Multi-level Metallization Patents (Class 257/211)
  • Patent number: 7847368
    Abstract: This disclosure describes system(s) and/or method(s) enabling contacts for individual nanometer-scale-thickness layers of a multilayer film.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: December 7, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Paval Kornilovich, Peter Mardilovich, Sriram Ramamoorthi
  • Patent number: 7847405
    Abstract: In one aspect of the present invention, a semiconductor device may include an inter-wiring dielectric film in which a wiring trench is formed, a metal wiring layer formed in the wiring trench in the inter-wiring dielectric film, a first barrier layer formed on a side surface of the wiring trench, the first barrier layer being an oxide film made from a metal different from a main constituent metal element in the wiring layer, a second barrier layer formed on a side surface of the wiring layer, the second barrier layer having a Si atom of the metal used in the wiring layer, and a gap formed between the first barrier layer and the second barrier layer.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadayoshi Watanabe, Yumi Hayashi, Takamasa Usui
  • Patent number: 7842976
    Abstract: A semiconductor device includes a plurality of signal lines which are arranged at a predetermined pitch; first and second MOS transistors which are connected to the signal lines, and also serially connected to each other; and a connection device which functions as a connection node between the serially-connected first and second MOS transistors, and connects a source area of one of the first and second MOS transistors to a drain area of the other of the first and second MOS transistors via contact holes, which are formed through an insulating layer, and a conduction layer connected to the contact holes.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: November 30, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Isamu Fujii, Shinichi Miyatake, Yuko Watanabe, Homare Sato
  • Patent number: 7838888
    Abstract: An SiC semiconductor device is provided, which comprises: a substrate made of silicon carbide and having a principal surface; a drift layer made of silicon carbide and disposed on the principal surface; an insulating layer disposed on the drift layer and including an opening; a Schottky electrode contacting with the drift layer through the opening; a termination structure disposed around an outer periphery of the opening; and second conductivity type layers disposed in a surface part of the drift layer, contacting the Schottky electrode, surrounded by the termination structure, and separated from one another. The second conductivity type layers include a center member and ring members. Each ring member surrounds the center member and is arranged substantially in a point symmetric manner with respect to the center member.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: November 23, 2010
    Assignee: DENSO CORPORATION
    Inventors: Takeo Yamamoto, Naohiro Suzuki, Eiichi Okuno
  • Patent number: 7826245
    Abstract: A semiconductor memory includes a memory cell array area having a memory cell, a word line contact area adjacent to the memory cell array area, a word line arranged straddling the memory cell array area and the word line contact area, a contact hole provided on the word line in the word line contact area, and a word line driver connected to the word line via the contact hole. A size of the contact hole is larger than a width of the word line, and the lowest parts of the contact hole exist on a position lower than a top surface of the word line and higher than a bottom surface of the word line.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: November 2, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiko Kato, Mitsuhiro Noguchi
  • Patent number: 7821080
    Abstract: N-ary three-dimensional mask-programmable read-only memory (N-3DMPROM) stores multi-bit-per-cell. Its memory cells can have N states (N>2) and data are stored as N-ary codes. N-3DMPROM has a larger storage density than the prior-art binary 3D-MPROM. One advantage of N-3DROM over other N-ary memory (e.g. multi-level-cell flash) is that its array efficiency can be kept high. N-3DMPROM could be geometry-defined, junction-defined, or a combination thereof.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: October 26, 2010
    Inventor: Guobiao Zhang
  • Patent number: 7816245
    Abstract: A semiconductor device is formed by providing a semiconductor substrate comprising a cell region, a peripheral circuit region, and a resistor region, forming a device isolation layer on the semiconductor substrate so as to define an active region, forming a first insulating layer and a polysilicon pattern on the active region of the peripheral circuit region, forming a second insulating layer, a charge storage layer, and a third insulating layer on the active region of the cell region, forming a conductive layer on the semiconductor substrate, and patterning the conductive layer to form conductive patterns on the third insulating layer of the cell region, the polysilicon pattern of the active region of peripheral circuit region, and the semiconductor substrate of the resistor region, respectively.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: October 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Sun Sel, Jung-Dal Choi
  • Patent number: 7812390
