Signal Charge Detection Type (e.g., Floating Diffusion Or Floating Gate Non-destructive Output) Patents (Class 257/239)
  • Patent number: 6897506
    Abstract: Described in this disclosure is a non-volatile memory cell. The non-volatile memory cell generally includes a short-range atomic order substrate, a dielectric positioned adjacent to the substrate, and a non-floating gate positioned adjacent to the dielectric.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: May 24, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Andrew L. Van Brocklin, Warren B. Jackson
  • Patent number: 6897517
    Abstract: A memory is described having a semiconductor substrate of a first conductivity type, a first and a second junction region of a second conductivity type, whereby said first and said second junction region are part of respectively a first and a second bitline. A select gate is provided which is part of a wordline running perpendicular to said first and said second bitline. Read, write and erase functions for each cell make use of only two polysilicon layers which simplifies manufacture and each memory cell has at least two locations for storing a charge representing at least one bit.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: May 24, 2005
    Assignees: Interuniversitair Microelektronica Centrum (IMEC), Infineon AG
    Inventors: Jan Van Houdt, Luc Haspeslagh
  • Patent number: 6891215
    Abstract: A method of forming a capacitor includes forming first and second capacitor electrodes over a substrate. A capacitor dielectric region is formed intermediate the first and second capacitor electrodes, and includes forming a silicon nitride comprising layer over the first capacitor electrode. A silicon oxide comprising layer is formed over the silicon nitride comprising layer. The silicon oxide comprising layer is exposed to an activated nitrogen species generated from a nitrogen-containing plasma effective to introduce nitrogen into at least an outermost portion of the silicon oxide comprising layer. Silicon nitride is formed therefrom effective to increase a dielectric constant of the dielectric region from what it was prior to said exposing. Capacitors and methods of forming capacitor dielectric layers are also disclosed.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: May 10, 2005
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Scott J. DeBoer
  • Patent number: 6862041
    Abstract: A circuit for processing charge detecting signals transferred to a floating diffusion amplifier from a charge coupled device includes a first node connected to the floating diffusion amplifier; a first enhancement type FET connected in series between a first fixed-voltage supply line for supplying a first fixed voltage and an output terminal, where the first enhancement type FET has a first gate connected to the first node; and a second enhancement type FET connected in series between a second fixed-voltage supply line for supplying a second fixed voltage and the output terminal, where the second enhancement type FET has a second gate supplied with a third fixed voltage which is different in potential from the second fixed voltage.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: March 1, 2005
    Assignee: NEC Electronics Corporation
    Inventor: Yoshizumi Haraguchi
  • Patent number: 6847078
    Abstract: A non-volatile memory device comprises an active region disposed in a predetermined region of a semiconductor substrate, a selection gate electrode crossing over the active region, and a floating gate electrode disposed on the active region parallel to the selection gate electrode and spaced apart from the selection gate electrode. The non-volatile memory device further comprises a tunnel insulating layer intervening between the active region and each of the selection gate electrode and the floating gate electrode, a separation insulating pattern intervening between the selection gate electrode and the floating gate electrode, an erasing gate electrode disposed over the floating gate electrode and crossing over the active region parallel to the selection gate electrode, and an erasing gate insulating layer intervening between the erasing gate electrode and the floating gate electrode. The selection gate electrode is formed without a photoresist pattern.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: January 25, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Suk Choi, Og-Hyun Lee
  • Patent number: 6828607
    Abstract: A multiple independent bit Flash memory cell has a gate that includes a first oxide layer, a discontinuous nitride layer on the first oxide layer, a second oxide layer on the discontinuous nitride layer and the first oxide layer, and a polysilicon layer on the second oxide layer. The discontinuous nitride layer has regions residing at different portions of the layer. These portions are separated by the second oxide layer. Thus, with a smaller channel length, charge that otherwise would migrate from one region to the other and/or strongly influence its neighboring it is blocked/impeded by the second oxide layer. In this manner, the potential for charge sharing between the regions is reduced, and a higher density chip multiple independent bit Flash memory cells may be provided.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: December 7, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mario M. Pelella, Amy C. Tu, Richard K. Klein
