Capacitor For Signal Storage In Combination With Non-volatile Storage Means Patents (Class 257/298)
  • Patent number: 7999296
    Abstract: A nonvolatile memory integrated circuit has a semiconductor substrate and a nonvolatile memory device on the semiconductor substrate. The device has a transistor and a capacitor on the semiconductor substrate, and a shared floating gate connecting the gate regions of the transistor and the capacitor. The transistor has at least a doping region defining the source and drain regions, as well as three other doping regions overlapping the source and drain regions. Also disclosed are a nonvolatile memory circuit with multiple such nonvolatile memory device, and methods for making the nonvolatile memory circuit with one or more such nonvolatile memory devices.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: August 16, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Cheng-Chi Lin, Shih-Chin Lien, Chin-Pen Yeh, Shyi-Yuan Wu
  • Publication number: 20110186919
    Abstract: An integrated circuit is provided, which comprises at least one first group each having at least one analog unit; and at least one second group each having at least one electronically settable semi-permanent switching unit coupled to the at least analog unit of the first group for trimming the first group and having at least one many-times-programmable and non-volatile cell (MTP). Each many-times-programmable cell (MTP) comprises at least one MOS transistor having a floating gate (FG) with a tunnel oxide (TO) and a first capacitor coupled to the floating gate (FG). The capacitance of the first capacitor is substantially larger than a gate-channel capacitance of the MOS transistor.
    Type: Application
    Filed: July 14, 2009
    Publication date: August 4, 2011
    Applicant: NXP B.V.
    Inventors: Wibo D. Van Noort, Theodore J. Letavic, Francis Zaato
  • Publication number: 20110176368
    Abstract: A multiple time programmable (MTP) memory cell, in accordance with an embodiment, includes a floating gate PMOS transistor, a high voltage NMOS transistor, and an n-well capacitor. The floating gate PMOS transistor includes a source that forms a first terminal of the memory cell, a drain and a gate. The high voltage NMOS transistor includes a source connected to ground, an extended drain connected to the drain of the PMOS transistor, and a gate forming a second terminal of the memory cell. The n-well capacitor includes a first terminal connected to the gate of the PMOS transistor, and a second terminal forming a third terminal of the memory cell. The floating gate PMOS transistor can store a logic state. Combinations of voltages can be applied to the first, second and third terminals of the memory cell to program, inhibit program, read and erase the logic state.
    Type: Application
    Filed: March 31, 2011
    Publication date: July 21, 2011
    Applicant: INTERSIL AMERICAS INC.
    Inventors: Alexander Kalnitsky, Michael Church
  • Publication number: 20110169064
    Abstract: A read transistor for single poly non-volatile memory using a body contacted SOI transistor and a method of manufacturing the same is provided. The non-volatile random access memory is formed in silicon on insulator (SOI). The non-volatile random access memory includes a read field effect transistor (FET) having a body contact formed in the silicon of the SOI. The body contact is in electrical contact with a diffusion region under a gate of the read FET.
    Type: Application
    Filed: January 11, 2010
    Publication date: July 14, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar
  • Patent number: 7977722
    Abstract: Non-volatile memory with programmable capacitance is disclosed. Illustrative data memory units include a substrate including a source region and a drain region. A first insulating layer is over the substrate. A second insulating layer is over the substrate and between the source region and drain region. A solid electrolyte layer is between the first insulating layer and second insulating layer. The solid electrolyte layer has a capacitance that is controllable between at least two states. A first electrode is electrically coupled to a first side of the solid electrolyte layer and is electrically coupled to a voltage source. A second electrode is electrically coupled to a second side of the solid electrolyte layer and is electrically coupled to the voltage source. Multi-bit memory units are also disclosed.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: July 12, 2011
    Assignee: Seagate Technology LLC
    Inventors: Xuguang Wang, Shuiyuan Huang, Dimitar V. Dimitrov, Michael Xuefei Tang, Song S. Xue
  • Patent number: 7960813
    Abstract: A programmable resistance memory element and method of forming the same. The memory element includes a first electrode, a dielectric layer over the first electrode and a second electrode over the dielectric layer. The dielectric layer and the second electrode each have sidewalls. A layer of programmable resistance material, e.g., a phase change material, is in contact with the first electrode and at least a portion of the sidewalls of the dielectric layer and the second electrode. Memory devices including memory elements and systems incorporating such memory devices are also disclosed.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: June 14, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 7960770
    Abstract: A lower electrode (22) is provided on a semiconductor chip substrate (26). A lower electrode (22) is covered with a first interlayer insulating layer (27) from above. A first contact hole (28) is provided on the lower electrode (22) to penetrate through the first interlayer insulating layer (27). A low-resistance layer (29) forming the resistance variable layer (24) is embedded to fill the first contact hole (28). A high-resistance layer (30) is provided on the first interlayer insulating layer (27) and the low-resistance layer (29). The resistance variable layer (24) is formed by a multi-layer resistance layer including a single layer of the high-resistance layer (30) and a single layer of the low-resistance layer (29). The low-resistance layer (29) forming the memory portion (25) is isolated from at least its adjacent memory portion (25).