    Abstract: A semiconductor memory device includes a first substrate having at least one string including a first select transistor, a second select transistor, and first memory cells connected in series between the first and second select transistors of the first substrate. The semiconductor memory device further includes a second substrate having at least one string including a first select transistor, a second select transistor, and second memory cells connected in series between the first and second select transistors of the second substrate. The number of the first memory cells of the at least one string of the first substrate is different from a number of the second memory cells of the at least one string of the second substrate. For example, the number of second memory cells may be less than the number of first memory cells.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 12, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Tae Park, Jung-Dal Choi, Jae-Sung Sim
  • Patent number: 7812405
    Abstract: A semiconductor device includes a first interlayer insulating film formed above a semiconductor substrate, a first source line formed on the first interlayer insulating film, a second interlayer insulating film formed on the first source line, a plurality of bit lines formed on the second interlayer insulating film so as to extend in a direction, the bit lines being arranged at same width and same width, a third interlayer insulating film formed above the bit lines, a second source line formed on the third interlayer insulating film, and a source shunt line formed between the second and third interlayer insulating films, the source shunt line electrically connecting the first and second source lines to each other, the source shunt line being located between the bit lines so as to extend in the same direction as the bit lines, the source shunt line including a width same as the bit lines.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: October 12, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Atsuhiro Suzuki
  • Patent number: 7808806
    Abstract: In a semiconductor apparatus of the present invention, a plurality of circuit components are provided. A first bus interconnects the circuit components. A second bus interconnects the circuit components. A switching unit outputs a select signal that causes each circuit component to select one of the first bus and the second bus when transmitting a signal from one of the circuit components to another. The second bus has a size larger than a size of the first bus.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: October 5, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yasurou Matsuzaki, Yasuharu Sato, Tadao Aikawa, Masafumi Yamazaki, Takaaki Suzuki
  • Patent number: 7800138
    Abstract: A semiconductor device capable of improving the efficiency of dispersing heat via a dummy pad. The semiconductor device may be included in a semiconductor package, stack module, card, or system. Also disclosed is a method of manufacturing the semiconductor device. In the semiconductor device, a semiconductor substrate has a first surface and a second surface opposite to the first surface, and at least one conductive pad is arranged on a predetermined region of the first surface. At least one dummy pad is arranged on the first or second surface, and is not electrically coupled to the at least one conductive pad. The dummy pad or pads may be used to disperse heat. Accordingly, it is possible to increase the efficiency of dispersing heat of a semiconductor device, thereby improving the yield of semiconductor devices.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joong-Hyun Baek, Sung-Jun Im
  • Patent number: 7800136
    Abstract: The height H of several kinds of basic cell are made the same and several kinds of macro cell which have a length which is an integral multiplication of the height H of this basic cell, are prepared, the basic cell and macro cell are mixed and the circuit of a peripheral circuit is designed. A M0 wire of a first wiring layer which is formed on a semiconductor substrate is used as a wire used within a macro cell. The basic cell and the macro cell are connected by a M1 wire of a second wiring layer which is formed on the first wiring layer and a M2 wire M2 of a third wiring layer. The transistor layout of basic cells and macro cells is designed and verified in advance and stored in a cell library, and auto routing by a standard method may be carried out.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: September 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hitoshi Shiga
  • Patent number: 7795645
    Abstract: It is an object of the present invention to provide a semiconductor integrated circuit having a chip layout that reduces line length to achieve faster processing. A cache comprises a TAG memory module and a cache data memory module. The cache data memory module is divided into first and second cache data memory modules which are disposed on both sides of the TAG memory module, and input/output circuits of a data TLB are opposed to the input/output circuit of the TAG memory module and the input/output circuits of the first and second cache data memory modules across a bus area to reduce the line length to achieve faster processing.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: September 14, 2010
    Assignee: Panasonic Corporation
    Inventor: Masaya Sumita
  • Patent number: 7795646
    Abstract: A semiconductor device includes a first metal region, a plurality of vias, a plurality of second metal regions, a plurality of openings and a third metal region. The first metal region conducts source/drain current. The second metal regions are electrically connected to the first metal region through the vias for conducting the source/drain current, in which each of the second metal regions is disposed in a distance from the adjacent second metal regions. The third metal region is electrically connected to the second metal regions through the openings, in which the resistance of the third metal region is smaller than the resistances of the first metal region and the second metal regions.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: September 14, 2010
    Assignee: Himax Analogic, Inc.
