Signal Charge Detection Type (e.g., Floating Diffusion Or Floating Gate Non-destructive Output) Patents (Class 257/239)
  • Patent number: 8022489
    Abstract: An air tunnel floating gate memory cell includes an air tunnel defined over a substrate. A first polysilicon layer (floating gate) is defined over the air tunnel. An oxide layer is disposed over the first polysilicon layer such that the oxide layer caps the first polysilicon layer and defines the sidewalls of the air tunnel. A second polysilicon layer, functioning as a word line, is defined over the oxide layer. A method for making an air tunnel floating gate memory cell is also disclosed. A sacrificial layer is formed over a substrate. A first polysilicon layer is formed over the sacrificial layer. An oxide layer is deposited over the first polysilicon layer such that the oxide layer caps the first polysilicon layer and defines the sidewalls of the sacrificial layer. A hot phosphoric acid (H3PO4) dip is used to etch away the sacrificial layer to form an air tunnel.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: September 20, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Hang-Ting Lue, Erh-Kun Lai, Kuang Yeu Hsieh
  • Patent number: 8013365
    Abstract: A complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) includes a semiconductor substrate including a photodiode therein as a light sensing unit. A floating diffusion region of a first conductivity type is provided in the semiconductor substrate, and is configured to receive charges generated in the photodiode. A power supply voltage region of the first conductivity type is also provided in the semiconductor substrate. A reset transistor including a reset gate electrode on a surface of the substrate between the floating diffusion region and a power supply voltage region is configured to discharge charges stored in the floating diffusion region in response to a reset control signal. The reset transistor includes a channel region in the substrate extending between the floating diffusion region and the power supply voltage region such that the floating diffusion region and the power supply voltage regions define source/drain regions for the reset transistor.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: September 6, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-hyun Ko, Jong-jin Lee, Jung-chak Ahn
  • Publication number: 20110199602
    Abstract: A sensor, including a plurality of photo gate pairs on a semiconductor substrate, each of the photo gate pairs including a first photo gate and a second photo gate, a first shared floating diffusion region in the semiconductor substrate, and a plurality of first transmission transistors on the semiconductor substrate, wherein each of the plurality of first transmission transistors is adapted to transmit charges to the first shared floating diffusion region in response to a first transmission control signal, the charges being generated in the semiconductor substrate under the first photo gate of each of the plurality of photo gate pairs.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 18, 2011
    Inventors: Suk Pil KIM, Yoon Dong Park, Dong Seok Suh, Young Gu Jin, Seung Hoon Lee
  • Patent number: 7994552
    Abstract: An object of the present invention is to provide a photoelectric conversion device, wherein improvement of charge transfer properties when charge is output from a charge storage region and suppression of dark current generation during charge storage are compatible with each other. This object is achieved by forming a depletion voltage of a charge storage region in the range from zero to one half of a power source voltage (V), forming a gate voltage of a transfer MOS transistor during a charge transfer period in the range from one half of the power source voltage to the power source voltage (V) and forming a gate voltage of the transfer MOS transistor during a charge storage period in the range from minus one half of the power source voltage to zero (V).
