Capacitor For Signal Storage In Combination With Non-volatile Storage Means Patents (Class 257/298)
  • Publication number: 20100219458
    Abstract: The data retention characteristics of a nonvolatile memory circuit are improved. In a memory cell array on a main surface of a semiconductor substrate, a floating gate electrode for accumulating charges for information is arranged. The floating gate electrode is covered with a cap insulating film and a pattern of an insulating film 4a formed thereon. Further, over the entire main surface of the semiconductor substrate, an insulating film 2a is deposited so that it covers the pattern of the insulating film 4a and a gate electrode. The insulating film 2a is formed by a silicon nitride film formed by the plasma CVD method. The insulating film 4a is formed by a silicon nitride film formed by the low-pressure CVD method. By the provision of such an insulating film 4a, it is possible to suppress or prevent water or hydrogen ions from diffusing to the floating gate electrode, and therefore, the data retention characteristics of a flash memory can be improved.
    Type: Application
    Filed: April 30, 2010
    Publication date: September 2, 2010
    Inventors: KAZUYOSHI SHIBA, Hideyuki Yashima
  • Patent number: 7786521
    Abstract: A semiconductor device with a dielectric structure and a method for fabricating the same are provided. A capacitor in the semiconductor device includes: a bottom electrode formed on a substrate; a first dielectric layer made of titanium dioxide (TiO2) in rutile phase and formed on the bottom electrode; and an upper electrode formed on the first dielectric layer.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 31, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki-Seon Park, Jae-Sung Roh
  • Patent number: 7781816
    Abstract: A nonvolatile magnetic memory device including a magnetoresistance device having a recording layer formed of a ferromagnetic material for storing information by use of variation in resistance depending on the magnetization inversion state. The plan-view shape of the recording layer includes a pseudo-rhombic shape having four sides, at least two of the four sides each include a smooth curve having a central portion curved toward the center of the pseudo-rhombic shape. The easy axis of magnetization of the recording layer is substantially parallel to the longer axis of the pseudo-rhombic shape. The hard axis of magnetization of the recording layer is substantially parallel to the shorter axis of the pseudo-rhombic shape. The sides constituting the plan-view shape of the recording layer are smoothly connected to each other.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: August 24, 2010
    Assignee: Sony Corporation
    Inventor: Hajime Yamagishi
  • Patent number: 7777264
    Abstract: A memory structure has a vertically oriented access transistor with an annular gate region. A transistor is fabricated such that the channel of the transistor extends outward with respect to the surface of the substrate. An annular gate is fabricated around the vertical channel such that it partially or completely surrounds the channel. A buried annular bitline may also be implemented. After the vertically oriented transistor is fabricated with the annular gate, a storage device may be fabricated over the transistor to provide a memory cell.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: August 17, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Thomas W. Voshell, Lucien J. Bissey, Kevin G. Duesman
  • Patent number: 7772629
    Abstract: To securely prevent hydrogen from entering a ferroelectric layer of a ferroelectric memory. A first hydrogen barrier layer 5 is formed on the lower side of ferroelectric capacitors 7. Upper surfaces and side surfaces of the ferroelectric capacitors 7 are covered by a second hydrogen barrier layer. All upper electrodes 7c of the plural ferroelectric capacitors 7 to be connected to a common plate line P are connected to one another by an upper wiring layer 91. The upper wiring layer 91 is connected to the plate line P through a lower wiring 32 provided below the ferroelectric capacitors 7. A third hydrogen barrier layer 92 is formed on the upper wiring layer 91 such that all edge sections 92a of the third hydrogen barrier layer 92 come in contact with the first hydrogen barrier layer 5.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: August 10, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Shinichi Fukada
  • Patent number: 7768054
    Abstract: A semiconductor component has an insulating layer which is formed on a semiconductor substrate and in which a capacitance structure (K) is formed. The capacitance structure (K) has at least two metallization planes (1 to 7) which are arranged parallel to one another and are each connected to an electrical connecting line. Arranged between the metallization planes (1 to 7) is at least one electrically conductive region (1a to 1j; 2a to 2j; 31a to 36a; 41a to 46a; 5a to 5f) for producing a capacitance surface, the electrically conductive region (1a to 1j; 2a to 2j; 31a to 36a; 41a to 46a; 5a to 5f) being electrically connected only to one of the metallization planes (1 to 7).