    Inventors: Kuan-Po Hsueh, Kuo-Hung Wu
  • Patent number: 7786512
    Abstract: A non-volatile memory array includes a multiplicity of memory cells, each of whose area is less than 4 F2 per cell (where F is a minimum feature size), and periphery elements to control the memory cells. The present invention also includes a non-volatile memory array which includes word lines and bit lines generally perpendicular to the word lines, with a word line pitch of less than 2 F. In one embodiment, the word lines are made of polysilicon spacers.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: August 31, 2010
    Assignee: Saifun Semiconductors Ltd.
    Inventors: Ilan Bloom, Boaz Eitan, Rustom Irani
  • Publication number: 20100213514
    Abstract: A semiconductor device is provided that includes a substrate, a static random access memory (SRAM) unit cell formed in the substrate, a first metal layer formed over the substrate, the first metal layer providing local interconnection to the SRAM unit cell, a second metal layer formed over the first metal layer, the second metal layer including: a bit line and a complementary bit line each having a first thickness and a Vcc line disposed between the bit line and the complementary bit line, and a third metal layer formed over the second metal layer, the third metal layer including a word line having a second thickness greater than the first thickness.
    Type: Application
    Filed: February 23, 2009
    Publication date: August 26, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jhon Jhy Liaw
  • Publication number: 20100193758
    Abstract: Programmable metallization memory cells having a planarized silver electrode and methods of forming the same are disclosed. The programmable metallization memory cells include a first metal contact and a second metal contact, an ion conductor solid electrolyte material is between the first metal contact and the second metal contact, and either a silver alloy doping electrode separates the ion conductor solid electrolyte material from the first metal contact or the second metal contact, or a silver doping electrode separates the ion conductor solid electrolyte material from the first metal contact. The silver electrode includes a silver layer and a metal seed layer separating the silver layer from the first metal contact.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Wei Tian, Dexin Wang, Venugopalan Vaithyanathan, Yang Dong, Muralikrishnan Balakrishnan, Ivan Petrov Ivanov, Ming Sun, Dimitar V. Dimitrov
  • Patent number: 7770144
    Abstract: Disclosed herein is an ASIC having a base array of function blocks. Each function block includes a plurality of primitive cells. Each primitive cell is defined by a component from a standard cell library. The base array is prefabricated for use later with a custom circuit design.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: August 3, 2010
    Inventor: Eric Dellinger
  • Patent number: 7768037
    Abstract: A memory cell for reducing the cost and complexity of modifying a revision identifier (ID) or default register values associated with an integrated circuit (IC) chip, and a method for manufacturing the same. The cell, which may be termed a “Meta-Memory Cell” (MMCEL), is implemented on metal layers only and utilizes a dual parallel metal ladder structure that traverses and covers each metal and via layer from the bottom to the top of the metal layer structure of the chip. One of the metal ladders is connected to a power supply at the bottom metal layer, corresponding to a logic 1, and another metal ladder is connected to ground at the bottom metal layer, corresponding to a logic 0. The output of the MMCEL can thus be inverted at any metal or via layer and can be inverted as often as required. Significant cost savings are achieved because a revision ID or default register bits may be modified by altering only those metal layers where design changes are necessary.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: August 3, 2010
