With Thin Insulator Region For Charging Or Discharging Floating Electrode By Quantum Mechanical Tunneling Patents (Class 257/321)
  • Patent number: 8592272
    Abstract: A method of manufacturing a non-volatile semiconductor memory device of an embodiment includes: forming, on a semiconductor substrate, an element isolation region to be filled with a first insulating film; forming memory cell gate electrodes on element regions; etching the first insulating film so that the first insulating film remains in the element isolation region of a region in which a select gate electrode is to be formed; forming a second insulating film on the memory cell gate electrodes so that an air gap is created between the memory cell gate electrodes; forming two select gate electrodes; forming carbon side walls on the select gate electrodes; implanting ions of an impurity between the two select gate electrodes with the side walls as a mask; and removing the carbon side walls.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koichi Matsuno
  • Patent number: 8592889
    Abstract: A memory structure includes a substrate, a source region, a drain region, a gate insulating layer, a floating gate and a control gate. The substrate has a surface and a well extended from the surface to the interior of the substrate. The source region and the drain region are formed in the well and a channel region is formed between the source region and the drain region. The gate insulating layer is formed on the surface of the substrate between the source region and the drain region and covers the channel region. The floating gate disposed on the gate insulating layer to store a bit data. The control gate is disposed near lateral sides of the floating gate.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: November 26, 2013
    Assignee: United Microelectronics Corp.
    Inventor: Chin-Fu Chen
  • Publication number: 20130307051
    Abstract: A memory structure includes a substrate, a source region, a drain region, a gate insulating layer, a floating gate and a control gate. The substrate has a surface and a well extended from the surface to the interior of the substrate. The source region and the drain region are formed in the well and a channel region is formed between the source region and the drain region. The gate insulating layer is formed on the surface of the substrate between the source region and the drain region and covers the channel region. The floating gate disposed on the gate insulating layer to store a bit data. The control gate is disposed near lateral sides of the floating gate.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 21, 2013
    Applicant: UNITED MICROELECTRONIC CORP.
    Inventor: Chin-Fu CHEN
  • Patent number: 8587051
    Abstract: Provided is an electrically erasable and programmable nonvolatile semiconductor memory device whose tunnel region formed in the drain region has the second conductivity-type low-impurity-concentration region with the first tunnel insulating film for solely injecting electrons disposed thereon, and the first conductivity-type low-impurity-concentration region with the second tunnel insulating film for solely ejecting electrons disposed thereon, both regions fixed to the same potential as the drain region and having a lower impurity concentration than that of the drain region.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: November 19, 2013
    Assignee: Seiko Instruments Inc.
    Inventor: Hiroaki Takasu
  • Patent number: 8587036
    Abstract: A non-volatile memory is formed on a substrate. The non-volatile memory includes an isolation structure, a floating gate, and a gate dielectric layer. The isolation structure is disposed in the substrate to define an active area. The floating gate is disposed on the substrate and crosses over the active area. The gate dielectric layer is disposed between the floating gate and the substrate. The floating gate includes a first region and a second region. An energy band of the second region is lower than an energy band of the first region, so that charges stored in the floating gate are away from an overlap region of the floating gate and the gate dielectric layer.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: November 19, 2013
    Assignee: eMemory Technology Inc.