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: June 14, 2011
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Takeshi Takagi, Yoshio Kawashima, Koji Arita
  • Patent number: 7960771
    Abstract: A memory element is formed by providing an organic compound between a pair of upper and lower electrodes. However, when the electrode is formed over a layer containing an organic compound, a temperature is limited because the layer containing the organic compound can be influenced depending on a temperature for forming the electrode. A forming method for the electrode is limited due to this limitation of a temperature. Therefore, there are problems that an expected electrode cannot be formed, and miniaturization of an element is inhibited. A semiconductor device includes a memory element and a switching element which are provided over a substrate having an insulating surface. The memory element includes first and second electrodes, and a layer containing an organic compound, which are provided on the same plane. A current flows from the first electrode to the second electrode. The first electrode is electrically connected to the switching element.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: June 14, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Takehisa Sato
  • Patent number: 7955870
    Abstract: The present invention relates generally to semiconductor fabrication and particularly to fabricating magnetic tunnel junction devices. In particular, this invention relates to a method for using the dielectric layer in tunnel junctions as an etch stop layer to eliminate electrical shorting that can result from the patterning process.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: June 7, 2011
    Assignee: OEM Group Inc.
    Inventor: Robert A. Ditizio
  • Publication number: 20110127596
    Abstract: A memory array is provided that includes a transistor having two active gates sharing a source, a drain, and a channel of the transistor. One of the active gates may be coupled to a volatile memory portion of a memory cell, such as a DRAM cell, and the other active gate may be coupled to a non-volatile memory portion, for example, a charge storage node such as a SONOS cell. Methods of operating the memory array are provided that include transferring data from the volatile memory portions to the non-volatile memory portions, transferring data from the non-volatile memory portions to the volatile memory portions, and erasing the non-volatile memory portions of a row of memory cells.
    Type: Application
    Filed: February 11, 2011
    Publication date: June 2, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Howard C. Kirsch, Charles Ingalls, Werner Juengling
  • Publication number: 20110122672
    Abstract: A non-volatile semiconductor memory device having a memory cell in which operating potentials are few and the scale of the peripheral circuitry is reduced includes a select transistor having a source/drain on both sides of a channel of a semiconductor substrate and having a gate electrode disposed on the channel via a thick gate insulating film; an element isolation region formed on the semiconductor substrate in an area adjacent to the select transistor; an antifuse adjacent to the element isolation region, having a lower electrode formed on the semiconductor substrate and having an upper electrode disposed on the semiconductor substrate in an area between the element isolation region and lower electrode via a thin gate insulating film; and a connection contact electrically connecting the source and upper electrode and contacting the source and the upper electrode.