    Assignee: Broadcom Corporation
    Inventors: Manolito M. Catalasan, Vafa J. Rakshani, Edmund H. Spittles, Tim Sippel, Richard Unda
  • Patent number: 7768038
    Abstract: A method to form a vertical interconnect advantageous for high-density semiconductor devices. A conductive etch stop layer, preferably of cobalt silicide, is formed. The etch stop layer may be in the form of patterned lines or wires. A layer of contact material is formed on and in contact with the etch stop layer. The layer of contact material is patterned to form posts. Dielectric is deposited over and between the posts, then the dielectric planarized to expose the tops of the posts. The posts can serve as vertical interconnects which electrically connect a next conductive layer formed on and in contact with the vertical interconnects with the underlying etch stop layer. The patterned dimension of vertical interconnects formed according to the present disclosure can be substantially the same as the minimum feature size, even at very small minimum feature size.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: August 3, 2010
    Assignee: SanDisk 3D LLC
    Inventor: James M. Cleeves
  • Publication number: 20100187574
    Abstract: A memory cell for reducing the cost and complexity of modifying a revision identifier (ID) or default register values associated with an integrated circuit (IC) chip, and a method for manufacturing the same. The cell, which may be termed a “Meta-Memory Cell” (MMCEL), is implemented on metal layers only and utilizes a dual parallel metal ladder structure that traverses and covers each metal and via layer from the bottom to the top of the metal layer structure of the chip. One of the metal ladders is connected to a power supply at the bottom metal layer, corresponding to a logic 1, and another metal ladder is connected to ground at the bottom metal layer, corresponding to a logic 0. The output of the MMCEL can thus be inverted at any metal or via layer and can be inverted as often as required. Significant cost savings are achieved because a revision ID or default register bits may be modified by altering only those metal layers where design changes are necessary.
    Type: Application
    Filed: March 31, 2010
    Publication date: July 29, 2010
    Applicant: Broadcom Corporation
    Inventors: Manolito M. Catalasan, Vafa J. Rakshani, Edmund H. Spittles, Tim Sippel, Richard Unda
  • Patent number: 7763911
    Abstract: The present invention discloses several preferred mask-programmable 3-D memory (3D-MPROM) structures, including pillar-shaped 3D-MPROM, natural-junction 3D-MPROM, interleaved 3D-MPROM, and separate 3D-MPROM. The present invention also makes further improvements to its peripheral circuits. The use of sense-amplifier can significantly lower the leakage-current requirement on the 3D-ROM memory cell. Self-timing can improve the 3D-ROM speed and reduce its power consumption.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: July 27, 2010
    Inventor: Guobiao Zhang
  • Patent number: 7763504
    Abstract: A manufacturing method of a silicon carbide semiconductor device includes the steps of: preparing a semiconductor substrate including a silicon carbide substrate, a drift layer and a first semiconductor layer; forming a plurality of first trenches in a cell portion; forming a gate layer on an inner wall of each first trench by an epitaxial growth method; forming a first insulation film on the surface of the semiconductor substrate; forming a gate electrode on the first insulation film for connecting to the gate layer electrically; forming a source electrode on the first insulation film for connecting to the first semiconductor layer in the cell portion; and forming a drain electrode connected to the silicon carbide substrate electrically.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: July 27, 2010
    Assignees: DENSO CORPORATION, Hitachi, Ltd.