    Inventors: Shih-Chen Wang, Wen-Hao Ching
  • Patent number: 8581328
    Abstract: In a semiconductor memory device having split-gate MONOS memory cells, disturb resistance during writing by a SSI method is improved. In addition, with an improvement in the disturb resistance of a non-selected memory cell, a reduction in the area occupied by a memory module can be achieved. Over a side surface of a memory gate electrode, a first insulating film is formed between a charge storage film and a second insulating film so that the total thickness of the first and second insulating films over the side surface of the memory gate electrode is larger than the thickness of the second insulating film under the memory gate electrode.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yutaka Okuyama
  • Patent number: 8581322
    Abstract: A method for making a nonvolatile memory device includes the following steps. A conductive structure is formed, wherein the conductive structure has a first top portion. The first top portion is converted into a second top portion having a domed surface.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 12, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chi-Pin Lu, Jung-Yu Hsieh, Ling-Wuu Yang
  • Patent number: 8575680
    Abstract: A semiconductor device includes tunneling insulating layers on active regions of a substrate, floating gate electrodes on the tunneling insulating layers, an isolation trench within the substrate and the isolation trench defines the active region, spaces the tunneling insulating layers, and isolates the floating gate electrodes. A bottom of the isolation trench is directly in contact with the substrate. The semiconductor device further includes a lower insulating layer on the floating gate electrodes, and a middle insulating layer, an upper insulating layer, and a control gate electrode stacked on the lower insulating layer. The lower insulating layer is configured to hermetically seal a top portion of the isolation trench to define and directly abut an air gap within the isolation trench.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: November 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoo-Cheol Shin, Joon-Hee Lee
  • Patent number: 8575684
    Abstract: In a nonvolatile semiconductor memory device provided with memory cell transistors arranged in a direction and a select transistor to select the memory cell transistors, each of the memory cell transistors of a charge trap type are at least composed of a first insulating layer and a first gate electrode respectively, and the select transistor is at least composed of a second insulating layer and a second gate electrode. The first gate electrode is provided with a first silicide layer of a first width formed on the first insulating layer. The second gate electrode is provided with an impurity-doped silicon layer formed on the second insulating layer and with a second silicide layer of a second width formed on the impurity-doped silicon layer. The second silicide has the same composition as the first silicide. The second width is larger than the first width.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: November 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Izumida, Nobutoshi Aoki
  • Patent number: 8575686
    Abstract: A nonvolatile semiconductor memory transistor included in a nonvolatile semiconductor memory includes an island-shaped semiconductor having a source region, a channel region, and a drain region formed in this order from the substrate side, a hollow pillar-shaped floating gate arranged so as to surround the outer periphery of the channel region in such a manner that a tunnel insulating film is interposed between the floating gate and the channel region, and a hollow pillar-shaped control gate arranged so as to surround the outer periphery of the floating gate in such a manner that an inter-polysilicon insulating film is interposed between the control gate and the floating gate. The inter-polysilicon insulating film is arranged so as to be interposed between the floating gate and the upper, lower, and inner side surfaces of the control gate.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 5, 2013
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 8569133
    Abstract: A nonvolatile semiconductor memory device includes a plurality of memory strings, each of which has a plurality of electrically rewritable memory cells connected in series; and select transistors, one of which is connected to each of ends of each of the memory strings. Each of the memory strings is provided with a first semiconductor layer having a pair of columnar portions extending in a perpendicular direction with respect to a substrate, and a joining portion formed so as to join lower ends of the pair of columnar portions; a charge storage layer formed so as to surround a side surface of the columnar portions; and a first conductive layer formed so as to surround the side surface of the columnar portions and the charge storage layer, and configured to function as a control electrode of the memory cells.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: October 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kidoh, Hiroyasu Tanaka, Megumi Ishiduki, Yosuke Komori, Hideaki Aochi
  • Patent number: 8569828
    Abstract: A nonvolatile semiconductor storage device including a number of memory cells formed on a semiconductor substrate, each of the memory cells has a tunnel insulating film, a charge storage layer, a block insulating film, and a gate electrode which are formed in sequence on the substrate. The gate electrode is structured such that at least first and second gate electrode layers are stacked. The dimension in the direction of gate length of the second gate electrode layer, which is formed on the first gate electrode layer, is smaller than the dimension in the direction of gate length of the first gate electrode layer.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: October 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitake Yaegashi