    Type: Application
    Filed: January 26, 2011
    Publication date: May 26, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Noriaki Kodama, Kenichi Hidaka, Hiroyuki Kobatake, Takuji Onuma
  • Publication number: 20110110156
    Abstract: There is provided a technology which can allow a semiconductor chip formed with a nonvolatile memory to be sufficiently reduced in size. There is also provided a technology which can ensure the reliability of the nonvolatile memory. In a memory cell of the present invention, a boost gate electrode is formed over a control gate electrode via an insulating film. The boost gate electrode has the function of boosting a voltage applied to a memory gate electrode through capacitive coupling between the boost gate electrode and the memory gate electrode. That is, during a write operation or an erase operation to the memory cell, a high voltage is applied to the memory gate electrode and, to apply the high voltage to the memory gate electrode, the capacitive coupling using the boost gate electrode is subsidiarily used in the present invention.
    Type: Application
    Filed: October 23, 2010
    Publication date: May 12, 2011
    Inventors: Yoshiyuki KAWASHIMA, Takashi Hashimoto
  • Patent number: 7939872
    Abstract: A multi-dielectric film including at least one first dielectric film that is a composite film made of zirconium-hafnium-oxide and at least one second dielectric film that is a metal oxide film made of amorphous metal oxide. Adjacent ones of the dielectric films are made of different materials.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 10, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Cheol Lee, Sang-Yeol Kang, Ki-Vin Lim, Hoon-Sang Choi, Eun-Ae Chung
  • Publication number: 20110095348
    Abstract: Technique of improving a manufacturing yield of a semiconductor device including a non-volatile memory cell in a split-gate structure is provided. A select gate electrode of a CG shunt portion is formed so that a second height d2 from the main surface of the semiconductor substrate of the select gate electrode of the CG shunt portion positioned in the feeding region is lower than a first height d1 of the select gate electrode from the main surface of the semiconductor substrate in a memory cell forming region.
    Type: Application
    Filed: October 27, 2010
    Publication date: April 28, 2011
    Inventors: Hiraku CHAKIHARA, Yasushi Ishii
  • Publication number: 20110079835
    Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 7, 2011
    Inventors: Mitsuhiro Noguchi, Kenji Gomikawa
  • Patent number: 7919801
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a method includes forming a portion of the unidirectional transistor and a portion of a bidirectional transistor in or over a semiconductor material simultaneously. Other embodiments are described and claimed.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: April 5, 2011
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Bishnu Prasanna Gogoi
  • Publication number: 20110073924
    Abstract: A non-volatile memory cell includes a semiconductor substrate with isolation structures formed therein and thereby transistor region and capacitor region are defined therein. A conductor is disposed over the isolation structures, the transistor region and a first-type doped well disposed in the capacitor region. The conductor includes a capacitor portion disposed over the first-type doped well, a transistor portion disposed over the transistor region, a first edge disposed over the isolation structure at a side of the transistor region, and an opposite second edge disposed over the first-type doped well. Two first ion doped wells are disposed in the transistor region and respectively at two sides of the transistor portion, and constitutes a transistor with the transistor portion. A second ion doped region is disposed in the capacitor region excluding the conductor and constitutes a capacitor with the capacitor portion.
    Type: Application
    Filed: September 29, 2009
    Publication date: March 31, 2011
    Inventors: Hung-Lin SHIH, Bin Chen, JR., Pei-Ching Yin, Hui-Fang Tsai
  • Patent number: 7915656
    Abstract: A nonvolatile semiconductor memory apparatus (10) of the present invention comprises a semiconductor substrate (11), an active element forming region provided on the semiconductor substrate (11) and including a plurality of active elements (12), a wire forming region which is provided on the active element forming region to electrically connect the active elements (12) and includes plural layers of semiconductor electrode wires (15, 16), a memory portion forming region (100) which is provided above the wire forming region and provided with memory portions (26) arranged in matrix, a resistance value of each of the memory portions changing according to electric pulses applied, and an oxygen barrier layer (17) which is provided between the memory portion forming region (100) and the wire forming region so as to extend continuously over at least an entire of the memory portion forming region (100).