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: August 9, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Yuzurihara, Seiichi Tamura, Ryuichi Mishima
  • Patent number: 7960230
    Abstract: According to an aspect of the invention, there is provided a semiconductor device including a plurality of memory cells, comprising a plurality of floating gate electrodes which are formed on a tunnel insulating film formed on a semiconductor substrate and have an upper portion which is narrower in a channel width direction than a lower portion, an interelectrode insulating film formed on the floating gate electrodes, and a control gate electrode which is formed on the interelectrode insulating film formed on the floating gate electrodes and partially buried between the floating gate electrodes opposing each other.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: June 14, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshio Ozawa
  • Patent number: 7956403
    Abstract: A flash memory includes a substrate with a protrusion, a control gate, two floating gates, and a dielectric layer. The protrusion extends from a top face of the substrate. The control gate is formed on the protrusion of the substrate and extendedly covers opposite sidewalls of the protrusion. The floating gates are respectively formed on top of the protrusion and being on two opposite sides of the control gate. The dielectric layer is sandwiched the control gate and each of the two floating gates. Because of the arcuate control gate used in the flash memory, the controllability of the control gate is increased and the memory cell window is enhanced.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: June 7, 2011
    Assignee: Nanya Technology Corporation
    Inventors: Ming-Cheng Chang, Wei-Ming Liao, Jer-Chyi Wang, Yi-Feng Chang
  • Patent number: 7939861
    Abstract: Non-volatile memory (NVM) devices are disclosed. In one aspect, a NVM device may include a substrate, and a field-effect transistor (FET). The FET may include a first doped region in the substrate and a second doped region in the substrate. The first and the second doped regions may define a channel region of the substrate between them. An insulating layer may overlie the channel region. A floating gate may overlie the insulating layer. Charge of an amount that encodes a value may be stored on the floating gate. The floating gate and the first and the second doped regions may be shaped such that the floating gate defines with the first doped region a first border of a first length, and the floating gate defines with the second doped region a second border of a second length that is less than 90% of the first length.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: May 10, 2011
    Assignee: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Patent number: 7936018
    Abstract: A semiconductor device includes an active zone doped according to a first type; a drain zone formed in the active zone and doped according to a second type; a source zone formed in the active zone and doped according to the second type; an insulated gate zone separated from the active zone by an insulating layer; a deep well, doped according to the second type such that the active zone is located between the gate zone and the well; a floating gate zone formed in the active zone under a space existing between the drain zone and the source zone, the floating gate zone including defects introducing deep levels in the bandgap of the semiconductor material, the deep levels being suited to trap carriers corresponding to the first type such that a charge state of the floating gate zone is modified and a drain source current varies due to the presence of a supplementary potential on the floating gate zone, a concentration of defects in the floating gate zone being strictly greater than 1018 cm?3.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 3, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Nicolas Fourches
  • Patent number: 7902574
    Abstract: This invention provides a type of solid-state image pickup device characterized by the fact that for a solid-state image pickup device with a broad dynamic range, it is possible to suppress the dark current than photoelectrons overflowing from the photodiode, as well as its driving method. Plural pixels are integrated in an array configuration on a semiconductor substrate. Each pixel has the following parts: photodiode (CPD), transfer transistor (?T), floating diffusion (CFD), accumulating capacitive element (CS), accumulating transistor (?S), and a reset transistor. During the accumulating period of photoelectric charge, voltage (?) over that applied on the semiconductor substrate, or ?0.6 V or lower than the voltage applied on the semiconductor substrate, is applied as an OFF potential on the gate electrode of at least one transfer transistor, the accumulating transistor and the reset transistor.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: March 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Satoru Adachi
  • Patent number: 7897969
    Abstract: A solid-state image pickup device includes a pixel array area in which pixels each including a photoelectric conversion element are two-dimensionally arranged; first control means for performing control such that signals of pixels in a desired region of the pixel array area are sequentially read row by row; and second control means for performing control such that, when the signals of the pixels in the desired region are sequentially read row by row by the first control means, pixels in particular regions below and above the desired region are sequentially reset row by row.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: March 1, 2011
    Assignee: Sony Corporation
    Inventors: Yoshinori Muramatsu, Takahiro Abiru, Takaichi Hirata
  • Patent number: 7884398