  • Patent number: 8569823
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor region, a tunnel insulating film provided on the semiconductor region, a charge storage insulating film provided on the tunnel insulating film and having a hafnium oxide including a cubic region, a block insulating film provided on the charge storage insulating film, and a control gate electrode provided on the block insulating film.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: October 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsunehiro Ino, Masao Shingu, Shosuke Fujii, Akira Takashima, Daisuke Matsushita, Jun Fujiki, Naoki Yasuda, Yasushi Nakasaki, Koichi Muraoka
  • Patent number: 8564044
    Abstract: An integrated circuit is disclosed that includes a split gate memory device comprising a select gate is located over a substrate. A charge storage layer includes a layer of discrete storage elements and a layer of high-k dielectric material covering at least one side of the layer of discrete storage elements. At least a portion of a control gate is located over the charge storage layer. The control gate includes a layer of barrier work function material and a layer of gate material located over the layer of barrier work function material.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: October 22, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Mark D. Hall
  • Patent number: 8558214
    Abstract: An electronic component includes a first and a second electrode. A layer of nanoparticles is disposed between the first and second electrodes. The layer of nanoparticles includes an electrically conducting compound of a metal and an element of Main Group VI of the Periodic Table. A dimension of a majority of the nanoparticles ranges from 0.1 to 10 times a screening length of the electrically conductive compound. A dielectric layer has at least one common interface with at least a part of the nanoparticles.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: October 15, 2013
    Assignee: Karlsruher Institut fuer Technologie
    Inventor: Horst Hahn
  • Publication number: 20130264630
    Abstract: Semiconductor devices have transistors capable of adjusting threshold voltages through a body bias effect. The semiconductor devices include transistors having a front gate on a substrate, a back gate between adjacent transistors, and a carrier storage layer configured to surround the back gate and to trap a carrier. A threshold voltage of a transistor may be changed in response to voltage applied to the back gate. Related fabrication methods are also described.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 10, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jun Soo Kim, Dong Jin Lee
  • Publication number: 20130256779
    Abstract: A method of manufacturing a semiconductor device comprising: forming a first insulating film on a semiconductor substrate; forming an adsorption film on the first insulating film; forming a first film containing germanium on the adsorption film; forming a second insulating film on the first film; forming a floating electrode film on the second insulating film; forming a third insulating film on the floating electrode film; and forming a gate electrode on the third insulating film.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 3, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Keiichi SAWA, Tetsuya Kai, Shinji Mori, Kenichiro Toratani, Masayuki Tanaka
  • Patent number: 8546239
    Abstract: Air gap isolation in non-volatile memory arrays and related fabrication processes are provided. Electrical isolation can be provided, at least in part, by bit line air gaps that are elongated in a column direction and/or word line air gaps that are elongated in a row direction. The bit line air gaps may be formed in the substrate, extending between adjacent active areas of the substrate, as well as above the substrate surface, extending between adjacent columns of non-volatile storage elements. The word line air gaps may be formed above the substrate surface, extending between adjacent rows of non-volatile storage elements.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: October 1, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Eli Harari, Tuan Pham, Yupin Fong, Vinod Robert Purayath
  • Patent number: 8546867
    Abstract: A technique capable of improving the reliability of a non-volatile memory semiconductor device is provided and, in particular, a technique capable of supplying electricity without fail to a memory gate electrode of split gate transistor is provided. One end of an electricity supply line ESL is arranged over a terminal end TE1 and the other end thereof is arranged over a terminal end TE2, and further, the central portion of the electricity supply line ESL is arranged over a dummy part DMY. That is, the terminal end TE1, the terminal end TE2, and the dummy part DMY have substantially the same height, and therefore, most of the electricity supply line ESL arranged from over the terminal end TE1 to over the terminal end TE2 via the dummy part DMY is formed so as to have the same height.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: October 1, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hiraku Chakihara, Tsutomu Okazaki
  • Publication number: 20130248974
    Abstract: A NAND device has at least a 3×3 array of vertical NAND strings in which the control gate electrodes are continuous in the array and do not have an air gap or a dielectric filled trench in the array. The NAND device is formed by first forming a lower select gate level having separated lower select gates, then forming plural memory device levels containing a plurality of NAND string portions, and then forming an upper select gate level over the memory device levels having separated upper select gates.
    Type: Application
    Filed: January 30, 2013
    Publication date: September 26, 2013
    Applicant: SANDISK TECHNOLOGIES, INC.
