together, the end portion and the continuous side portion form an open cavity, wherein the memory cell has a high resistance state and a low resistance state that can be switched by applying a voltage across the first electrode and the second electrode.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: September 20, 2011
    Assignee: Seagate Technology LLC
    Inventors: Venugopalan Vaithyanathan, Wei Tian, Insik Jin
  • Patent number: 8017943
    Abstract: A semiconductor device includes a first pad, a second pad and a third pad. The first pad and the third pad are electrically connected to each other. The first pad and the second pad are used for bonding. The second pad and the third pad are used for probing. According to this structure, Small size semiconductor device having high reliability even after a probing test can be provided.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: September 13, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Tsukasa Ojiro
  • Patent number: 8013362
    Abstract: In a semiconductor integrated circuit requiring a large number of pads, an internal circuit is arranged in the center portion, and a plurality of two kinds of I/O circuits for inputting and outputting signals from and to the outside and many pads are arranged along four sides of the semiconductor integrated circuit. The plurality of I/O circuits that are of one of the foregoing two kinds are one-pad I/O circuits on which one pad is arranged in a direction toward the internal circuit, whereas the plurality of I/O circuits that are of the other of the foregoing two kinds are two-pad I/O circuits on which two pads are arranged in zigzag relationship in a direction toward the internal circuit. The number of arranged pads equals to the number of pads required for the semiconductor integrated circuit. The one-pad I/O circuits and the two-pad I/O circuits are provided with power source wirings for supplying power thereto.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: September 6, 2011
    Assignee: Panasonic Corporation
    Inventor: Daisuke Matsuoka
  • Patent number: 8013364
    Abstract: A structure having air gaps between interconnects is disclosed. A first insulating material is deposited over a workpiece, and a second insulating material having a sacrificial portion is deposited over the first insulating material. Conductive lines are formed in the first and second insulating layers. The second insulating material is treated to remove the sacrificial portion, and at least a portion of the first insulating material is removed, forming air gaps between the conductive lines. The second insulating material is impermeable as deposited and permeable after treating it to remove the sacrificial portion. A first region of the workpiece may be masked during the treatment, so that the second insulating material becomes permeable in a second region of the workpiece yet remains impermeable in the first region, thus allowing the formation of the air gaps in the second region, but not the first region.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 6, 2011
    Assignee: Infineon Technologies AG
    Inventors: Markus Naujok, Hermann Wendt, Alois Gutmann, Muhammed Shafi Pallachalil
  • Publication number: 20110204421
    Abstract: Provided are a three dimensional semiconductor memory device and a method of fabricating the same. The method includes forming a stepwise structure by using mask patterns and a sacrificial mask pattern formed on the mask patterns as a consumable etch mask.
    Type: Application
    Filed: May 6, 2011
    Publication date: August 25, 2011
    Inventors: Sukhun Choi, Kyunghyun Kim, ChangSup Mun, Byoungkeun Son
  • Publication number: 20110204420
    Abstract: A three-dimensional semiconductor device includes stacked structures arranged two-dimensionally on a substrate, a first interconnection layer including first interconnections and disposed on the stacked structures, and a second interconnection layer including second interconnections and disposed on the first interconnection layer. Each of the stacked structures has a lower region including a plurality of stacked lower word lines, and an upper region including a plurality of stacked upper word lines disposed on the stack of lower word lines. Each of the first interconnections is connected to one of the lower word lines and each of the second interconnections is connected to one of the upper word lines.
    Type: Application
    Filed: January 4, 2011
    Publication date: August 25, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Doogon Kim, Donghyuk Chae
  • Patent number: 8004017
    Abstract: A preferred embodiment microcavity plasma device array of the invention includes a plurality of first metal circumferential metal electrodes that surround microcavities in the device. The first circumferential electrodes are buried in a metal oxide layer and surround the microcavities in a plane transverse to the microcavity axis, while being protected from plasma in the microcavities by the metal oxide. In embodiments of the invention, the circumferential electrodes can be connected in patterns. A second electrode(s) is arranged so as to be isolated from said first electrodes by said first metal oxide layer. In some embodiments, the second electrode(s) is in a second layer, and in other embodiments the second electrode(s) is also within the first metal oxide layer. A containing layer, e.g., a thin layer of glass, quartz, or plastic, seals the discharge medium (plasma) into the microcavities. In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: August 23, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Sung-Jin Park, Kwang-Soo Kim
  • Patent number: 8004085
    Abstract: A semiconductor device has an element interconnection 2, a top-layer element interconnection 4, a super-connect interconnection 10 and a bump 7. The element interconnection 2 is provided on a semiconductor substrate 1 through a plurality of insulating layers 50. The top-layer element interconnection 4 is formed above the element interconnection 2 by using a substantially equivalent process equipment. The super-connect interconnection 10 is provided on the top-layer element interconnection 4 through a super-connect insulating layer 9 having a thickness five or more times larger than that of the insulating layer 5, and has a thickness three or more times larger than that of each the element interconnection 2 and the top-layer element interconnection 4. The bump 7 is formed on the super-connect interconnection 10. The top-layer element interconnection 4 has a signal pad 4s, a power source pad 4v and a ground pad 4g.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: August 23, 2011
    Assignee: NEC Corporation
    Inventors: Shintaro Yamamichi, Katsumi Kikuchi, Jun Sakai, Hikaru Kouta
  • Patent number: RE43320
    Abstract: There is disclosed a semiconductor device comprising a first metal wiring buried in a first wiring groove formed, via a first barrier metal, in a first insulating layer formed on a semiconductor substrate, a second insulating layer formed on the first metal wiring, a via plug formed of a metal buried, via a second barrier metal, in a via hole formed in the second insulating layer, a third insulating layer formed on the second insulating layer in which the via plug is buried, and a second metal wiring buried in a second wiring groove formed in the third insulating layer via a third barrier metal having a layer thickness of layer quality different from that of the second barrier metal.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: April 24, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaki Yamada, Hideki Shibata