  • Patent number: 6815791
    Abstract: A semiconductor detector of electromagnetic radiation which utilizes a dual-purpose electrode which extends significantly beyond the edge of a photodiode. This configuration reduces the sensitivity of device performance on small misalignments between manufacturing steps while reducing dark currents, kTC noise, and “ghost” images. The collection-mode potential of the dual-purpose electrode can be adjusted to achieve charge confinement and enhanced collection efficiency, reducing or eliminating the need for an additional pinning layer. Finally, the present invention enhances the fill factor of the photodiode by shielding the photon-created charge carriers formed in the substrate from the potential wells of the surrounding circuitry.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: November 9, 2004
    Assignee: FillFactory
    Inventor: Bart Dierickx
  • Patent number: 6812515
    Abstract: A non-volatile memory cell includes a first insulating layer over a substrate region, and a floating gate. The floating gate includes a first polysilicon layer over the first insulating layer and a second polysilicon layer over and in contact with the first polysilicon layer. The first polysilicon layer has a predetermined doping concentration and the second polysilicon layer has a doping concentration which decreases in a direction away from an interface between the first and second polysilicon layers. A second insulating layer overlies and is in contact with the second polysilicon layer. A control gate includes a third polysilicon layer over and in contact with the second insulating layer, and a fourth polysilicon layer over and in contact with the third polysilicon layer. The fourth polysilicon layer has a predetermined doping concentration, and the third polysilicon layer has a doping concentration which decreases in a direction away from an interface between the third and fourth polysilicon layers.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: November 2, 2004
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Peter Rabkin, Hsingya Arthur Wang, Kai-Cheng Chou
  • Patent number: 6806517
    Abstract: A notched gate SONOS transistor includes: a substrate having source/drain regions; a gate insulator layer on the substrate between the source/drain regions; a notched gate structure, on the gate insulator leyer, having at least one notch; and at least one ONO wedge structure in the at least one notch, respectively, of the gate structure.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: October 19, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang Su Kim, Nae-In Lee, Geum-Jong Bae, Ki Chul Kim, Hwa Sung Rhee
  • Publication number: 20040183106
    Abstract: A notched gate SONOS transistor includes: a substrate having source/drain regions; a gate insulator layer on the substrate between the source/drain regions; a notched gate structure, on the gate insulator layer, having at least one notch; and at least one ONO wedge structure in the at least one notch, respectively, of the gate structure.
    Type: Application
    Filed: March 17, 2003
    Publication date: September 23, 2004
    Inventors: Sang Su Kim, Nae-In Lee, Geum-Jong Bae, Ki Chul Kim, Hwa Sung Rhee
  • Patent number: 6794711
    Abstract: Non-volatile memory devices according to embodiments of the invention can include, for example, a semiconductor substrate, a source region, a drain region, an impurity region, a vertical structure, a control gate insulating layer, a control gate electrode, a gate insulating layer, and a gate electrode. The impurity region is in a floating state between the source region and the drain region. The vertical structure is formed of a tunneling layer, a charge trapping layer, and a blocking layer sequentially stacked between the source region and the impurity region. The control gate insulating layer is between the source region and the impurity region and adjacent to the vertical structure. The control gate electrode is formed on the vertical structure and the control gate insulating layer. The gate insulating layer is between the impurity region and the drain region. The gate electrode is formed on the gate insulating layer.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: September 21, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-taeg Kang, Jeong-uk Han, Soeng-gyun Kim
  • Publication number: 20040169209
    Abstract: A new kind of pixel is formed of two floating diffusions of different sizes and different conductivity type. The two floating diffusions have different image characteristics, and hence form a knee-shaped slope.