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: March 29, 2011
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Takeshi Takagi
  • Patent number: 7910973
    Abstract: A non-volatile semiconductor storage device has: a plurality of memory strings with a plurality of electrically rewritable memory cells connected in series; and a capacitor element area including capacitor elements. Each of the memory strings includes: a plurality of first conductive layers laminated on a substrate; and a plurality of first interlayer insulation layers formed between the plurality of first conductive layers. The capacitor element area includes: a plurality of second conductive layers laminated on a substrate and formed in the same layer as the first conductive layers; and a plurality of second interlayer insulation layers formed between the plurality of second conductive layers and formed in the same layer as the first interlayer insulation layers. A group of the adjacently-laminated second conductive layers is connected to a first potential, while another group thereof is connected to a second potential.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: March 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Sakaguchi, Hiroyuki Nitsuta
  • Patent number: 7911831
    Abstract: Under one aspect, non-volatile transistor device includes a source and drain with a channel in between; a gate structure made of a semiconductive or conductive material disposed over an insulator over the channel; a control gate made of a semiconductive or conductive material; and an electromechanically-deflectable nanotube switching element in fixed contact with one of the gate structure and the control gate structure and is not in fixed contact with the other of the gate structure and the control gate structure. The device has a network of inherent capacitances, including an inherent capacitance of an undeflected nanotube switching element in relation to the gate structure. The network is such that the nanotube switching element is deflectable into contact with the other of the gate structure and the control gate structure in response to signals being applied to the control gate and one of the source region and drain region.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: March 22, 2011
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent M. Segal, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Publication number: 20110049597
    Abstract: A non-volatile memory device including two or more capacitors having different sizes formed in separated regions and operating at a low voltage, the non-volatile memory device including: a conductive semiconductor substrate formed of a first conductive material; a conductive separation layer provided on at least one portion of the first conductive semiconductor substrate and formed of a second conductive material different from the first conductive material, and which separates an inside of the first conductive semiconductor substrate into a first region and a second region; an insulation layer provided on the first region and the second region to contact the first region and the second region; a charge storage layer provided on the insulation layer; a control gate electrically connected to the first region; and a data line electrically connected to the second region.
    Type: Application
    Filed: March 31, 2010
    Publication date: March 3, 2011
    Applicants: SAMSUNG TECHWIN CO., LTD., SUNGKYUNKWAN UNIVERSITY FOUNDATION FOR CORPORATE COLLABORATION
    Inventors: Ji-hong KIM, Kee-won KWON
  • Patent number: 7898012
    Abstract: A capacitor includes a pair of electrodes and a ferroelectric film sandwiched between the electrodes. The electrodes are provided perpendicular to the direction of the polarization axis of the ferroelectric film.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: March 1, 2011
    Assignee: Fujitsu Limited
    Inventor: Kenji Maruyama
  • Patent number: 7888722
    Abstract: A trench structure and a memory cell using the trench structure. The trench structure includes: a substrate; a trench having contiguous upper, middle and lower regions, the trench extending from a top surface of said substrate into said substrate; the upper region of the trench having a vertical sidewall profile; and the middle region of the trench having a tapered sidewall profile.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Xi Li
  • Patent number: 7884410
    Abstract: Example embodiments may provide nonvolatile memory devices and example methods of fabricating nonvolatile memory devices. Example embodiment nonvolatile memory devices may include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Joong S. Jeon, El Mostafa Bourim, Hyun-deok Yang
  • Patent number: 7884407
    Abstract: The present invention proposes a semiconductor device, its manufacturing method and to an electronic apparatus thereof equipped with the semiconductor device where it becomes possible to make a CMOS type solid-state imaging device, an imager area formed with a MOS transistor of an LDD structure without having a metal silicide layer of a refractory metal, an area of DRAM cells and the like into a single semiconductor chip. According to the present invention, a semiconductor device is constituted such that an insulating film having a plurality of layers is used, sidewalls at the gate electrodes are formed by etching back the insulating film of the plurality of layers or a single layer film in the region where metal silicide layers are formed and in the region where the metal silicide layers are not formed, sidewalls composed of an upper layer insulating film is formed on a lower layer insulating film whose surface is coated or the insulating film of the plurality of layers remain unchanged.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: February 8, 2011