    Abstract: Specific ionic interactions with a sensing material that is electrically coupled with the floating gate of a floating gate-based ion sensitive field effect transistor (FGISFET) may be used to sense a target material. For example, an FGISFET can use (e.g., previously demonstrated) ionic interaction-based sensing techniques with the floating gate of floating gate field effect transistors. The floating gate can serves as a probe and an interface to convert chemical and/or biological signals to electrical signals, which can be measured by monitoring the change in the device's threshold voltage, VT.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: February 8, 2011
    Assignee: Polytechnic Institute of New York University
    Inventors: Kalle Levon, Arifur Rahman, Tsunehiro Sai, Ben Zhao
  • Patent number: 7884401
    Abstract: The embodiment relates to a complementary metal oxide semiconductor (CMOS) image sensor and more particularly, to a CMOS image sensor and a manufacturing method thereof capable of improving electron storing capacity in a floating diffusion area. The CMOS image sensor includes a first gate electrode on a semiconductor substrate; a photodiode in the semiconductor substrate on one side of the first gate electrode; a floating diffusion area in the semiconductor substrate on an opposite side of the first gate electrode; a capacitor including a lower capacitor electrode connected to the floating diffusion area, a dielectric layer on the lower capacitor electrode, and an upper capacitor electrode; a drive capacitor coupled to the lower capacitor electrode and having a second gate electrode connected to the floating diffusion area. The electron storing capacity of the floating diffusion node is increased, making it possible to improve the dynamic range of the image sensor.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 8, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Hee Sung Shim
  • Patent number: 7880206
    Abstract: Provided is a CMOS image sensor with an asymmetric well structure of a source follower. The CMOS image sensor includes: a well disposed in an active region of a substrate; a drive transistor having one terminal connected to a power voltage and a first gate electrode disposed to cross the well; and a select transistor having a drain-source junction between another terminal of the drive transistor and an output node, and a second gate electrode disposed in parallel to the drive transistor. A drain region of the drive transistor and a source region of the select transistor are asymmetrically arranged.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 1, 2011
    Assignee: Crosstek Capital, LLC
    Inventor: Hee-Jeong Hong
  • Patent number: 7851294
    Abstract: A method for manufacturing a nanotube non-volatile memory cell is proposed. The method includes the steps of: forming a source electrode and a drain electrode, forming a nanotube implementing a conduction channel between the source electrode and the drain electrode, forming an insulated floating gate for storing electric charges by passivating conductive nanoparticles with passivation molecules and arranging a disposition of passivated conductive nanoparticles on the nanotube, the conductive nanoparticles being adapted to store the electric charges and being insulated by the passivation molecules from the nanotube, and forming a control gate coupled with the channel.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: December 14, 2010
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Andrea Basco, Maria Viviana Volpe, Maria Fortuna Bevilacqua, Valeria Casuscelli
  • Patent number: 7851798
    Abstract: A method and apparatus for operating an imager pixel that includes the act of applying a relatively small first polarity voltage and a plurality of pulses of a second polarity voltage on the gate of a transfer transistor during a charge integration period.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: December 14, 2010
    Assignee: Micron Technology, Inc.
    Inventor: John Ladd
  • Patent number: 7851827
    Abstract: Non-volatile memory devices and arrays are described that utilize back-side trapped floating node memory cells with band-gap engineered gate stacks with asymmetric tunnel barriers. Embodiments of the present invention allow for direct tunneling programming and efficient erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention and reduces the possibility of damage to the channel/insulator interface. The direct tunneling program and efficient erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and leakage issues and enhancing device lifespan. Memory device embodiments of the present invention are presented that are arranged in NOR or NAND memory architecture arrays. Memory cell embodiments of the present invention also allow multiple levels of bit storage in a single memory cell, and allow for programming and erase with reduced voltages.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: December 14, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7851275
    Abstract: A pixel of an image sensor includes a polysilicon layer, and an active region which needs to be electrically coupled with the polysilicon layer, wherein the polysilicon layer extends over a portion of the active region, such that the polysilicon layer and the active region are partially overlapped, and the polysilicon layer and the active region are coupled through a buried contact structure.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: December 14, 2010
    Inventors: Woon-Il Choi, Hyung-Sik Kim, Ui-Sik Kim
  • Patent number: 7842985
    Abstract: Disclosed is a CMOS image sensor including a gate electrode of a finger type transfer transistor for controlling the saturation state of a floating diffusion region according to the luminance level (i.e. low luminance or high luminance). The CMOS image sensor includes first and second photodiode regions for generating electrons in response to incident light, and a transfer transistor positioned between the first and second photodiodes for receiving the generated electrons transferred from the first and/or second photodiode.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: November 30, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Keun Hyuk Lim