    Type: Application
    Filed: January 16, 2004
    Publication date: September 2, 2004
    Inventors: Vladimir Berezin, Eric R. Fossum
  • Patent number: 6784041
    Abstract: A NAND type semiconductor device is disclosed, in which a first insulating film embedded between the memory cell gates and between the memory cell gates and the selecting gate does not contain nitrogen as a major component, a second insulating film is formed on the first insulating film, and an interlayer insulating film is formed on the second insulating film whose major component is different from a manor component of the second insulating film.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: August 31, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuji Takeuchi, Masayuki Ichige, Akira Goda
  • Publication number: 20040159863
    Abstract: Structures and methods for programmable array type logic and/or memory devices with graded composition metal oxide tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include a floating gate transistor. The floating gate has a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposes the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate and is separated from the floating gate by a compositionally graded mixed metal oxide tunnel barrier intergate insulator.
    Type: Application
    Filed: February 18, 2004
    Publication date: August 19, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Jerome M. Eldridge, Kie Y. Ahn, Leonard Forbes
  • Patent number: 6773974
    Abstract: A self aligned method of forming a semiconductor memory array of floating gate memory cells in a semiconductor substrate, along with strap regions interlaced within the array. The array includes word lines and source lines that connect together control gates and source regions from memory cells contained in row within the array. The strap regions include word line strap cells through which the word lines traverse, wherein the word lines completely traverse across the strap regions, and source line strap cells in which the source lines terminate without completely traversing across the strap region. A first plurality of conductive metal contacts are each connected to one of the word lines in one of the word line strap cells. A second plurality of conductive metal contacts are each connected to one of the source lines in one of the source line strap cells.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: August 10, 2004
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Chih Hsin Wang, Amitay Levi
  • Patent number: 6759709
    Abstract: A nonvolatile semiconductor memory device including a semiconductor substrate 1, a plurality of memory cells 1a on the semiconductor substrate including transistors having floating gate electrodes and control gate electrodes. Source lines 30 are formed in a self-alignment manner with respect to a control gate electrodes. The surface of the semiconductor substrate 1 has such a periodical unevenness along the source lines 30 which has a diffusion layer 30a that an impurity is distributed along the surface of the semiconductor substrate 1 and a buried diffusion layer 30b that an impurity is distributed at a position deeper than said diffusion layer 30a. The buried diffusion layer 30b connects a plurality of portions of the diffusion layers 30a under the bottom surface 5b of the recess portion 5 to each other.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: July 6, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Shu Shimizu
  • Patent number: 6753570
    Abstract: A non-volatile memory device includes insulators between floating gates. The insulators each include both a lower trench-fill insulator portion in a trench in the substrate, and an upper protruding portion that protrudes from the substrate. Floating gates extend between the protruding portions of adjacent insulators, and are in contact with the protruding portions of the adjacent insulators. An interpoly dielectric overlies the floating gates, and a control gate overlies the interpoly dielectric. The insulators and the floating gates may make a substantially planar surface for the interpoly dielectric, which may themselves be planar.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: June 22, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nicholas H. Tripsas, Kuo-Tung Chang, Mark T. Ramsbey
  • Patent number: 6747308
    Abstract: An EEPROM (100) comprises a source region (122), a drain region (120); and a polysilicon layer (110). The polysilicon layer (110) comprises a floating gate comprising at least one polysilicon finger (112A-112E) operatively coupling the source region (122) and drain region (120) and a control gate comprising at least one of the polysilicon fingers (112A-112E) capacitively coupled to the floating gate. The EEPROM (100) has a substantially reduce area compared to prior art EEPROM since an n-well region is eliminated.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: June 8, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Jozef C. Mitros, Lily Springer, Roland Bucksch
  • Patent number: 6744068
    Abstract: An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: June 1, 2004
    Assignee: California Institute of Technology
    Inventors: Eric R. Fossum, Sunetra Mendis, Sabrina E. Kemeny
  • Patent number: 6724029