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: August 3, 2010
    Assignee: Infineon Technologies, AG
    Inventors: Thomas Benetik, Erwin Ruderer
  • Patent number: 7768044
    Abstract: An on-chip capacitive device comprises a semiconductor substrate, a MOS capacitor formed on the semiconductor substrate, and a metal interconnect capacitor formed at least in part in a region above the MOS capacitor. The MOS capacitor and the metal interconnect capacitor are connected in parallel to form a single capacitive device. The capacitance densities of the MOS capacitor and the metal interconnect capacitor are, thereby, combined. Advantageously, significant capacitance density gains can be achieved without additional processing steps.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: August 3, 2010
    Assignee: Agere Systems Inc.
    Inventors: Canzhong He, John A. Schuler, John M. Sharpe, Hong-Ha Vuong
  • Patent number: 7768052
    Abstract: A method of fabricating a high-performance capacitor that may be incorporated into a standard CMOS fabrication process suitable for submicron devices is described. The parameters used in the standard CMOS process may be maintained, particularly for the definition and etch of the lower electrode layer. To reduce variation in critical dimension width, an Anti-Reflective Layer (ARL) is used, such as a Plasma Enhanced chemical vapor deposition Anti-Reflective Layer (PEARL) or other Anti-Reflective Coatings (ARCS), such as a conductive film like TiN. This ARL formation occurs after the capacitor specific process steps, but prior to the masking used for defining the lower electrodes. A Rapid Thermal Oxidation (RTO) is performed subsequent to removing the unwanted capacitor dielectric layer from the transistor poly outside of the capacitor regions, but prior to the PEARL deposition.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: August 3, 2010
    Assignee: ZiLOG, Inc.
    Inventors: Timothy K. Carns, John L. Horvath, Lee J. DeBruler, Michael J. Westphal
  • Patent number: 7763920
    Abstract: According to an aspect of the present invention, there is provided a semiconductor memory including a lower electrode, a first insulating region formed in the same layer as the lower electrode, a ferroelectric film formed on the lower electrode and on the first insulating region, an upper electrode formed on the ferroelectric film, a second insulating region formed in the same layer as the upper electrode and a transistor. The first insulating region partitions the lower electrode. The second insulating region partitions the upper electrode. The transistor includes a first impurity region connected to the lower electrode and a second impurity region connected to the upper electrode. At least one of the first insulating region and the second insulating region is formed by insulating the lower electrode or the upper electrode.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: July 27, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Kumura, Tohru Ozaki, Iwao Kunishima
  • Patent number: 7763921
    Abstract: The present invention provides a semiconductor device which is characterized as follows. The semiconductor device includes: an interlayer insulating film formed above a semiconductor substrate and provided with a hole above an impurity diffusion region; a conductive plug formed in the hole and electrically connected to the impurity diffusion region; a conductive oxygen barrier film formed on the conductive plug and the interlayer insulating film around the conductive plug; a conductive anti-diffusion film formed on the conductive oxygen barrier film; and a capacitor that has a lower electrode which is formed on the conductive anti-diffusion film and which exposes platinum or palladium on the upper surface, a capacitor dielectric film made of a ferroelectric material, and an upper electrode. The conductive anti-diffusion film is made of a non-oxide conductive material for preventing the diffusion of the constituent element of the capacitor dielectric film.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: July 27, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Publication number: 20100181605
    Abstract: Provided is a data storage device. The data storage device includes an interface, a buffer controller, a memory controller, a non-volatile memory, and a self-powered semiconductor device adjacent to and electrically connected to the buffer controller. The self-powered semiconductor device includes a semiconductor chip and a rechargeable micro-battery attached to the semiconductor chip. The rechargeable micro-battery includes a first current collector and a second current collector, which face each other, a first polarizing electrode in contact with the first current collector and facing the second current collector, a second polarizing electrode in contact with the second current collector and facing the first polarizing electrode, and an electrolyte layer formed between the first and second polarizing electrodes.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 22, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Subramanya MAYYA, Hee-seok KIM, Ik-Soo KIM, Min-Young PARK, Hyun-Suk KWON
  • Patent number: 7759725