  • Patent number: 7821077
    Abstract: The active region of an NMOS transistor and the active region of a PMOS transistor are divided by an STI element isolation structure. The STI element isolation structure is made up of a first element isolation structure formed so as to include the interval between both active regions, and a second element isolation structure formed in the region other than the first element isolation structure.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: October 26, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Patent number: 7820996
    Abstract: A nonvolatile memory device using a resistance material and a method of fabricating the same are provided. The nonvolatile memory device includes a switching element, and a data storage part electrically connected to the switching element. In the data storage part, a lower electrode is connected to the switching element, and an insulating layer is formed on the lower electrode to a predetermined thickness. The insulating layer has a contact hole exposing the lower electrode. A data storage layer is filled in the contact hole and the data storage layer is formed of transition metal oxide. An upper electrode is formed on the insulating layer and the data storage layer.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: October 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-hyun Lee, Sung-kyu Choi, Kyu-sik Kim
  • Patent number: 7808018
    Abstract: A solid-state imaging apparatus includes a pixel array comprising a plurality of light receiving elements disposed in a charge transfer direction, the plurality of light receiving elements converting a light signal into an electric signal, a first charge transfer unit and a second charge transfer unit arranged on each side of the pixel array and transferring a signal charge input from the pixel array in the charge transfer direction, a first floating diffusion region connected to the first charge transfer unit, a second floating diffusion region connected to the second charge transfer unit, a wiring layer connecting the first floating diffusion region with the second floating diffusion region, and an output circuit connected to the wiring layer and output a signal voltage in accordance with a potential of the first floating diffusion region and the second floating diffusion region.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: October 5, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Akira Uemura
  • Patent number: 7791113
    Abstract: A pixel of an image sensor includes a gate insulation layer formed over a substrate doped with first-type impurities, a transfer gate formed over the gate insulation layer, a photodiode formed in the substrate at one side of the transfer gate, and a floating diffusion node formed in the substrate at the other side of the transfer gate, wherein the transfer gate has a negative bias during a charge integration cycle.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: September 7, 2010
    Inventors: Jaroslav Hynecek, Hyung-Jun Han
  • Patent number: 7768059
    Abstract: A non-volatile single-poly memory device is disclosed. The non-volatile single-poly memory device includes two mirror symmetric unit cells, which is capable of providing improved data correctness. Further, the non-volatile single-poly memory device is operated at low voltages and is fully compatible with logic processes.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: August 3, 2010
    Assignee: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Shih-Chen Wang, Ming-Chou Ho, Shih-Jye Shen
  • Patent number: 7763931
    Abstract: A nonvolatile semiconductor memory including a semiconductor substrate having an upper surface; a plurality of memory cell transistors formed in the semiconductor substrate, each memory cell transistor including a gate electrode having a gate insulating layer on the upper surface of the semiconductor substrate, a floating gate electrode layer on the gate insulating layer, an inter-gate insulating layer on the floating gate electrode layer, and a control gate electrode layer on the inter-gate insulating layer; a first oxide-based insulating film formed above the upper surface of the semiconductor substrate between the gate electrodes, and including an upper surface as high or higher than that of the floating gate electrode layer but lower than that of the control gate electrode layer; a nitride-based insulating film containing boron formed on the first oxide-based insulating film and the control gate layer; and a second oxide-based insulating film formed on the nitride-based insulating film.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: July 27, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoharu Hashiguchi, Hajime Nagano
  • Patent number: 7737475
    Abstract: Provided is a solid-state CMOS image sensor, specifically a CMOS image sensor pixel that has stacked photo-sites, high sensitivity, and low dark current. In an image sensor including an array of pixels, each pixel includes: a standard photo-sensing and charge storage region formed in a first region under a surface portion of a substrate and collecting photo-generated carriers; a second charge storage region formed adjacent to the surface portion of the substrate and separated from the standard photo-sensing and charge storage region; and a potential barrier formed between the first region and a second region underneath the first region and diverting the photo-generated carriers from the second region to the second charge storage region.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: June 15, 2010
    Inventor: Jaroslav Hynecek
  • Patent number: 7728898