    Abstract: A programmable memory cell structure that includes a pair of memory cells is provided. Each pair of memory cells includes a shared control gate and first and second floating gates present about the shared control gate. The first and second floating gates have respective gate regions disposed on respective sides of the control gate. Dielectric structures are present between the control gate and respective ones of the gate regions of the floating gates. The control gate and gates of the first and second floating gates are formed within a single lithographic square.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: April 20, 2004
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, Chung H. Lam, Jack A. Mandelman, Carl J. Radens, William R. Tonti
  • Patent number: 6720612
    Abstract: A NAND type semiconductor device is disclosed, in which a first insulating film embedded between the memory cell gates and between the memory cell gates and the selecting gate does not contain nitrogen as a major component, a second insulating film is formed on the first insulating film, and an interlayer insulating film is formed on the second insulating film whose major component is different from a major component of the second insulating film.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 13, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuji Takeuchi, Masayuki Ichige, Akira Goda
  • Patent number: 6720592
    Abstract: The present invention is directed to a photogate based pixel cell with an electronic shutter and which provides relatively low lag and high sensitivity for sensing infrared light reflected from objects. Additionally, this invention eliminates the need for a transfer gate in the pixel cell. In one embodiment, the reset and shutter transistors are implemented with PMOS transistors so that the pixel cell can have an increased dynamic range and a relatively high voltage swing. In another embodiment, the actual size of each pixel cell can be further reduced when the reset gate and the electronic shutter are implemented with NMOS transistors. Also, when a P− well is not disposed beneath the photogate, the ability of the pixel cell to sense infrared light is improved. Correlated double sampling can be used to improve the accuracy of the signal read out from the pixel cell.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: April 13, 2004
    Assignee: National Semiconductor Corp.
    Inventors: Willem Johannes Kindt, Philipp Lindorfer
  • Publication number: 20040061148
    Abstract: A one-transistor, floating-body (1T/FB) dynamic random access memory (DRAM) cell is provided that includes a field-effect transistor fabricated using a process compatible with a standard CMOS process. The field-effect transistor includes a source region and a drain region of a first conductivity type and a floating body region of a second conductivity type, opposite the first conductivity type, located between the source region and the drain region. A buried region of the first conductivity type is located under the source region, drain region and floating body region. The buried region helps to form a depletion region, which is located between the buried region and the source region, the drain region and the floating body region. The floating body region is thereby isolated by the depletion region. A bias voltage can be applied to the buried region, thereby controlling leakage currents in the 1T/FB DRAM cell.
    Type: Application
    Filed: September 30, 2003
    Publication date: April 1, 2004
    Applicant: Monolithic System Technology, Inc.
    Inventor: Fu-Chieh Hsu
  • Patent number: 6713813
    Abstract: A field effect transistor device and a method for making a field effect transistor device are disclosed. The field effect transistor device includes a stripe trench extending from the major surface of a semiconductor substrate into the semiconductor substrate to a predetermined depth. The stripe trench contains a semiconductor material of the second conductivity type to form a PN junction at an interface formed with the semiconductor substrate.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: March 30, 2004
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Bruce D. Marchant
  • Patent number: 6703653
    Abstract: The present invention relates to a photodiode of an image sensor. Particularly, the photodiode is formed on a substrate so that an occupying area of a unit pixel of the image sensor is reduced.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: March 9, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chae-Sung Kim
  • Patent number: 6661042
    Abstract: A one-transistor, floating-body (1T/FB) dynamic random access memory (DRAM) cell is provided that includes a field-effect transistor fabricated using a process compatible with a standard CMOS process. The field-effect transistor includes a source region and a drain region of a first conductivity type and a floating body region of a second conductivity type, opposite the first conductivity type, located between the source region and the drain region. A buried region of the first conductivity type is located under the source region, drain region and floating body region. The buried region helps to form a depletion region, which is located between the buried region and the source region, the drain region and the floating body region. The floating body region is thereby isolated by the depletion region. A bias voltage can be applied to the buried region, thereby controlling leakage currents in the 1T/FB DRAM cell.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: December 9, 2003
    Assignee: Monolithic System Technology, Inc.