    Abstract: Disclosed is a method of manufacturing a semiconductor device, including the steps of: forming on a second insulating film a first resist pattern having a first window; employing the first resist pattern as an etching mask to form first openings exposed from contact regions CR; forming, on a second conductive film, a second resist pattern having first resist portions; employing the second resist pattern as an etching mask to form first and second conductors, a floating gate and a control gate; forming a third resist pattern in regions I, II and III; and employing the third resist pattern as an etching mask to remove the portions of the second conductors under second windows.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: July 20, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Shinichi Nakagawa
  • Patent number: 7759715
    Abstract: Some embodiments include memory cells that contain a dynamic random access memory (DRAM) element and a nonvolatile memory (NVM) element. The DRAM element contains two types of DRAM nanoparticles that differ in work function. The NVM contains two types of NVM nanoparticles that differ in trapping depth. The NVM nanoparticles may be in vertically displaced charge-trapping planes. The memory cell contains a tunnel dielectric, and one of the charge-trapping planes of the NVM may be further from the tunnel dielectric than the other. The NVM charge-trapping plane that is further from the tunnel dielectric may contain larger NVM nanoparticles than the other NVM charge-trapping plane. The DRAM element may contain a single charge-trapping plane that has both types of DRAM nanoparticles therein. The memory cells may be incorporated into electronic systems.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: July 20, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7745865
    Abstract: Devices and methods for preventing capacitor leakage caused by sharp tip. The formation of sharp tip is avoided by a thicker bottom electrode which fully fills a micro-trench that induces formation of the sharp tip. Alternatively, formation of the sharp tip can be avoided by recessing the contact plug to substantially eliminate the micro-trench.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: June 29, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Kuo-Chi Tu
  • Publication number: 20100149854
    Abstract: A method of fabricating an integrated circuit device storage cell may include forming a channel region comprising a semiconductor material doped to a first conductivity type; forming a store gate structure comprising a semiconductor material doped to a second conductivity type in contact with the channel region; and forming a control gate terminal from at least a portion of a semiconductor layer deposited on a substrate surface in contact with the channel region, the portion of the semiconductor layer being doped to the second conductivity type.
    Type: Application
    Filed: February 22, 2010
    Publication date: June 17, 2010
    Applicant: SUVOLTA, INC.
    Inventor: Madhu B. Vora
  • Patent number: 7732816
    Abstract: A semiconductor integrated circuit device, such as a memory device or radiation detector, is disclosed, in which data storage cells are formed on a substrate. Each of the data storage cells includes a field effect transistor having a source, drain, and gate, and a body arranged between the source and drain for storing electrical charge generated in the body. The magnitude of the net electrical charge in the body can be adjusted by input signals applied to the transistor, and the adjustment of the net electrical charge by the input signals can be at least partially cancelled by applying electrical voltage signals between the gate and the drain and between the source and the drain.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: June 8, 2010
    Assignee: Innovative Silicon ISi SA
    Inventors: Pierre Fazan, Serguei Okhonin
  • Patent number: 7728376
    Abstract: HfO2 films and ZrO2 films are currently being developed for use as capacitor dielectric films in 85 nm technology node DRAM. However, these films will be difficult to use in 65 nm technology node or later DRAM, since they have a relative dielectric constant of only 20-25. The dielectric constant of such films may be increased by stabilizing their cubic phase. However, this results in an increase in the leakage current along the crystal grain boundaries, which makes it difficult to use these films as capacitor dielectric films. To overcome this problem, the present invention dopes a base material of HfO2 or ZrO2 with an oxide of an element having a large ion radius, such as Y or La, to increase the oxygen coordination number of the base material and thereby increase its relative dielectric constant to 30 or higher even when the base material is in its amorphous state. Thus, the present invention provides dielectric films that can be used to form DRAM capacitors that meet the 65 nm technology node or later.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: June 1, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Yuichi Matsui, Hiroshi Miki
  • Patent number: 7728320