    Abstract: A semiconductor device having a unit capable of temporarily storing electrical signals, may include an electrical signal generation unit, a first signal transmission unit electrically connected to the electrical signal generation unit, a first signal storage unit electrically connected to the first signal transmission unit, a second signal transmission unit electrically connected to the first signal storage unit, a second signal storage unit electrically connected to the second signal transmission unit, a reset unit electrically connected to the second signal storage unit, an amplification unit electrically connected to the second signal storage unit, a selection unit electrically connected to the amplification unit, and an output unit electrically connected to the selection unit, for stable signal processing.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: June 1, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-hee Lee, Kang-bok Lee, Seok-ha Lee
  • Patent number: 7719037
    Abstract: An image sensor includes a reset transistor, reset gate electrodes and a potential shift circuit. The reset transistor includes a reset gate and a reset drain, and resets charges detected by a charge detection device. The reset gate electrodes control a potential of the reset gate. The potential shift circuit initializes output signals in response to a shift pulse, and outputs the output signals to the reset gate electrodes in response to a reset pulse.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: May 18, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Yoshizumi Haraguchi
  • Patent number: 7719004
    Abstract: The invention concerns a sensor with silicon-containing components from whose sensitive detection element electrical signals relevant to a present analyte can be read out by means of a silicon semiconductor system. The invention is characterized in that the silicon-containing components are covered with a layer made of hydrophobic material in order to prevent unwanted signals caused by moisture.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: May 18, 2010
    Assignee: Micronas GmbH
    Inventors: Markus Burgmair, Ignaz Eisele, Thorsten Knittel
  • Patent number: 7705391
    Abstract: According to an aspect of the invention, there is provided a semiconductor device including a plurality of memory cells, comprising a plurality of floating gate electrodes which are formed on a tunnel insulating film formed on a semiconductor substrate and have an upper portion which is narrower in a channel width direction than a lower portion, an interelectrode insulating film formed on the floating gate electrodes, and a control gate electrode which is formed on the interelectrode insulating film formed on the floating gate electrodes and partially buried between the floating gate electrodes opposing each other.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: April 27, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshio Ozawa
  • Patent number: 7697051
    Abstract: An apparatus has a pixel that includes (i) a buffer transistor having an input, (ii) first and second capacitive storage elements each of which selectively can be coupled to the input of the buffer transistor, and (iii) a photosensitive element having an output which selectively can be coupled to the input of the buffer transistor. A readout circuit selectively can be coupled to an output of the buffer transistor. A first signal level, sensed by the photosensitive element, can be stored by the first capacitive storage element, and a second signal level, sensed by the photosensitive element, can be stored by the second capacitive storage element. The first and second signal levels can be read out from the pixel.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: April 13, 2010
    Assignee: Aptina Imaging Corporation
    Inventor: Alexander I. Krymski
  • Patent number: 7682894
    Abstract: The present invention provides a method of manufacturing a flash memory device. The method includes forming a gate oxide layer on a semiconductor substrate, forming a floating gate including protrusions and depressions on its surface by patterning polysilicon deposited on the gate oxide layer, depositing a dielectric layer on the floating gate and the gate oxide layer, and forming a control gate by patterning polysilicon deposited on the dielectric layer.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: March 23, 2010
    Assignee: Dongku HiTek Co.
    Inventor: Sang-Woo Nam
  • Publication number: 20100053404
    Abstract: Driving is performed so that a transition start time point ta of drive pulse signals ?H1 and ?H2 which are applied to transfer electrodes of a charge transfer section on an upstream side of a branch section is within transition period B or C of drive pulse signals ?HP1 and ?HP2 which are applied to transfer electrodes of the charge transfer section on a downstream side.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 4, 2010
    Applicant: FUJIFILM Corporation
    Inventors: Hirokazu Shiraki, Makoto Kobayashi
  • Patent number: 7671386
    Abstract: The solid-state imaging device of the present invention includes: a floating diffusion capacity unit which is formed on a semiconductor substrate, and is operable to hold signal charges derived from incident light; an amplifier which is operable to convert the signal charges held in the floating diffusion capacity unit into a voltage; the first wire which connects the floating diffusion capacity unit to an input of the amplifier; and a second wire which is made of the same material as the first wire, formed in the same layer as the first wire, arranged around the first wire at least along long sides of the first wire, and electrically insulated from the first wire.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 2, 2010
    Assignee: Panasonic Corporation
    Inventor: Toshihiro Kuriyama
  • Publication number: 20100045836
    Abstract: An image sensor includes a conductive well in a semiconductor substrate, a photo sensitive device (PSD) in the semiconductor substrate below the conductive well, the PSD and conductive well overlapping each other, and a charge transmission unit in the semiconductor substrate and adjacent to the conductive well, the charge transmission unit having a structure of a recessed gate and being positioned in a recess region of the semiconductor substrate.