    Assignee: Sony Corporation
    Inventors: Takashi Nagano, Yasushi Morita
  • Publication number: 20110024814
    Abstract: The chip area of a semiconductor device including a nonvolatile memory is reduced. The semiconductor device includes a first memory cell and a second memory cell which are formed on the principal surface of a substrate, and arranged adjacent to each other. In a principal surface of the substrate, active regions which are electrically isolated from each other are arranged. In the first active region, the capacitor element of the first memory cell is arranged, while the capacitor element of the second memory cell is arranged in the fourth active region. In the second active region, the respective write/erase elements of the first and second memory cells are both arranged. Further, in the third active region, the respective read elements of the first and second memory cells are both arranged.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 3, 2011
    Inventors: Yasushi OKA, Tadashi Omae, Takesada Akiba
  • Patent number: 7875919
    Abstract: Forming a shallow trench capacitor in conjunction with an FET by forming a plurality of STI trenches; for the FET, implanting a first cell well having a first polarity between a first and a second of the STI trenches; for the capacitor, implanting a second cell well having a second polarity in an area of a third of the STI trenches; removing dielectric material from the third STI trench; forming a gate stack having a first portion located between the first and the second of the STI trenches and a second portion located over and extending into the third trench; and performing a source/drain implant of the same polarity as the second cell well, thereby forming a FET in the first cell well, and a capacitor in the second cell well. The second polarity may be opposite from the first polarity. An additional implant may reduce ESR in the second cell well.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: January 25, 2011
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., MaryJane Brodsky, Kangguo Cheng, Chengwen Pei
  • Patent number: 7872250
    Abstract: A PRAM and a fabricating method thereof are provided. The PRAM includes a transistor and a data storage capability. The data storage capability is connected to the transistor. The data storage includes a top electrode, a bottom electrode, and a porous PCM layer. The porous PCM layer is interposed between the top electrode and the bottom electrode.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: January 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-mock Lee, Jin-heong Yim, Yoon-ho Khang, Jin-seo Noh, Dong-seok Suh
  • Patent number: 7867788
    Abstract: A Spin-Dependent Tunnelling cell comprises a first barrier layer of a first material and a second barrier layer of a second material sandwiched between a first ferromagnetic layer and a second ferromagnetic layer. The first and second barrier layers are formed to a combined thicknesses so that a Tunnelling Magnetoresistance versus voltage characteristic of the cell has a maximum at a non-zero bias voltage.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: January 11, 2011
    Assignees: Freescale Semiconductor, Inc., Centre National de la Recherché Scientifique (CNRS), STMicroelectronics (Crolles 2) SAS
    Inventors: De Come Buttet, Michel Hehn, Stephane Zoll
  • Patent number: 7868371
    Abstract: In one embodiment, a non-volatile memory device includes an isolation film defining an active region in a semiconductor substrate; a tunnel insulating film located on the active region; a control gate located on the isolation film; an inter-gate dielectric film parallel to the control gate and located between the control gate and the isolation film; an electrode overlapped by the control gate and the inter-gate dielectric film, wherein the electrode extends over the tunnel insulating film on the active region to form a floating gate; and a source region and a drain region formed in the active region on both sides of the floating gate.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: January 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Myoung-Soo Kim
  • Patent number: 7868370
    Abstract: A nonvolatile memory integrated circuit has a semiconductor substrate and a nonvolatile memory device on the semiconductor substrate. The device has a transistor and a capacitor on the semiconductor substrate, and a shared floating gate connecting the gate regions of the transistor and the capacitor. The transistor has at least a doping region defining the source and drain regions, as well as three other doping regions overlapping the source and drain regions. Also disclosed are a nonvolatile memory circuit with multiple such nonvolatile memory device, and methods for making the nonvolatile memory circuit with one or more such nonvolatile memory devices.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: January 11, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Cheng-Chi Lin, Shih-Chin Lien, Chin-Pen Yeh, Shyi-Yuan Wu
  • Patent number: 7859035