    Abstract: A phase change memory (PCM) device includes a substrate, bottom electrodes disposed in the substrate, a first dielectric layer disposed on the substrate, second dielectric layers, third dielectric layers, cup-shaped thermal electrodes, top electrodes, and PC material spacers. In the PCM device, each cup-shaped thermal electrode contacts with each bottom electrode. Second and third dielectric layers are disposed over the substrate in different directions, wherein each of the second and third dielectric layers covers a portion of the area surrounded by each cup-shaped thermal electrode, and the third dielectric layers overlay the second dielectric layers. The top electrodes are disposed on the third dielectric layers, wherein a plurality of stacked structure composed of the third dielectric layers and the top electrodes are formed thereon.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: June 1, 2010
    Assignee: Industrial Technology Research Institute
    Inventor: Wei-Su Chen
  • Patent number: 7728370
    Abstract: A stacked film of a first insulation film being a silicon oxide film with an extremely low moisture content, and a second insulation film being a silicon oxide film with a higher moisture content than the first insulation film, therefore, with a low in-plane film thickness distribution rate is formed, and this is polished by CMP. Polishing is performed until the second insulation film is wholly removed directly above a ferroelectric capacitor structure and a surface of the first insulation film is exposed to some extent. At this time, surface flattening is performed for a top surface of a first portion in the first insulation film and a top surface of the second insulation film, and an interlayer insulation film constituted of the first insulation film and the second insulation film remaining on a second portion of the first insulation film is formed.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: June 1, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Kazutoshi Izumi
  • Patent number: 7723777
    Abstract: One or more embodiments, relate to a field effect transistor, comprising: a substrate; a gate stack disposed over the substrate, the gate stack comprising a gate electrode overlying a gate dielectric; and a sidewall spacer may be disposed over the substrate and laterally disposed from the gate stack, the spacer comprising a polysilicon material.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: May 25, 2010
    Assignee: Infineon Technologies AG
    Inventors: John Power, Mayk Roehrich, Martin Stiftinger, Robert Strenz
  • Patent number: 7714370
    Abstract: A semiconductor storage device includes: a MOSFET formed on an SOI layer of the transistor forming region; and a MOS capacitor formed on the SOI layer of the capacitor forming region. The MOSFET includes: a gate insulating film formed; a floating gate electrode; a source layer and a drain layer formed; a channel region; a high-concentration diffusion layer, and impurities of a same type as impurities which are diffused in the channel region are diffused at a high concentration in the high-concentration diffusion layer; and a silicide layer covering the high-concentration diffusion layer and the source layer. The MOS capacitor includes a capacitor electrode at the SOI layer. The capacitor electrode of the MOS capacitor is disposed so as to oppose an end portion of the floating gate electrode of the MOSFET, with the gate insulating film therebetween.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: May 11, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Ikuo Kurachi
  • Patent number: 7709876
    Abstract: A semiconductor structure and a method for forming the same. The structure includes (i) a dielectric layer, (ii) a bottom capacitor plate and an electrically conductive line on the dielectric layer, (iii) a top capacitor plate on top of the bottom capacitor plate, (iv) a gap region, and (v) a solder ball on the dielectric layer. The dielectric layer includes a top surface that defines a reference direction perpendicular to the top surface. The top capacitor plate overlaps the bottom capacitor plate in the reference direction. The gap region is sandwiched between the bottom capacitor plate and the top capacitor plate. The gap region does not include any liquid or solid material. The solder ball is electrically connected to the electrically conductive line. The top capacitor plate is disposed between the dielectric layer and the solder ball.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: Stephen P. Ayotte, Timothy Harrison Daubenspeck, Jeffrey Peter Gambino, Christopher David Muzzy, Wolfgang Sauter
  • Publication number: 20100102372
    Abstract: Provided are a high-performance one-transistor floating-body DRAM cell device and a manufacturing method thereof. The one-transistor floating-body DRAM cell device includes: a semiconductor substrate; a gate stack which is formed on the semiconductor substrate; a control electrode which is formed on the semiconductor substrate and surrounded by the gate stack; a floating body which is formed on the control electrode that is surrounded by the gate stack; source/drain which are formed at left and right sides of the floating body; an insulating layer which insulates the source/drain from the semiconductor substrate and the control electrode; a gate insulating layer which is formed on the floating body and the source/drain; and a gate electrode which is formed on the gate insulating layer.