    Inventor: Fu-Chieh Hsu
  • Patent number: 6639710
    Abstract: An adaptive optics system is disclosed whereby at least one mirror in the system is manipulated using electrostatic force to selectively attract or repel a portion of the mirror to or from a particular electrode, respectively. This attraction or repulsion is accomplished by mechanically coupling a bound charge layer of dielectric material to at least one surface of the mirror and then placing a voltage across an electrode in an array of electrodes positioned near that mirror. The charge in the dielectric material combined with a suitable electric field makes it possible to attract portions of the mirror in one instant and then, by changing the sign on the voltage placed across the electrode, to repel those same portions in the next instant.
    Type: Grant
    Filed: September 29, 2001
    Date of Patent: October 28, 2003
    Assignees: Lucent Technologies Inc., Agere Systems Guardian Corp.
    Inventors: Peter Kurczynski, John Anthony Tyson
  • Publication number: 20030168677
    Abstract: A one-transistor, floating-body (1T/FB) dynamic random access memory (DRAM) cell is provided that includes a field-effect transistor fabricated using a process compatible with a standard CMOS process. The field-effect transistor includes a source region and a drain region of a first conductivity type and a floating body region of a second conductivity type, opposite the first conductivity type, located between the source region and the drain region. A buried region of the first conductivity type is located under the source region, drain region and floating body region. The buried region helps to form a depletion region, which is located between the buried region and the source region, the drain region and the floating body region. The floating body region is thereby isolated by the depletion region. A bias voltage can be applied to the buried region, thereby controlling leakage currents in the 1T/FB DRAM cell.
    Type: Application
    Filed: March 11, 2002
    Publication date: September 11, 2003
    Inventor: Fu-Chieh Hsu
  • Patent number: 6600513
    Abstract: A charge transfer device of the present invention includes: a floating diffusion amplifier type charge detecting portion containing a reset gate and a reset drain; and a source follower circuit including a detecting transistor having substantially the same potential profile as a potential profile of the reset gate of the charge detecting portion and a load transistor connected to the detecting transistor, wherein an output from the source follower circuit is supplied to the reset drain of the charge detecting portion, a first voltage, which is generated by resistance-dividing a power-supply voltage to be supplied to a drain of the source follower circuit, is commonly applied to each gate of the detecting transistor and the load transistor, a second voltage, which is generated by resistance-dividing the power-supply voltage, is applied to the reset gate of the charge detecting portion via a clamp circuit, whereby the charge transfer device is controlled in such a manner that a reset operation is always perform
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: July 29, 2003
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Takehiko Ozumi
  • Patent number: 6586824
    Abstract: An electronic device, such as a sensor die, is packaged by first forming a hole through a substrate. The hole is made large enough to position the entire electronic device within the hole. A tape is then applied to the second surface of the substrate to cover a second side of the hole, thereby creating a tape surface at the bottom of the hole. The electronic device is then positioned within the hole such that the electronic device is in contact with, and adhered to, the tape surface at the bottom of the hole. Electronic connections are made between the electronic device and the substrate and a layer of encapsulant is applied. In one embodiment, the electronic device is a sensor die and an optical element is positioned over an active region of the sensor die before the encapsulant is applied. The encapsulant then surrounds and holds the optical element in position over the active region of the sensor die.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: July 1, 2003
    Assignee: Amkor Technology, Inc.