    Abstract: A storage node having a metal-insulator-metal structure, a non-volatile memory device including a storage node having a metal-insulator-metal (MIM) structure and a method of operating the same are provided. The memory device may include a switching element and a storage node connected to the switching element. The storage node may include a first metal layer, a first insulating layer and a second metal layer, sequentially stacked, and a nano-structure layer. The storage node may further include a second insulating layer and a third metal layer. The nano-structure layer, which is used as a carbon nano-structure layer, may include at least one fullerene layer.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: December 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Sang-mock Lee, In-kyeong Yoo, Seung-woon Lee, El Mostafa Bourim, Eun-hong Lee, Choong-rae Cho
  • Patent number: 7855421
    Abstract: An embedded memory required for a high performance, multifunction SOC, and a method of fabricating the same are provided. The memory includes a bipolar transistor, a phase-change memory device and a MOS transistor, adjacent and electrically connected, on a substrate. The bipolar transistor includes a base composed of SiGe disposed on a collector. The phase-change memory device has a phase-change material layer which is changed from an amorphous state to a crystalline state by a current, and a heating layer composed of SiGe that contacts the lower surface of the phase-change material layer.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: December 21, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung-Yun Lee, Sangouk Ryu, Sung Min Yoon, Young Sam Park, Kyu-Jeong Choi, Nam-Yeal Lee, Byoung-Gon Yu
  • Patent number: 7851285
    Abstract: A method for fabricating a non-volatile memory device includes forming a charge tunneling layer composed of a hafnium silicate (HfSixOyNz) layer on a semiconductor substrate. A charge trapping layer composed of a hafnium oxide nitride (HfOxNy) layer is formed on the charge tunneling layer. A charge blocking layer composed of a hafnium oxide layer is formed on the charge trapping layer. A gate layer is formed on the charge blocking layer. A non-volatile memory device fabricated by the method is also disclosed.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: December 14, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chang Soo Park
  • Publication number: 20100308389
    Abstract: A multiple layer tunnel insulator is fabricated between a substrate and a discrete trap layer. The properties of the multiple layers determines the volatility of the memory device. The composition of each layer and/or the quantity of layers is adjusted to fabricate either a DRAM device, a non-volatile memory device, or both simultaneously.
    Type: Application
    Filed: August 16, 2010
    Publication date: December 9, 2010
    Inventor: Arup Bhattacharyya
  • Publication number: 20100302854
    Abstract: Electrically erasable programmable “read-only” memory (EEPROM) cells in an integrated circuit, and formed by a single polysilicon level. The EEPROM cell consists of a coupling capacitor and a combined read transistor and tunneling capacitor. The capacitance of the coupling capacitor is much larger than that of the tunneling capacitor. In one embodiment, field oxide isolation structures isolate the devices from one another; a lightly-doped region at the source of the read transistor improves breakdown voltage performance. In another embodiment, trench isolation structures and a buried oxide layer surround the well regions at which the coupling capacitor and combined read transistor and tunneling capacitor are formed.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Xiaoju Wu, Jozef Czeslaw Mitros
  • Patent number: 7842991
    Abstract: A nonvolatile memory device includes at least one switching device and at least one storage node electrically connected to the at least one switching device. The at least one storage node includes a lower electrode, one or more oxygen-deficient metal oxide layers, one or more data storage layers, and an upper electrode. At least one of the one or more metal oxide layers is electrically connected to the lower electrode. At least one of the one or more data storage layers is electrically connected to at least one of the one or more metal oxide layers. The upper electrode is electrically connected to at least one of the one or more data storage layers. A method of manufacturing the nonvolatile memory device includes preparing the at least one switching device and forming the lower electrode, one or more metal oxide layers, one or more data storage layers, and upper electrode.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Il Cho, Choong-rae Cho, Eun-hong Lee, In-kyeong Yoo
  • Patent number: 7838385
    Abstract: A method for manufacturing a reservoir capacitor of a semiconductor device reduces the resistance of the reservoir capacitor to secure reliability of the semiconductor device. The method comprises: forming a dummy pattern having a lattice structure over a transistor; forming a first interlayer insulating film over the resulting structure including the dummy pattern; etching the first interlayer insulating film to form a line-structured storage node contact region between the lattice structures; and filling a conductive layer in the line-structured storage node contact region to form a line-structured storage node contact.