    Type: Application
    Filed: August 28, 2008
    Publication date: April 29, 2010
    Inventors: Jong-Ho Lee, Ki-Heung Park
  • Patent number: 7704867
    Abstract: In semiconductor devices and methods of manufacturing semiconductor devices, a zirconium source having zirconium, carbon and nitrogen is provided onto a substrate to form an adsorption layer of the zirconium source on the substrate. A first purging process is performed to remove a non-adsorbed portion of the zirconium source. An oxidizing gas is provided onto the adsorption layer to form an oxidized adsorption layer of the zirconium source on the substrate. A second purging process is performed to remove a non-reacted portion of the oxidizing gas. A nitriding gas is provided on the oxidized adsorption layer to form a zirconium carbo-oxynitride layer on the substrate, and a third purging process is provided to remove a non-reacted portion of the nitriding gas.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: April 27, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Weon-Hong Kim, Min-Woo Song, Pan-Kwi Park, Jung-Min Park
  • Patent number: 7700984
    Abstract: It is an object of the present invention to provide a semiconductor device capable of additionally recording data at a time other than during manufacturing and preventing forgery due to rewriting and the like. Moreover, another object of the present invention is to provide an inexpensive, nonvolatile, and highly-reliable semiconductor device. A semiconductor device includes a first conductive layer, a second conductive layer, and an organic compound layer between the first conductive layer and the second conductive layer, wherein the organic compound layer can have the first conductive layer and the second conductive layer come into contact with each other when Coulomb force generated by applying potential to one or both of the first conductive layer and the second conductive layer is at or over a certain level.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: April 20, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventor: Mikio Yukawa
  • Patent number: 7692230
    Abstract: Disclosed herein is an improved memory device wherein the area occupied by a conventional landing pad is significantly reduced to around 50% to 10% of the area occupied by conventional landing pads. This is accomplished by removing the landing pad from the cell structure, and instead forming a conductive via structure that provides the electrical connection from the memory stack or device in the structure to an under-metal layer. By forming only this via structure, rather than separate vias formed on either side of a landing pad, the overall width occupied by the connective via structure from the memory stack to an under-metal layer is substantially reduced, and thus the via structure and under-metal layer may be formed closer to the memory stack (or conductors associated with the stack) so as to reduce the overall width of the cell structure.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: April 6, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Jhon Jhy Liaw, Yu-Jen Wang, Chia-Shiung Tsai
  • Publication number: 20100078699
    Abstract: A silicide layer is formed at least in a part on an impurity diffusing layer to avoid a region on a gate electrode on a gate oxide film. Voltage is applied between the gate electrode and the impurity diffusing layer to destroy the gate oxide film.
    Type: Application
    Filed: July 9, 2009
    Publication date: April 1, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hiroaki Nakano
  • Patent number: 7687830
    Abstract: A phase change memory includes a memory element and a selection element. The memory element is embedded in a dielectric and includes a resistive element having at least one sublithographic dimension and a storage region in contact with the resistive element. The selection element includes a chalcogenic material embedded in a dielectric. The chalcogenic material and the storage region are part of a stack having a common etched edge.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: March 30, 2010
    Assignee: Ovonyx, Inc.
    Inventors: Fabio Pellizzer, Agostino Pirovano
  • Patent number: 7687377
    Abstract: In a method of fabricating a phase change memory (PCM) device, a substrate having bottom electrodes formed therein is provided. A first dielectric layer having cup-shaped thermal electrodes is formed over the substrate. Second dielectric layers are formed on the substrate. Stacked structures are formed on the substrate. A PC material film is formed over the substrate and covers the stacked structures and the second dielectric layers. The PC material film is anisotropically etched to form PC material spacers on sidewalls of the stacked structures, and each of the PC material spacers physically and electrically contacts each of the cup-shaped thermal electrodes and top electrodes. The PC material spacers include phase change material. The PC material spacers are over-etched to remove the PC material film on the sidewalls of the second dielectric layers.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: March 30, 2010
    Assignee: Industrial Technology Research Institute
    Inventor: Wei-Su Chen
  • Patent number: 7682894
    Abstract: The present invention provides a method of manufacturing a flash memory device. The method includes forming a gate oxide layer on a semiconductor substrate, forming a floating gate including protrusions and depressions on its surface by patterning polysilicon deposited on the gate oxide layer, depositing a dielectric layer on the floating gate and the gate oxide layer, and forming a control gate by patterning polysilicon deposited on the dielectric layer.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: March 23, 2010
    Assignee: Dongku HiTek Co.