    Inventors: Thomas P. Glenn, Steven Webster, Roy Dale Hollaway
  • Patent number: 6587146
    Abstract: An active pixel sensor having a plurality of pixels with at least one pixel comprising: a photodetector operatively connected to a first electrical node; a pixel signal coupling capacitor having a first side connected to the first electrical node and a second side connected to a second electrical node; a reset transistor having a first source that is connected on the first electrical node and a second source that it connected to the second electrical node; a reset gate on the reset transistor connected to a reset control buss and a drain on the reset transistor connected to a voltage supply buss; an amplifier operatively connected to the second electrical node; and a select transistor operatively coupled to the amplifier. The preferred embodiment of the invention has a gate electrode layer formed over at least a portion of the photodetector and functions also as the gate of the transistor amplifier.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: July 1, 2003
    Assignee: Eastman Kodak Company
    Inventor: Robert M. Guidash
  • Patent number: 6570618
    Abstract: When the reset gate electrode of the charge detecting section is driven with the reset pulse of three levels, it is difficult to realize the timing control when high speed operation is required. In the charge detecting section of the CCD solid-state image sensing apparatus having wide dynamic range, two reset gate electrodes, for example, are arranged in vertical between the FD area and RD area, and different reset pulses &phgr;RG1, &phgr;RG2 are applied to these reset gate electrodes to realize the reset operation, clipping operation and adding operation through the driving by the 2-level pulse.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: May 27, 2003
    Assignee: Sony Corporation
    Inventor: Mayuki Hashi
  • Patent number: 6566706
    Abstract: A self aligned method of forming a semiconductor memory array of floating gate memory cells in a semiconductor substrate, along with strap regions interlaced within the array. The array includes word lines and source lines that connect together control gates and source regions from memory cells contained in row within the array. The strap regions include word line strap cells through which the word lines traverse, wherein the word lines completely traverse across the strap regions, and source line strap cells in which the source lines terminate without completely traversing across the strap region. A first plurality of conductive metal contacts are each connected to one of the word lines in one of the word line strap cells. A second plurality of conductive metal contacts are each connected to one of the source lines in one of the source line strap cells.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: May 20, 2003
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Chih Hsin Wang, Amitay Levi
  • Patent number: 6566695
    Abstract: In a MOSFET, a source region, a drain region and a channel region disposed between the source region and the drain region are provided. And the width W(x) of the channel region is changed according to the following mathematical equation.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: May 20, 2003
    Assignee: NEC Electronics Corporation
    Inventor: Shigetaka Kumashiro
  • Patent number: 6563733
    Abstract: A semiconductor memory includes a plurality of memory cells arranged along rows and columns, each cell having a floating gate, a drain region, a source region, a program gate terminal, and a select gate terminal. The program gate terminals of the cells along each row of cells are connected together forming a continuous program gate line. The select gate terminals of the cells along each row of cells are connected together forming a continuous select gate line. The source regions of the cells along each row of cells are connected together forming a continuous source line. The cells along each column are divided into a predesignated number of groups, and the drain regions of the cells in each group are connected to a local bitline extending across the cells in the group of cells. A global bitline extends along every two columns of cells, and is configured to selectively provide electrical connection to the local bitlines along the corresponding two columns of cells.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: May 13, 2003
    Assignee: Winbond Electronics Corporation
    Inventors: Chun-Mai Liu, Albert Kordesch, Ming-Bing Chang
  • Patent number: 6555842
    Abstract: An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: April 29, 2003
    Assignee: California Institute of Technology
    Inventors: Eric R. Fossum, Sunetra Mendis, Sabrina E. Kemeny
  • Patent number: 6537862
    Abstract: In a method of fabricating a semiconductor device having a gate all around(GAA) structure transistor, an SOI substrate having a SOI layer, a buried oxide layer, and a bottom substrate is prepared. The SOI layer is patterned to form an active layer pattern. An etch stopping layer having an etch selectivity with respect to the buried oxide layer and the active layer pattern is stacked on the active layer pattern. The etch stopping layer pattern is patterned and removed at the gate region crossing the active layer pattern at the channel region, to form an etch stopping layer pattern and to expose the buried oxide layer. The buried oxide layer is isotropically etched using the etch stopping layer pattern as an etch mask to form a cavity at the channel region bottom of the active layer pattern. A conductive material fills the cavity and a space between the etch stopping layer pattern at the gate region. In this manner, the number of photolithography processes required for forming the device is reduced.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: March 25, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seung-Heon Song
  • Patent number: 6525355
    Abstract: A solid-state image sensor compatible with a CMOS manufacturing process outputs the variation of the electric potential according to the number of accumulated electrons of a photoelectric conversion part, however, if the parasitic capacity of the photoelectric conversion part is C and the output voltage is V, V=Q/C and the solid-state image sensor has a defect that when the area of the photoelectric conversion part is simply increased to enhance the sensitivity, the parasitic capacity C is increased in proportion and the variation V of the electric potential by signal charges cannot be increased to an expected degree.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: February 25, 2003
    Assignee: NEC Corporation
    Inventors: Masayuki Furumiya, Yasutaka Nakashiba
  • Patent number: 6518607
    Abstract: A new High Dynamic Range charge detection concept useful for CCD and Active Pixel CMOS image sensors uses at least one transistor operating in a punch through mode for the charge detection node reset. The punch through operation significantly reduces the reset feed through which leads to a higher voltage swing available on the node for the signal. This in turn allows building smaller and thus more sensitive charge detection nodes. The undesirabe artifacts, associated with the incomplete reset that are induced by the punch through operation, are completely removed by incorporating the CDS signal processing method into the signal processing chain. The incomplete reset artifact removal by the CDS technique is extended to all other resetting concepts that are modeled by a large reset time constant. The punch through concept is suitable for resetting Floating Diffusion charge detection nodes as well as Floating Gate charge detection nodes.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: February 11, 2003
    Assignee: Isetex, Inc.