    Type: Grant
    Filed: June 21, 2009
    Date of Patent: November 23, 2010
    Assignee: Hynix Semiconductor Inc
    Inventor: Won Ho Shin
  • Patent number: 7829927
    Abstract: The invention relates to a DRAM memory device with a capacity associated with a field effect transistor, in which all or some of the molecules capable of storing the loads comprising a polyoxometallate are incorporated into the capacity, or a flash-type memory using at least one field effect transistor, in which the molecules capable of storing the loads comprising a polyoxometallate are incorporated into the floating grid of the transistor. The invention also relates to a method for producing on such device and to an electronic appliance comprising one such memory device.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: November 9, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Gérard Bidan, Eric Jalaguier
  • Publication number: 20100276740
    Abstract: A non-volatile memory cell includes a program transistor and a control capacitor. A portion of a substrate associated with the program transistor is exposed to multiple implantations (such as DNW, HiNWell, HiPWell, and P-well implantations). Similarly, a portion of the substrate associated with the control capacitor is exposed to multiple implantations (such as DNW, HiNWell, HiPWell, P-well, and N-well implantations). These portions of the substrate may have faster oxidation rates than other portions of the substrate, allowing a thicker front-end gate oxide to be formed over these portions of the substrate. In addition, a rapid thermal process anneal can be performed, which may reduce defects in the front-end gate oxide and increase its quality without having much impact on the oxide over the other portions of the substrate.
    Type: Application
    Filed: July 12, 2010
    Publication date: November 4, 2010
    Inventors: Thanas Budri, Jiankang Bu
  • Publication number: 20100277982
    Abstract: Techniques for providing floating body memory devices are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor device comprising a floating gate, a control gate disposed over the floating gate, a body region that is electrically floating, wherein the body region is configured so that material forming the body region is contained under at least one lateral boundary of the floating gate, and a source region and a drain region adjacent the body region.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 4, 2010
    Applicant: Innovative Silicon ISi SA
    Inventor: Serguei OKHONIN
  • Patent number: 7825478
    Abstract: Polarity dependent switches for resistive sense memory are described. A memory unit includes a resistive sense memory cell configured to switch between a high resistance state and a low resistance state upon passing a current through the resistive sense memory cell and a semiconductor transistor in electrical connection with the resistive sense memory cell. The semiconductor transistor includes a gate element formed on a substrate. The semiconductor transistor includes a source contact and a bit contact. The gate element electrically connects the source contact and the bit contact. The resistive sense memory cell electrically connects to the bit contact. The source contact and the bit contact are asymmetrically implanted with dopant material.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: November 2, 2010
    Assignee: Seagate Technology LLC
    Inventors: Chulmin Jung, Maroun Georges Khoury, Yong Lu, Young Pil Kim
  • Patent number: 7821050
    Abstract: A transistor fabricated on a semiconductor substrate includes a source and a drain in the substrate; a gate on the substrate, the gate being insulated from the substrate by gate dielectric; barrier layers covering two sides of the gate and the gate dielectric; spacers of high-k material covering the barrier layers; and nitride spacers covering the spacers of high-k material. The spacers of high-k material significantly increase the node capacitance of the transistor and therefore reduce the transistor's soft error rate.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: October 26, 2010
    Assignee: Altera Corporation
    Inventors: Yowjuang (Bill) Liu, Cheng-Hsiung Huang, Chih-Ching Shih
  • Patent number: 7816716
    Abstract: Source/drain diffusion layers and a channel region are formed in a polysilicon thin film formed on a substrate made of glass or the like, and furthermore, a gate electrode 6 is formed via a gate insulating film. A silicon hydronitride film is formed on the interlayer dielectric film, whereby the hydrogen concentration in an active element region including a switching thin film transistor can be maintained at a high level, and Si—H bonds in the silicon thin film become stable. In addition, by providing a ferroelectric film on the silicon hydronitride film via a lower electrode formed of a conductive oxide film, whereby the oxygen concentration of the ferroelectric capacitive element layer can be maintained at a high level, and generation of oxygen deficiency in the ferroelectric film is prevented.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: October 19, 2010