    Inventors: Johann ALSMEIER, Raghuveer S. MAKALA, Xiying COSTA, Yanli ZHANG
  • Patent number: 8541882
    Abstract: An IC device comprises a stack of contact levels, each including conductive layer and an insulation layer. A dielectric liner surrounds an interlevel conductor within an opening in the stack of contact levels. The opening passes through a portion of the stack of contact levels. The interlevel conductor is electrically insulated from the conductive layers of each of the contact levels through the dielectric liner. A portion of the conductive layer at the opening is recessed relative to adjacent insulation layers. The dielectric liner may have portions extending between adjacent insulation layers.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 24, 2013
    Assignee: Macronix International Co. Ltd.
    Inventors: Shih-Hung Chen, Yan-Ru Chen, Lo-Yueh Lin
  • Publication number: 20130240974
    Abstract: A semiconductor device has a semiconductor substrate, a pair of select gate transistors provided on a first region of the semiconductor substrate, a plurality of memory cell transistors provided on a second region provided between the pair of select gate transistors on the semiconductor substrate, a gate electrode of each of the memory cell transistors, the gate electrode provided on the second region via a first insulating film, and including a charge storage layer, an intermediate insulating film, and a control gate electrode film stacked therein, a groove exposed a sidewall of the semiconductor substrate on the first region; and a gate electrode of each of the select gate transistors, the gate electrode including the control gate electrode film formed on the sidewall via a second insulating film.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 19, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kenta YAMADA
  • Patent number: 8536634
    Abstract: Method and device embodiments are described for fabricating MOSFET transistors in a semiconductor also containing non-volatile floating gate transistors. MOSFET transistor gate dielectric smiling, or bird's beaks, are adjustable by re-oxidation processing. An additional re-oxidation process is performed by opening a poly-silicon layer prior to forming an inter-poly oxide dielectric provided for the floating gate transistors.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: September 17, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Seiichi Aritome
  • Publication number: 20130234229
    Abstract: A single poly electrically erasable programmable read only memory (single poly EEPROM) device is provided, including: a semiconductor on insulator (SOI) substrate having a P-type semiconductor layer over an insulator layer; a P-well region formed in a portion of the P-type semiconductor layer; a trench isolation formed in the P-type semiconductor layer, surrounding the P-well region; an NMOS transistor formed over a portion of the P-type semiconductor layer of the P-well region; a P+ doping region formed over another portion of the P-type semiconductor layer of the P-well region; and a control gate formed in another portion of the P-type semiconductor layer, adjacent to the trench isolation.
    Type: Application
    Filed: November 9, 2012
    Publication date: September 12, 2013
    Applicant: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventor: Chih-Jen HUANG
  • Patent number: 8530953
    Abstract: A transistor power switch device comprising an array of vertical transistor elements for carrying current between the first and second faces of a semiconductor body and a vertical avalanche diode electrically in parallel with the array of vertical transistors. The array of transistor elements includes at the first face an array of source regions of a first semiconductor type, at least one p region of a second semiconductor type opposite to the first type interposed between the source regions and the second face, at least one control electrode for switchably controlling flow of the current through the p region, and a conductive layer contacting the source regions and insulated from the control electrode.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: September 10, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jean Michel Reynes, Beatrice Bernoux, Rene Escoffier, Pierre Jalbaud, Ivana Deram
  • Publication number: 20130228847
    Abstract: A device having thin-film transistor (TFT) floating gate memory cell structures is provided. The device includes a substrate, a dielectric layer on the substrate, and one or more source or drain regions being embedded in the dielectric layer. the dielectric layer being associated with a first surface. Each of the one or more source or drain regions includes an N+ polysilicon layer on a diffusion barrier layer which is on a first conductive layer. The N+ polysilicon layer has a second surface substantially co-planar with the first surface. Additionally, the device includes a P? polysilicon layer overlying the co-planar surface and a floating gate on the P? polysilicon layer. The floating gate is a low-pressure CVD-deposited silicon layer sandwiched by a bottom oxide tunnel layer and an upper oxide block layer. Moreover, the device includes at least one control gate made of a P+ polysilicon layer overlying the upper oxide block layer.