    Inventor: Sang-Woo Nam
  • Patent number: 7683456
    Abstract: In one aspect, a semiconductor device includes an array of memory cells. Individual memory cells of the array include a capacitor having first and second electrodes, a dielectric layer disposed between the first and second electrodes. Select individual capacitors are energized so as to blow the dielectric layer to establish a connection between the first and second electrodes such that, after blowing the dielectric layer, the second electrode is coupled to a cell plate generator establishing a bias connection therebetween. Cell plate bias connection methods are also described.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: March 23, 2010
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7683414
    Abstract: The present invention proposes a semiconductor device, its manufacturing method and to an electronic apparatus thereof equipped with the semiconductor device where it becomes possible to make a CMOS type solid-state imaging device, an imager area formed with a MOS transistor of an LDD structure without having a metal silicide layer of a refractory metal, an area of DRAM cells and the like into a single semiconductor chip. According to the present invention, a semiconductor device is constituted such that an insulating film having a plurality of layers is used, sidewalls at the gate electrodes are formed by etchingback the insulating film of the plurality of layers or a single layer film in the region where metal silicide layers are formed and in the region where the metal silicide layers are not formed, sidewalls composed of an upper layer insulating film is formed on a lower layer insulating film whose surface is coated or the insulating film of the plurality of layers remain unchanged.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: March 23, 2010
    Assignee: Sony Corporation
    Inventors: Takashi Nagano, Yasushi Morita
  • Patent number: 7679119
    Abstract: A single-poly electrically erasable/programmable CMOS logic memory cell for mobile applications includes a CMOS inverter that share a single polysilicon floating gate, and an enhanced control capacitor including a control gate capacitor and an optional isolated P-well (IPW) capacitor formed below the control gate capacitor. The control gate capacitor includes a polysilicon control gate that is interdigitated with the floating gate and serves as a capacitor plate to induce Fowler-Nordheim (F-N) injection or Band-to-Band Tunneling (BBT) to both program and erase the floating gate. The IPW capacitor is provided in the otherwise unused space below the control gate capacitor by a IPW that is separated from the control/floating gates by a dielectric layer and is electrically connected to the control gate. Both F-N injection and BBT program/erase are performed at 5V or less.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: March 16, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Victor Kairys, Erez Sarig, David Zfira
  • Publication number: 20100052025
    Abstract: A silicon on insulator (SOI) multi-gate field effect transistor electrically Programmable Read-Only Memory (MuFET EPROM) includes a substrate having a dielectric surface. A first semiconducting region is in or on the dielectric surface. A source region, a drain region and a channel region interposed between the source and drain are formed in first semiconducting region. A gate dielectric layer is on the channel region. At least a second semiconducting region in or on the dielectric surface is spaced apart from the first semiconducting region. A first electrode layer comprises a first electrode portion including a transistor gate electrode and a control gate electrode electrically isolated from one another. The transistor gate overlies the channel region to form a transistor. The control gate extends to overlay a portion of the second semiconducting region.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 4, 2010
    Inventors: Howard Lee Tigelaar, Cloves Rinn Cleavelin, Andrew Marshall, Weize Xiong
  • Patent number: 7671396
    Abstract: A capacitor for a single-poly floating gate device is fabricated on a semiconductor substrate along with low and high voltage transistors. Each transistor has a gate width greater than or equal to a minimum gate width of the associated process. A dielectric layer is formed over the substrate, and a patterned polysilicon structure is formed over the dielectric layer. The patterned polysilicon structure includes one or more narrow polysilicon lines, each having a width less than the minimum gate width. The LDD implants for low and high voltage transistors of the same conductivity type are allowed to enter the substrate, using the patterned polysilicon structure as a mask. A thermal drive-in cycle results in a continuous diffusion region that merges under the narrow polysilicon lines. Contacts formed adjacent to the narrow polysilicon lines and a metal-1 trace connected to the contacts may increase the resulting capacitance.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: March 2, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Amos Fenigstein, Zohar Kuritsky, Asaf Lahav, Ira Naot, Yakov Roizin
  • Patent number: 7666752
    Abstract: The present invention relates to a method for depositing a dielectric material comprising a transition metal compound. After providing a substrate, a first pre-cursor comprising a transition metal compound and a second pre-cursor predominantly comprising at least one of water vapour, ammonia and hydrazine are successively applied on the substrate for forming a first layer of transition metal containing material. In a next step the first pre-cursor and a third pre-cursor comprising at least one of ozone and oxygen are successively applied on the first layer for forming a second layer of the transition metal containing material.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: February 23, 2010