    Inventors: Rajesh Kumar, Tsuyoshi Yamamoto, Hiroki Nakamura, Toshiyuki Morishita, Takasumi Ohyanagi, Atsuo Watanabe
  • Patent number: 7759798
    Abstract: A semiconductor device wherein destruction of a sealing ring caused by cracking of an interlayer dielectric film is difficult to occur, as well as a method for manufacturing the semiconductor device, are provided. A first laminate comprises first interlayer dielectric films having a first mechanical strength. A second laminate comprises second interlayer dielectric films having a mechanical strength higher than the first mechanical strength. A first region includes first metallic layers and vias provided within the first laminate. A second region includes second metallic layers and vias provided within the second laminate. When seen in plan, the second region overlaps at least a part of the first region, is not coupled with the first region by vias, and sandwiches the second interlayer dielectric film between it and the first region.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: July 20, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Hiroyuki Chibahara, Atsushi Ishii, Naoki Izumi, Masahiro Matsumoto
  • Patent number: 7755111
    Abstract: Programmable power management using a nanotube structure is disclosed. In one embodiment, a method includes coupling a nanotube structure of an integrated circuit to a conductive surface when a command is processed, and enabling a group of transistors of the integrated circuit based on the coupling the nanotube structure to the conductive surface. A current may be applied to the nanotube structure to couple the nanotube structure to the conductive surface. The nanotube structure may be formed from a material chosen from one or more of a polymer, carbon, and a composite material. The group of transistors may be enabled during an activation sequence of the integrated circuit. In addition, one or more transistors of the group of transistors may be disengaged from the one or more power sources (e.g., to minimize leakage) when the nanotube structure is decoupled from the conductive surface.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: July 13, 2010
    Assignee: LSI Corporation
    Inventor: Jonathan Byrn
  • Patent number: 7755110
    Abstract: An integrated semiconductor circuit has a regular array of logic function blocks (L) and a regular array of wiring zones (X) corresponding thereto. The wiring lines in at least one wiring layer of a wiring zone (X) are realized as line segments that are continuous within the wiring zone and are interrupted at zone boundaries. Furthermore, the semiconductor circuit comprises driver cells that surround a logic cell of the logic function block in an L-shaped manner.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: July 13, 2010
    Assignee: Infineon Technologies AG
    Inventors: Jörg Gliese, Winfried Kamp, Siegmar Köppe, Michael Scheppler
  • Patent number: 7745919
    Abstract: A semiconductor device comprising a plurality of semiconductor chips and a plurality of through-line groups is disclosed. Each of the through-line groups consists of a unique number of through-lines. The numbers associated with the through-line groups are mutually coprime to each other. When one of the through-lines is selected for the each through-line group, one of the semiconductor chip is designated by a combination of the selected through-lines of the plurality of the through-line groups.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: June 29, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Kayoko Shibata, Hiroaki Ikeda
  • Publication number: 20100155785
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The memory cell contains a pair of first bit lines and a pair of second bit lines. The first and second bit lines can be formed by an implant process using first and second spacers that have different lateral lengths from each other. The spacers can be used to offset the implants, thereby controlling the lateral lengths of the bit lines.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: SPANSION LLC
    Inventors: Huaqiang Wu, Hiro Kinoshita, Ning Cheng, Arturo Ruiz, Jihwan Choi
  • Patent number: 7741717
    Abstract: A metal line of a semiconductor device comprising contact plugs, a plurality of first trenches, first metal lines, a plurality of second trenches, and second metal lines. The contact plugs are formed over a semiconductor substrate and are insulated from each other by a first insulating layer. The plurality of first trenches are formed in the first insulating layer and are connected to first contact plugs of the contact plugs. The first metal lines are formed within the first trenches and are connected to the first contact plugs. The plurality of second trenches are formed over the first metal lines and the first insulating layer and comprise a second insulating layer connected to second contact plugs of the contact plugs. The second metal lines are formed within the second trenches and are connected to the second contact plugs.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: June 22, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Young Ok Hong, Dong Hwan Lee
  • Patent number: 7737558
    Abstract: Provided is a semiconductor device having a high-frequency interconnect, first dummy conductor patterns, an interconnect, and second dummy conductor patterns. The first dummy conductor patterns are arranged in the vicinity of the high-frequency interconnect, and the second dummy conductor patterns are arranged in the vicinity of the interconnect. The minimum value of distance between the high-frequency interconnect and the first dummy conductor patterns is larger than the minimum value of distance between the interconnect and the second dummy conductor patterns.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: June 15, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Yasutaka Nakashiba