    Inventor: Jaroslav Hynecek
  • Patent number: 6515318
    Abstract: A charge transfer device is provided which is capable of reducing a reset field-through noise in a stable manner without being affected by characteristics of transistors and without occurrence of a mustache-shaped pulse-like noise. The charge transfer device is made up of a floating diffusion region used to convert a signal charge transferred from a CCD (Charge Coupled Device) into a voltage, resetting unit used to eject the signal charge accumulated in the floating diffusion region in response to a reset pulse, a first stage source follower used to current-amplify the voltage and second stage source follower in which load is changed in response to the reset pulse and which is used to current-amplify an output voltage of the first stage source follower.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: February 4, 2003
    Assignee: NEC Corporation
    Inventor: Shiro Tsunai
  • Patent number: 6512254
    Abstract: In a solid-state image pickup device, a transfer register 10 is provided with an overflow control gate OFCG and an overflow drain OFD, and the gate electrode 12A of the overflow control gate OFCG is formed so as to be superposed on the lower-layer electrodes St1, 13 of the transfer register 10 side and the overflow drain OFD side.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: January 28, 2003
    Assignee: Sony Corporation
    Inventor: Satoshi Yoshihara
  • Patent number: 6510193
    Abstract: By providing a semiconductor device including a charge transfer channel to one end of which electric charges supplied from a charge supply unit are input, and which includes a plurality of branching regions at an intermediate portion, a plurality of gate electrodes provided on the corresponding branching regions of the charge transfer channel via insulating films, an input-signal supply unit for supplying each of the gate electrodes with an input signal, a transfer electrode, provided on the charge transfer channel via a gate insulating film, for performing control so that the electric charges are transferred in a predetermined direction within the charge transfer channel, a conversion unit for coverting the transferred electric charges into a voltage, and a sense amplifier to which an output signal from the conversion unit is input, and by providing a semiconductor circuit which includes such a device, it is possible to reduce the scale of circuitry, increase the calculation speed, and reduce electric power
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: January 21, 2003
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tetsunobu Kochi, Mamoru Miyawaki
  • Patent number: 6489179
    Abstract: A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: December 3, 2002
    Assignee: The Regents of the University of California
    Inventors: Alan D. Conder, Bruce K. F. Young
  • Patent number: 6486503
    Abstract: An active pixel cell includes electronic shuttering capability. The cell can be “shuttered” to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.