    Type: Application
    Filed: August 18, 2009
    Publication date: February 25, 2010
    Inventors: Yong Jei Lee, Jung Chak Ahn, Jong Eun Park, Dong-Yoon Jang
  • Patent number: 7652312
    Abstract: A complementary metal-oxide semiconductor (CMOS) image sensor comprises a photodiode region generating electrical charges in response to incident light thereon. The CMOS image sensor further comprises a first floating diffusion layer adapted to receive the electrical charges from the photodiode region in response to a global transfer signal and a second floating diffusion region adapted to receive the electrical charges from the first floating diffusion region in response to a pixel selection signal.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Duk-Min Yi, Jong-Chae Kim, Jin-Hyeong Park
  • Patent number: 7646042
    Abstract: When capacity coupling between an output gate electrode (OG) and a last-stage transfer electrode is large at an output end of a CCD shift register, an electric potential of the OG is varied according to transfer clocks with the result that noise is liable to generate in an output signal. As measures for this, convex portions projecting horizontally are formed in those positions of the last-stage transfer electrode and the OG, which correspond to a channel region, and overlap between the electrodes is caused only on the convex portions. A clearance is formed between the OG and the transfer electrode except those locations, in which the convex portions are provided. In that location, in which the OG and the transfer electrode, respectively, are extended relatively lengthily toward wirings, the electrodes do not overlap each other. In this manner, capacity coupling between the electrodes is reduced.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: January 12, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Takahiko Ogo
  • Patent number: 7642581
    Abstract: A solid-state image sensing device has a pixel that includes a photodiode that generates an electrical charge according to an amount of incoming light, a floating diffusion portion, a charge transfer transistor that transfers the electrical charge to the floating diffusion portion from the photoelectric conversion portion, a reading circuit that outputs an signal on the basis of said electrical charge held in said floating diffusion portion, and a light-shielding member disposed so as to cover a side wall of a gate electrode of the charge transfer transistor on the photoelectric conversion portion side.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: January 5, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shunsuke Inoue
  • Patent number: 7638354
    Abstract: An image sensor can include a gate insulation layer, a gate electrode, a photodiode, and a floating diffusion region. The gate insulation layer can be formed on and/or over a semiconductor substrate for a transfer transistor. The gate insulation layer includes a first gate insulation layer having a central opening and a second gate insulation layer formed on and/or over an uppermost surface of the first gate insulation layer including the opening. The gate electrode can be formed on and/or over the gate insulation layer. The photodiode can be formed in the semiconductor substrate at one side of the gate electrode so as to generate an optical charge. The floating diffusion region can be formed in the semiconductor at the other side of the gate electrode opposite to the photodiode. The floating diffusion region can be electrically connected to the photodiode through a channel so as to store the optical charge generated from the photodiode.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: December 29, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Ji-Hoon Hong
  • Publication number: 20090294884
    Abstract: Channel stop sections formed by multiple times of impurity ion implanting processes. Four-layer impurity regions are formed across the depth of a semiconductor substrate (across the depth of the bulk), so that a P-type impurity region is formed deep in the semiconductor substrate; thus, incorrect movement of electric charges is prevented. Other four-layer impurity regions of another channel stop section are decreased in width step by step across the depth of the substrate, so that the reduction of a charge storage region of a light receiving section due to the dispersion of P-type impurity in the channel stop section is prevented in the depth of the substrate.
    Type: Application
    Filed: August 7, 2009
    Publication date: December 3, 2009
    Applicant: SONY CORPORATION
    Inventor: Kiyoshi Hirata
  • Patent number: 7618861
    Abstract: Separate first and second floating gates for attracting carriers transferring in a transistor structure having a channel region and first and second main electrode regions into charge storage films therebelow are formed so as to largely face a control gate. The control gate between the separate first and second floating gates faces to the channel region via thin interlayer insulating layer. Therefore, a semiconductor device according to the present invention can inject electrons the charge storage film without causing writing errors in a writing operation, and therefore can increase in reliability thereof, control a writing voltage, prevent loss of the electrons stored in the charge storage film, and reliably apply a bias voltage to a channel region.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: November 17, 2009
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Masayuki Masukawa, Masaru Seto, Keisuke Oosawa
  • Patent number: 7619266
    Abstract: An image sensor device having a pixel cell with a pinned photodiode, which utilizes the fixed charge of an high K dielectric layer over the n-type region for the pinning effect without implanting a p-type layer over the n-type region, and methods of forming such a device.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: November 17, 2009
    Assignee: Aptina Imaging Corporation
    Inventor: Chandra Mouli
  • Patent number: 7601592
    Abstract: According to a nonvolatile memory device having a multi gate structure and a method for forming the same of the present invention, a gate electrode is formed using a damascene process. Therefore, a charge storage layer, a tunneling insulating layer, a blocking insulating layer and a gate electrode layer are not attacked from etching in a process for forming the gate electrode, thereby forming a nonvolatile memory device having good reliability.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Woo Oh, Dong-Gun Park, Dong-Won Kim, Yong-Kyu Lee