  • Patent number: 7737474
    Abstract: A semiconductor device includes a substrate, on which an element region and a peripheral region are defined. At least one function element is to be provided in the element region, and the peripheral region surrounds the element region. The semiconductor device also includes a layer of wiring. The semiconductor device also includes a seal ring having a ring portion that is provided in the peripheral region in the same layer as the wiring layer. The ring portion has a main body surrounding a chip region, and a plurality of portions protruding toward the element region from the seal ring main body.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 15, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Shunichi Tokitoh
  • Patent number: 7737480
    Abstract: A semiconductor memory device includes: a transistor formed in a substrate; a capacitor formed above one of source/drain regions of the transistor; a bit line formed above the substrate and extending in the gate length direction of the transistor; a first conductive plug connecting one of the source/drain regions and the capacitor; a second conductive plug connected to the other source/drain region that is not connected to the first conductive plug; and a third conductive plug formed on the second conductive plug and connected to the bit line. The central axis of the third conductive plug is displaced from the central axis of the second conductive plug in the gate width direction of the transistor.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: June 15, 2010
    Assignee: Panasonic Corporation
    Inventors: Ryo Nakagawa, Takashi Nakabayashi, Hideyuki Arai
  • Patent number: 7728435
    Abstract: A semiconductor device comprising a first insulation layer, a second insulation layer, a first barrier film, a second barrier film, a diffusion layer. The device further comprises an upper contact hole, a lower contact hole, and a contact plug. The upper contact hole penetrates the second insulation layer and has a bottom in the second barrier film. The bottom has a width greater than a trench made in the first insulation layer, as measured in a direction crossing the widthwise direction of the trench. The lower contact hole penetrates the first insulation layer and first barrier film, communicates with the first contact hole via the trench and is provided on the diffusion layer. The upper portion of the lower contact hole has the same width as the trench. The contact plug is provided in the upper contact hole and lower contact hole.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: June 1, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Sakuma, Yasuhiko Matsunaga, Fumitaka Arai, Kikuko Sugimae
  • Patent number: 7723850
    Abstract: A method of forming air gaps within a solid structure is provided. In this method, a sacrificial material is covered by an overlayer. The sacrificial material is then removed through the overlayer to leave an air gap. Such air gaps are particularly useful as insulation between metal lines in an electronic device such as an electrical interconnect structure. Structures containing air gaps are also provided.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: May 25, 2010
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Michael K. Gallagher, Dana A. Gronbeck, Timothy G. Adams, Jeffrey M. Calvert
  • Patent number: 7723755
    Abstract: Provided are a semiconductor device having a buried word line structure in which a gate electrode and a word line may be buried within a substrate to reduce the height of the semiconductor device and to reduce the degradation of the oxide layer caused by chlorine ions from the application of a TiN metal gate, and a method of fabricating the semiconductor device. The semiconductor device may comprise a semiconductor substrate defined by a device isolation layer and comprising an active region including a trench and one or more recess channels, a gate isolation layer on the surface of the trench, a gate electrode layer on the surface of the gate isolation layer, and a word line by which the trench may be buried on the surface of the gate electrode layer.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: May 25, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Si-hyung Lee, Sang-ryol Yang, Myoung-bum Lee, Ki-hyun Hwang
  • Patent number: 7724541
    Abstract: Techniques for self assembly of macro-scale objects, optionally defining electrical circuitry, are described, as well as articles formed by self assembly. Components can be joined, during self-assembly by minimization of free energy, capillary attraction, or a combination.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: May 25, 2010
    Assignee: President and Fellows of Harvard College
    Inventors: David H. Gracias, Joe Tien, George M. Whitesides
  • Patent number: 7719114
    Abstract: An edit structure is disclosed that allows the input of a logic gate to be changed by modifying any one of the metal and via masks that are used to form the metal interconnect structure. As a result, a first permanent logic state provided by a tie-in circuit can be changed to a second permanent logic state by modifying any one of the metal and via masks that are used to form the metal interconnect structure.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: May 18, 2010
    Assignee: National Semiconductor Corporation
    Inventor: Richard J. Doyon, Jr.