    Assignee: Qimonda AG
    Inventors: Stephan Kudelka, Lars Oberbeck, Uwe Schroeder, Tim Boescke, Johannes Heitmann, Annette Saenger, Joerg Schumann, Elke Erben
  • Patent number: 7667218
    Abstract: Disclosed herein is a phase change memory semiconductor integrated circuit device using a chalcogenide film that solves a problem that the operation temperature capable of ensuring long time memory retention is low due to low phase change temperature is and, at the same time, a problem that power consumption of the device is high since a large current requires to rewrite memory information due to low resistance. A portion of constituent elements for a chalcogenide comprises nitride, oxide or carbide which are formed to the boundary between the chalcogenide film and a metal plug as an underlying electrode and to the grain boundary of chalcogenide crystals thereby increasing the phase change temperature and high Joule heat can be generated even by a small current by increasing the resistance of the film.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 23, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Naoki Yamamoto, Norikatsu Takaura, Yuichi Matsui, Nozomu Matsuzaki, Kenzo Kurotsuchi, Motoyasu Terao
  • Publication number: 20100038692
    Abstract: An integrated circuit structure includes a semiconductor substrate, and a first and a second MOS device. The first MOS device includes a first gate dielectric over the semiconductor substrate, wherein the first gate dielectric is planar; and a first gate electrode over the first gate dielectric. The second MOS device includes a second gate dielectric over the semiconductor substrate; and a second gate electrode over the second gate dielectric. The second gate electrode has a height greater than a height of the first gate electrode. The second gate dielectric includes a planar portion underlying the second gate electrode, and sidewall portions extending on sidewalls of the second gate electrode.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Inventors: Harry Chuang, Mong Song Liang, Wen-Chih Yang, Chien-Liang Chen, Chii-Horng Li
  • Publication number: 20100038693
    Abstract: p-type wells are provided within an n-type embedded well of a semiconductor substrate lying in an area for forming a flash memory, in a state of being isolated from one another. A capacitance section, a data write/erase charge injection/discharge section and a data read MIS•FET are disposed in each of the p-type wells. The capacitance section is disposed between the data write/erase charge injection/discharge section and the data read MIS•FET. In the data write/erase charge injection/discharge section, writing and erasing of data by an FN tunnel current at a channel entire surface are performed.
    Type: Application
    Filed: October 21, 2009
    Publication date: February 18, 2010
    Inventors: Kazuyoshi SHIBA, Yasushi OKA
  • Publication number: 20100032741
    Abstract: A technology capable of reducing the fraction defective of a MOS capacitor without the need to perform a screening is provided. A MOS capacitor MOS1 and a MOS capacitor MOS2 are coupled in series between a high potential and a low potential to form a series capacitive element. Then, a polysilicon capacitor PIP1 and a polysilicon capacitor PIP2 are coupled in parallel with the series capacitive element. Specifically, a high-concentration semiconductor region HS1 constituting a lower electrode of the MOS capacitor MOS1 and a high-concentration semiconductor region HS2 constituting a lower electrode of the MOS capacitor MOS2 are coupled. Further, an electrode E1 constituting an upper electrode of the MOS capacitor MOS1 is coupled to the low potential (for example, GND) and an electrode E3 constituting an upper electrode of the MOS capacitor MOS2 is coupled to the high potential (for example, power source potential).
    Type: Application
    Filed: July 20, 2009
    Publication date: February 11, 2010
    Inventor: Maya Ueno
  • Patent number: 7659580
    Abstract: It is an object of the present invention to obtain a transistor with a high ON current including a silicide layer without increasing the number of steps. A semiconductor device comprising the transistor includes a first region in which a thickness is increased from an edge on a channel formation region side and a second region in which a thickness is more uniform than that of the first region. The first and second region are separated by a line which is perpendicular to a horizontal line and passes through a point where a line, which passes through the edge of the silicide layer and forms an angle ? (0°<?<45°) with the horizontal line, intersects with an interface between the silicide layer and an impurity region, and the thickness of the second region to a thickness of a silicon film is 0.6 or more.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: February 9, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromichi Godo, Hajime Tokunaga
  • Patent number: 7659566
    Abstract: Example embodiments relate to a method of fabricating a memory device and a memory device. The method of fabricating a memory device comprises forming a lower electrode and an oxide layer on a lower structure and radiating an energy beam on a region of the oxide layer. The memory device comprises a lower structure and an oxide layer and a lower structure formed on the lower structure, the oxide layer including an electron beam radiation region that received radiation from an electron beam source creating an artificially formed current path through the oxide layer to the lower electrode. A reset current of the memory device may be decreased and stabilized.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: February 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-eon Ahn, Hye-young Kim, Byoung-ho Park, Jung-bin Yun, You-seon Kim