    Type: Grant
    Filed: January 22, 1997
    Date of Patent: November 26, 2002
    Assignee: California Institute of Technology
    Inventor: Eric R. Fossum
  • Publication number: 20020163020
    Abstract: A retrograde and periphery well structure for a CMOS imager is disclosed which improves the quantum efficiency and signal-to-noise ratio of the photosensing portion imager. The retrograde well comprises a doped region with a vertically graded dopant concentration that is lowest at the substrate surface, and highest at the bottom of the well. A single retrograde well may have a single pixel sensor cell, multiple pixel sensor cells, or even an entire array of pixel sensor cells formed therein. The highly concentrated region at the bottom of the retrograde well repels signal carriers from the photosensor so that they are not lost to the substrate, and prevents noise carriers from the substrate from diffusing up into the photosensor. The periphery well contains peripheral logic circuitry for the imager. By providing retrograde and peripheral wells, circuitry in each can be optimized. Also disclosed are methods for forming the retrograde and peripheral well.
    Type: Application
    Filed: June 27, 2002
    Publication date: November 7, 2002
    Inventors: Howard E. Rhodes, Mark Durcan
  • Publication number: 20020125508
    Abstract: Disclosed is a container capacitor structure and method of constructing it. An etch mask and etch are used to expose portions of an exterior surface of electrode (“bottom electrodes”) of the container capacitor structure. The etch provides a recess between proximal pairs of container capacitor structures, which recess is available for forming additional capacitance. Accordingly, a capacitor dielectric and a top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Advantageously, surface area common to both the first electrode and second electrodes is increased over using only the interior surface, which provides additional capacitance without a decrease in spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location.
    Type: Application
    Filed: May 3, 2002
    Publication date: September 12, 2002
    Applicant: Micron Technology, Inc.
    Inventors: D. Mark Durcan, Trung T. Doan, Roger R. Lee, Fernando Gonzalez, Er-Xuan Ping
  • Patent number: 6437378
    Abstract: A charge coupled device includes an integrated circuit substrate and a transfer circuit, in the integrated circuit substrate, that transfers charge signals in the charge coupled device to provide transferred charge signals. An amplifier, in the integrated circuit substrate and electrically coupled to the transfer circuit, amplifies the transferred charge signals to generate amplified charge signals. Related methods are also discussed.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: August 20, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sang-Sik Park
  • Patent number: 6433373
    Abstract: A CMOS image sensor and a fabrication method thereof are disclosed. The sensor has a photo diode region being extended to a lower portion of an active region in which a transfer gate, sensing gate and reset gate are formed and therefrom the sensitivity of the CMOS image sensor is enhanced. The sensor of the present invention includes a unit cell region having a first region and a second region adjacent to the first region, a PDN region having a first PDN region which is extended from the surface in the first region into the bulk in a direction perpendicular to the surface in an accompanying drawing and a second PDN region which is extended from the lower portion of the first PDN region into the lower portion of the second region in a horizontal direction in the accompanying drawing, and a floating diffusion region and a reset region which are formed in a surface of the second region above the second PDN region.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: August 13, 2002
    Assignee: Hynix Semiconductor Inc.
    Inventors: Seo Kyu Lee, Hang Kyoo Kim, Jung Soon Shin
  • Patent number: 6426238
    Abstract: A charge transfer device is provided, capable of preventing degradation of the charge transfer efficiency when the channel width becomes narrower due to the narrow channel effect. The charge transfer device of the present invention is obtained by forming a charge transfer electric field in a channel below a boundary portion between a terminal storage electrode and a terminal barrier electrode, which constitute a pair of charge transfer electrodes located closest to the output electrode, to be higher than a charge transfer electric field in a channel below a boundary portions of pairs of storage electrodes and barrier electrodes, which constitute pairs of storage electrodes and barrier electrodes other than the pair of the terminal electrodes.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: July 30, 2002
    Assignee: NEC Corporation
    Inventor: Michihiro Morimoto
  • Patent number: 6420738
    Abstract: An electric charge detector includes an N-type semiconductor substrate 10 and a P-type well region 9 formed on the semiconductor substrate 10. An N-type well region 2 is formed on the P-type well region 9. A potential-change detection means is connected to the N-type well region 2 to detect a variation in surface potential of the N-type well region 2. The P-type diffused layer 11 is formed on a surface of the N-type well region 2.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: July 16, 2002
    Assignee: NEC Corporation
    Inventor: Tetsuji Kimura