  • Patent number: 7714363
    Abstract: Wiring of a PDP address driver IC is disclosed which affords an adequate permitted current capacity. In the PDP address driver IC that drives the PDP, a layer, in which a planar high voltage ground wiring layer and a planar high voltage power wiring layer are formed, is provided atop a layer in which planar high voltage ground wiring layers that supply a ground potential to the active element that is formed within the PDP address driver IC and in which planar high voltage power wiring layers that supply a source potential to the active element are formed. Accordingly, the PDP address driver IC can comprise an adequate permitted current capacity while maintaining a compact size and comprising a multiplicity of output bit portions.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: May 11, 2010
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventors: Takahiro Nomiyama, Gen Tada, Yoshihiro Shigeta
  • Publication number: 20100110759
    Abstract: Programmable metallization memory cells having a first metal contact and a second metal contact with an ion conductor solid electrolyte material between the metal contacts. The first metal contact has a filament placement structure thereon extending into the ion conductor material. In some embodiments, the second metal contact also has a filament placement structure thereon extending into the ion conductor material toward the first filament placement structure. The filament placement structure may have a height of at least about 2 nm.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 6, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Insik Jin, Christina Hutchinson, Richard Larson, Lance Stover, Jaewoo Nam, Andrew Habermas
  • Patent number: 7709956
    Abstract: A copper-topped interconnect structure allows the combination of high density design areas, which have low current requirements that can be met with tightly packed thin and narrow copper traces, and low density design areas, which have high current requirements that can be met with more widely spaced thick and wide copper traces, on the same chip.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: May 4, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Abdalla Aly Naem, Reda Razouk
  • Patent number: 7709962
    Abstract: A layout structure is provided with a conducting line extending in a conducting line direction, the conducting line being arranged within a substrate area, a fill element being arranged within the substrate area at a predetermined distance from the conducting line, the fill element having a fill element axis extending perpendicularly to a side of the fill element in a fill element direction, an angle between the conducting line direction and the fill element direction being greater than 0° and smaller than 90°.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 4, 2010
    Assignee: Infineon Technologies AG
    Inventors: Alexander Nielsen, Bernhard Dobler, Georg Georgakos
  • Patent number: 7709861
    Abstract: Various systems and methods for implementing multi-mode semiconductor devices are discussed herein. For example, a multi-mode semiconductor device is disclosed that includes a device package with a number of package pins. In addition, the device includes a semiconductor die or substrate with at least two IO buffers. One of the IO buffers is located a distance from a package pin and another of the IO buffers is located another distance from the package pin. One of the IO buffers includes first bond pad electrically coupled to a circuit implementing a first interface type and a floating bond pad, and the other IO buffer includes a second bond pad electrically coupled to a circuit implementing a second interface type. In some cases, the floating bond pad is electrically coupled to the circuit implementing the second interface type via a conductive interconnect, and the floating bond pad is electrically coupled to the package pin.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: May 4, 2010
    Assignee: Agere Systems Inc.