    Assignee: NEC Corporation
    Inventor: Hiroshi Tanabe
  • Patent number: 7816719
    Abstract: A nonvolatile magnetic memory device including a magntoresistance device having a recording layer formed of a ferromagnetic material for storing information by use of variation in resistance depending on the magnetization inversion state. The plan-view shape of the recording layer includes a pseudo-rhombic shape having four sides, at least two of the four sides each include a smooth curve having a central portion curved toward the center of the pseudo-rhombic shape. The easy axis of magnetization of the recording layer is substantially parallel to the longer axis of the pseudo-rhombic shape. The hard axis of magnetization of the recording layer is substantially parallel to the shorter axis of the pseudo-rhombic shape. The sides constituting the plan-view shape of the recording layer are smoothly connected to each other.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: October 19, 2010
    Assignee: Sony Corporation
    Inventor: Hajime Yamagishi
  • Patent number: 7807518
    Abstract: The present invention provides a semiconductor memory device having a capacitor electrode of a MOS capacitor formed in polygon and slanting faces enlarged toward an insulating film are provided therearound. A floating gate electrode is provided which extends from over a channel region of a MOSEFT to over corners of ends on the MOSFET side, of the capacitor electrode and which is opposite to the channel region and the capacitor electrode with a gate insulating film interposed therebetween.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: October 5, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Tomohiko Tatsumi
  • Publication number: 20100238735
    Abstract: In a nonvolatile semiconductor memory device storing data by accumulating charges in a floating gate, memory units, each of which includes a first MOS transistor as a read device, a bit cell composed of a first capacitor as a capacitance coupling device and a second capacitor as an erase device, and a decode device including a second MOS transistor and a third MOS transistor, are arranged in array. This attains nonvolatile memory capable of bit by bit selective erase arranged in array to thus reduce the core area remarkably.
    Type: Application
    Filed: June 2, 2010
    Publication date: September 23, 2010
    Applicant: Panasonic Corporation
    Inventors: Yasue YAMAMOTO, Masanori SHIRAHAMA, Yasuhiro AGATA, Toshiaki KAWASAKI
  • Patent number: 7799629
    Abstract: A example embodiment may provide a memory device that may include an active pattern on a semiconductor substrate, a first charge trapping layer pattern on the active pattern, a first gate electrode on the first charge trapping layer pattern, a second charge trapping layer pattern on a sidewall of the active pattern in a first direction, a second gate electrode on the second charge trapping layer pattern in the first direction, and/or a source/drain region in the active pattern. The memory device may have improved integration by forming a plurality of charge trapping layer patterns on the same active pattern.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Na-Young Kim, Chang-Woo Oh, Sung-Hwan Kim, Yong-Lack Choi
  • Patent number: 7791119
    Abstract: An electro-resistance element that has a different configuration from conventional elements and is excellent in both affinity with semiconductor manufacturing processes and heat treatment stability under a hydrogen-containing atmosphere is provided. An electro-resistance element includes an electro-resistance layer that has two or more states in which electric resistance values are different and being switchable from one of the two or more states into another by applying a predetermined voltage or current. The electro-resistance layer includes first and second elements being capable of forming a nitride, and nitrogen.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: September 7, 2010
    Assignee: Panasonic Corporation
    Inventors: Akihiro Odagawa, Yoshihisa Nagano
  • Patent number: RE41625
    Abstract: A protective insulating film is deposited over first and second field-effect transistors formed on a semiconductor substrate. A capacitor composed of a capacitor lower electrode, a capacitor insulating film composed of an insulating metal oxide film, and a capacitor upper electrode is formed on the protective insulating film. A first contact plug formed in the protective insulating film provides a direct connection between the capacitor lower electrode and an impurity diffusion layer of the first field-effect transistor. A second contact plug formed in the protective insulating film provides a direct connection between the capacitor upper electrode and an impurity diffusion layer of the second field-effect transistor.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: September 7, 2010
    Assignee: Panasonic Corporation
    Inventors: Yoshihisa Nagano, Yasuhiro Uemoto