  • Patent number: 7601992
    Abstract: A light detecting element 1 including an element formation layer 22 which contains a well region 31. A surface electrode 25 is formed on the layer 22 through an insulating layer 24. The region 31 contains an electron holding region 32. The region 32 contains a hole holding region 33. The layer 24 contains a control electrode 26 facing the region 33 through the layer 24. Electrons and holes are generated at the layer 22. There are two selected states. In one state, by controlling each electric potential applied to the electrodes 25, 26, electrons are gathered at the region 32, while holes are held at the region 33. In another state, recombination is stimulated between the electrons and the holes. After the recombination, the remaining electrons are picked out as received light output.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: October 13, 2009
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Yusuke Hashimoto, Yuji Takada, Fumikazu Kurihara, Fumi Tsunesada
  • Patent number: 7589349
    Abstract: Provided is a CMOS image sensor with an asymmetric well structure of a source follower. The CMOS image sensor includes: a well disposed in an active region of a substrate; a drive transistor having one terminal connected to a power voltage and a first gate electrode disposed to cross the well; and a select transistor having a drain-source junction between another terminal of the drive transistor and an output node, and a second gate electrode disposed in parallel to the drive transistor. A drain region of the drive transistor and a source region of the select transistor are asymmetrically arranged.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: September 15, 2009
    Assignee: Crosstek Capital, LLC
    Inventor: Hee-Jeong Hong
  • Publication number: 20090195297
    Abstract: Disclosed is a CCD device in which a charge transfer register of a CCD structure is connected to a charge detector via an output gate and has a reset gate between the charge detector and a reset drain, and an output gate pulse opposite in phase from a reset pulse applied to the reset gate is applied to the output gate. A dummy charge detector and an amplitude adjusting circuit are provided. On the basis of detection of the potential of a diffusion layer in the dummy charge detector, the amplitude adjusting circuit controls the amplitude of the output gate pulse applied to the output gate.
    Type: Application
    Filed: January 27, 2009
    Publication date: August 6, 2009
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Takao TSUZUKI
  • Patent number: 7550793
    Abstract: The image pickup device of the invention has a path deeper in a semiconductor substrate, than a region wherein a channel is formed, upon turning on a first MOS transistor, under a gate thereof. The path is arranged by forming a P-type layer for forming a potential barrier, within a P-type well excluding a region below the gate of the first MOS transistor. Thus, even when the first transfer MOS transistor is securely turned off at accumulation, carriers overflowing from a photodiode can flow into the path, thereby enabling to accumulate the carriers, overflowing from the photodiode, in a carrier accumulation region. Such structure allows to suppress a dark current generation from an interface of a gate oxide film of the first transfer MOS transistor, and also to expand the dynamic range of the image pickup device by the carriers overflowing from the photodiode and flowing through the path into the carrier accumulation region.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: June 23, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tetsuya Itano, Toru Koizumi, Shin Kikuchi, Akira Okita, Masanori Ogura
  • Patent number: 7541628
    Abstract: In one aspect, an image sensor is provided which includes an array of unit active pixels. Each of the unit active pixels comprises a first active area including a plurality of photoelectric conversion regions, and a second active area separated from the first active area. The first active areas are arranged in rows and columns so as to define row and column extending spacings there between, and the second active areas are located at respective intersections of the row and column extending spacings defined between the first active areas.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: June 2, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Duck-hyung Lee, Kang-bok Lee, Seok-ha Lee
  • Publication number: 20090134433
    Abstract: An image sensor includes a substrate in which an active pixel region and an optical black region are defined, a plurality of active pixels in the active pixel region, each active pixel including a first charge-detection unit having a first conversion gain, and a plurality of black pixels in the optical black region, each black pixel including a second charge-detection unit having a second conversion gain.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 28, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Sang-Il Jung
  • Patent number: 7521659
    Abstract: A solid-state image-sensing device includes a pixel array and an averaging unit. The pixel array includes a matrix of pixels and includes a respective output line for each of a plurality of pixel groupings such as for each column of pixels. The averaging unit receives respective signals from first and second output lines of the pixel array to generate a pulse width signal that indicates an average of such respective signals. A respective signal of the first output line is generated from combining photocurrents from a first set of at least two pixels sensing a same first color in the pixel array.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: April 21, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tetsuo Asaba, Su-Hun Lim
  • Patent number: 7504687
    Abstract: Structures and methods for programmable array type logic and/or memory devices with asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include non-volatile memory which has a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator formed by atomic layer deposition. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: March 17, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Jerome M. Eldridge, Kie Y. Ahn, Leonard Forbes