  • Patent number: 7656037
    Abstract: An integrated circuit arrangement is disclosed. In one embodiment, the integrated circuit arrangement includes at least three conductive structures levels and elongated interconnects.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: February 2, 2010
    Assignee: Infineon Technologies AG
    Inventors: Martina Hommel, Heinrich Koerner, Markus Schwerd, Martin Seck
  • Patent number: 7651908
    Abstract: A method of fabricating an image sensor which reduces fabricating costs through simultaneous formation of capacitor structures and contact structures may be provided. The method may include forming a lower electrode on a substrate, forming an interlayer insulating film on the substrate, the interlayer insulating film may have a capacitor hole to expose a first portion of the lower electrode.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Gil-Sang Yoo, Byung-Jun Park
  • Patent number: 7646052
    Abstract: A semiconductor device in which a DRAM and a SRAM are mixedly mounted is provided. The DRAM and the SRAM have a stack-type structure in which a bitline is formed below a capacitive element. A cross couple connection of the SRAM is formed in a layer or below the layer in which a capacitive lower electrode of the DRAM is formed and in a layer or above the layer in which the bitline is formed. For example, the cross couple connection of the SRAM is formed in a same layer as a capacitive contact.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 12, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Takami Nagata, Masaru Ushiroda
  • Publication number: 20100001329
    Abstract: In a complete CMOS SRAM having a memory cell composed of six MISFETs formed over a substrate, a capacitor element having a stack structure is formed of a lower electrode covering the memory cell, an upper electrode, and a capacitor insulating film (dielectric film) interposed between the lower electrode and the upper electrode. One electrode (the lower electrode) of the capacitor element is connected to one storage node of a flip-flop circuit, and the other electrode (the upper electrode) is connected to the other storage node. As a result, the storage node capacitance of the memory cell of the SRAM is increased to improve the soft error resistance.
    Type: Application
    Filed: September 14, 2009
    Publication date: January 7, 2010
    Inventors: Naotaka Hashimoto, Yutaka Hoshino, Shuji Ikeda
  • Patent number: 7638357
    Abstract: A programmable resistance memory element and method of forming the same. The memory element includes a first electrode, a dielectric layer over the first electrode and a second electrode over the dielectric layer. The dielectric layer and the second electrode each have sidewalls. A layer of programmable resistance material, e.g., a phase change material, is in contact with the first electrode and at least a portion of the sidewalls of the dielectric layer and the second electrode. Memory devices including memory elements and systems incorporating such memory devices are also disclosed.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: December 29, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 7635624
    Abstract: A device, as in an integrated circuit, includes diverse components such as transistors and capacitors. After conductive layers for all types of components are produced, a silicide layer is provided over conductive layers, reducing resistance. The device can be an imager in which pixels in an array includes a capacitor and readout circuitry with NMOS transistors. Periphery circuitry around the array can include PMOS transistors. Because the silicide layer is formed after the conductive layers, it is not exposed to high temperatures and, therefore, migration and cross-contamination of dopants is reduced.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: December 22, 2009
    Assignee: Aptina Imaging Corporation
    Inventor: Sungkwon C. Hong
  • Patent number: 7635887
    Abstract: An integrated circuit arrangement includes an undulating capacitor in a conductive structure layer. The surface area of the capacitor is enlarged in comparison with an even capacitor. The capacitor is interlinked with dielectric regions at its top side and/or its underside, so that it can be produced by methods which may not have to be altered in comparison with conventional CMP methods.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: December 22, 2009
    Assignee: Infineon Technologies AG
    Inventor: Anton Steltenpohl
  • Publication number: 20090309147
    Abstract: Provided are a semiconductor memory device whereby generation of dishing during planarization of a peripheral circuit region is suppressed, and a method of fabricating the semiconductor memory device. The semiconductor memory device includes a semiconductor substrate comprising a first active area in a memory cell region and a second active area in a peripheral circuit region; a plurality of first isolation films and a plurality of second isolation films protruding from a surface of the semiconductor substrate and defining the first active area and the second active area, respectively; and at least one polish stopper film formed within the second active area and protruding from the surface of the semiconductor substrate.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 17, 2009
    Inventors: Hong-soo Kim, Su-in Baek, Seung-wook Choi