    Type: Application
    Filed: March 26, 2013
    Publication date: September 5, 2013
    Applicants: Semiconductor Manufacturing International (Beijing) Corporation, Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Fumitake Mieno
  • Publication number: 20130228846
    Abstract: The disclosure relates to an integrated circuit comprising at least two memory cells formed in a semiconductor substrate, and a buried gate common to the selection transistors of the memory cells. The buried gate has a first section of a first depth extending in front of vertical channel regions of the selection transistors, and at least a second section of a second depth greater than the first depth penetrating into a buried source line. The lower side of the buried gate is bordered by a doped region forming a source region of the selection transistors and reaching the buried source line at the level where the second section of the buried gate penetrates into the buried source line, whereby the source region is coupled to the buried source line.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 5, 2013
    Applicant: STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Francesco LA ROSA, Yoann GOASDUFF, Stephan NIEL, Arnaud REGNIER
  • Patent number: 8525248
    Abstract: Some embodiments include memory cells that contain floating bodies and diodes. The diodes may be gated diodes having sections doped to a same conductivity type as the floating bodies, and such sections of the gated diodes may be electrically connected to the floating bodies. The floating bodies may be adjacent channel regions, and spaced from the channel regions by a dielectric structure. The dielectric structure of a memory cell may have a first portion between the floating body and the diode, and may have a second portion between the floating body and the channel region. The first portion may be more leaky to charge carriers than the second portion. The diodes may be formed in semiconductor material that is different from a semiconductor material that the channel regions are in. The floating bodies may have bulbous lower regions. Some embodiments include methods of making memory cells.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: September 3, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Publication number: 20130221423
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes an underlayer and a stacked body. The stacked body includes control gate layers and insulating layers. The device includes a channel body layer penetrating through the stacked body, and the control gate layers and the insulating layers are stacked in the stacking direction, a floating gate layer provided between each of the plurality of control gate layers and the channel body layer. The device includes a block insulating layer provided between each of the plurality of control gate layers and the floating gate layer, and includes a tunnel insulating layer provided between the channel body layer and the floating gate layer. A length of a boundary between the floating gate layer and the block insulating layer is shorter than a length of a boundary between the floating gate layer and the tunnel insulating layer.
    Type: Application
    Filed: August 30, 2012
    Publication date: August 29, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kaori Kawasaki, Yoshiaki Fukuzumi, Naoki Yasuda, Hideaki Aochi
  • Patent number: 8513727
    Abstract: Nonvolatile memory devices having a low off state leakage current and an excellent data retention time characteristics. The present invention provides a surrounding stacked gate fin field effect transistor nonvolatile memory structure comprising a silicon-on-insulator substrate of a first conductivity type and a fin active region projecting from an upper surface of the insulator. The structure further includes a tunnel oxide layer formed on the fin active region and a first gate electrode disposed on the tunnel oxide layer and upper surface of the insulator. Additionally, the structure includes an oxide/nitride/oxide (ONO) composite layer formed on the first gate electrode, a second gate electrode formed on the ONO composite layer and patterned so as to define a predetermined area of the ONO composite layer. The structure further includes a dielectric spacer formed on a sidewall of the second gate electrode and source/drain regions formed in the fin active region on both sides of the second gate electrode.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: August 20, 2013
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Deyuan Xiao, Lily Jiang, Gary Chen, Roger Lee
  • Patent number: 8497545
    Abstract: A method of manufacturing a non-volatile memory device is provided. The method includes forming isolation patterns defining an active region on a substrate, forming a floating gate pattern on the active region, and forming a gate line on the floating gate pattern. The floating gate pattern is self-aligned on the active region and has an impurity ion concentration that becomes relatively low as the floating gate pattern gets nearer to the active region.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: July 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Geun Jee, Ho-Min Son, Yong-Woo Hyung, Jae-Jong Han, Taek-Jin Lim
  • Patent number: 8481388