    Inventors: Parag Madhani, Paul F. Barnes, Donald E. Hawk, Jr., Kandaswamy Prabakaran
  • Patent number: 7692215
    Abstract: Embodiments of the present invention are directed to mixed-scale electronic interfaces, included in integrated circuits and other electronic devices, that provide for dense electrical interconnection between microscale features of a predominantly microscale or submicroscale layer and nanoscale features of a predominantly nanoscale layer. The predominantly nanoscale layer, in one embodiment of the present invention, comprises a tessellated pattern of submicroscale or microscale pads densely interconnected by nanowire junctions between sets of parallel, closely spaced nanowire bundles. The predominantly submicroscale or microscale layer includes pins positioned complementarily to the submicroscale or microscale pads in the predominantly nanoscale layer. Pins can be configured according to any periodic tiling of the microscale layer.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: April 6, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: R. Stanley Williams, Gregory S. Snider, Duncan Stewart
  • Patent number: 7692190
    Abstract: The semiconductor device has a fuse and a fuse opening created above the fuse. The fuse is divided into a plurality of lines at a crossing portion where the fuse crosses with an edge of the fuse opening. The plurality of divided lines of the fuse 101 are in parallel with each other and in perpendicular to the edge of the fuse opening.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: April 6, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Nobuyuki Katsuki
  • Patent number: 7683404
    Abstract: A stacked memory includes at least two semiconductor layers each including a memory cell array. A transistor is formed in a peripheral circuit region of an uppermost semiconductor layer of the at least two semiconductor layers. The transistor is used to operate the memory cell array.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: March 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Chul Jang, Won-Seok Cho, Jae-Hoon Jang, Soon-Moon Jung, Hoo-Sung Cho, Jong-Hyuk Kim
  • Publication number: 20100065891
    Abstract: Embodiments of the invention describe compact memory arrays. In one embodiment, the memory cell array includes first, second, and third gate lines disposed over a substrate, the second gate lines are disposed between the first and the third gate lines. The first, the second, and the third gate lines form adjacent gate lines of the memory cell array. The memory cell array further includes first metal lines disposed over the first gate lines, the first metal lines coupled to the first gate lines; second metal lines disposed over the second gate lines, the second metal lines coupled to the second gate lines; and third metal lines disposed over the third gate lines, the third metal lines coupled to the third gate lines. The first metal lines, the second metal lines and the third metal lines are disposed in different metallization levels.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: Jan Otterstedt, Thomas Nirschl, Michael Bollu, Wolf Allers
  • Patent number: 7679109
    Abstract: A semiconductor device having a multilayer structure, each layer including: a dummy pattern for ensuring a flatness thereof; a pad area in which a bonding pad is formed; an input-output circuit area in which an input-output circuit is formed, the input-output circuit area being adjacent to the pad area in plan view; and a dummy pattern confined area for forbidding an arrangement of the dummy pattern in every layer included in the semiconductor device, the dummy pattern confined area being provided between the pad area and the input-output circuit area in plan view.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: March 16, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Yoshihiko Kato
  • Patent number: 7679108
    Abstract: A semiconductor memory includes a plurality of active regions; a plurality of bit line contacts disposed on respective active regions; a plurality of first local lines formed in an island shape and in contact with upper surfaces of the plurality of bit line contacts; a plurality of first via contacts in contact with the upper surfaces of the plurality of first local lines and aligned in a direction parallel to the active regions; a first bit line in contact with one of the plurality of first via contacts and extending in a direction parallel to the active regions; and a plurality of second via contacts arranged above the first via contacts that are not in contact with the first bit line through respective second local lines.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: March 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuhiko Matsunaga, Fumitaka Arai, Makoto Sakuma
  • Patent number: 7671473
    Abstract: There is provided a semiconductor device and method of fabricating the same that employs an insulation film of a borazine-based compound to provided enhanced contact between a material for insulation and that for interconnection, increased mechanical strength, and other improved characteristics. The semiconductor device includes a first insulation layer having a recess with a first conductor layer buried therein, an etching stopper layer formed on the first insulation layer, a second insulation layer formed on the etching stopper layer, a third insulation layer formed on the second insulation layer, and a second conductor layer buried in a recess of the second and third insulation layers. The second and third insulation layers are grown by chemical vapor deposition with a carbon-containing borazine compound used as a source material and the third insulation layer is smaller in carbon content than the second insulation layer.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: March 2, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Teruhiko Kumada, Hideharu Nobutoki, Naoki Yasuda, Kinya Goto, Masazumi Matsuura
  • Patent number: RE41963
    Abstract: A semiconductor memory device is constructed to include a memory cell formed by a plurality of transistors, wherein each of gate wiring layers of all of the transistors forming the memory cell is arranged to extend in one direction.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: November 30, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tsuyoshi Yanai, Yoshio Kajii, Takashi Ohkawa