    Abstract: A non-volatile memory cell may include a semiconductor substrate; a source region in a portion of the substrate; a drain region within a portion of the substrate; a well region within a portion of the substrate. The memory cell may further include a first carrier tunneling layer over the substrate; a charge storage layer over the first carrier tunneling layer; a second carrier tunneling layer over the charge storage layer; and a conductive control gate over the second carrier tunneling layer. Specifically, the drain region is spaced apart from the source region, and the well region may surround at least a portion of the source and drain regions. In one example, the second carrier tunneling layer provides hole tunneling during an erasing operation and may include at least one dielectric layer.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: July 9, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chao-I Wu, Tzu-Hsuan Hsu, Hang-Ting Lue, Erh-Kun Lai
  • Patent number: 8482050
    Abstract: A flash memory device wherein the floating gate of the flash memory is defined by a recessed access device. The use of a recessed access device results in a longer channel length with less loss of device density. The floating gate can also be elevated above the substrate a selected amount so as to achieve a desirable coupling between the substrate, the floating gate and the control gate comprising the flash cell.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: July 9, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Todd Abbott
  • Patent number: 8476694
    Abstract: A memory cell including a substrate, a stacked gate structure and a first isolation structure is provided. The substrate has a first doped region, a second doped and a channel region located between the first doped region and the second doped region. The stacked gate structure is disposed on the channel and at least includes a charge trapping layer and a gate from bottom to top. The first isolation structure is disposed in the substrate and is connected to the first doped region and extends downwards from the first doped region for a predetermined length, and a bottom of the first isolation structure is lower than a bottom of the first doped region.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: July 2, 2013
    Assignee: MACRONIX International Co., Ltd
    Inventors: Po-Chou Chen, Yao-Wen Chang, I-Chen Yang
  • Publication number: 20130161722
    Abstract: A semiconductor device may include a gate structure on a substrate, the gate structure including a first metal; an insulating interlayer covering the gate structure on the substrate; a resistance pattern in the insulating interlayer, the resistance pattern having a top surface lower than a top surface of the insulating interlayer and including a second metal different from the first metal at least at an upper portion thereof; and/or a first contact plug through a first portion of the insulating interlayer, the first contact plug making direct contact with the upper portion of the resistance pattern.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130161723
    Abstract: An electronic device can include a tunnel structure that includes a first electrode, a second electrode, and tunnel dielectric layer disposed between the electrodes. In a particular embodiment, the tunnel structure may or may not include an intermediate doped region that is at the primary surface, abuts a lightly doped region, and has a second conductivity type opposite from and a dopant concentration greater than the lightly doped region. In another embodiment, the electrodes have opposite conductivity types. In a further embodiment, an electrode can be formed from a portion of a substrate or well region, and the other electrode can be formed over such portion of the substrate or well region.
    Type: Application
    Filed: February 20, 2013
    Publication date: June 27, 2013
    Inventors: Thierry Coffi Herve Yao, Gregory James Scott
  • Patent number: 8471295
    Abstract: A flash memory cell string and a method of fabricating the same are provided. The flash memory cell string includes a plurality of cell devices and switching devices connected to ends of the cell devices. Each of the cell devices includes a semiconductor substrate, a tunneling insulating layer, a charge storage node, a control insulating layer, and a control electrode which are sequentially laminated on the semiconductor substrate. In each cell device, a source/drain region is not formed. The switching device does not include a source or drain region in a side connected to the cell devices. The switching device includes a source or drain region in the other side that is not connected to the cell devices. The source or drain region does or does not overlap the control electrode. Accordingly, it is possible to improve a miniaturization property and performance of NAND flash memory cell devices.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: June 25, 2013
    Assignee: SNU R&DB Foundation
    Inventor: Jong-Ho Lee
  • Publication number: 20130153981
    Abstract: A nonvolatile memory device, and method of forming the same, discloses a semiconductor device including floating gates that each have a first region that overlaps with a corresponding junction and that each have a second region that does not overlap the corresponding junction. The first region and the second region have different work functions.
    Type: Application
    Filed: September 4, 2012
    Publication date: June 20, 2013
    Inventor: Kyoung Rok HAN
  • Patent number: 8460983
    Abstract: Doped semiconductor ink formulations, methods of making doped semiconductor ink formulations, methods of coating or printing thin films, methods of forming electronic devices and/or structures from the thin films, and methods for modifying and controlling the threshold voltage of a thin film transistor using the films are disclosed. A desired dopant may be added to an ink formulation comprising a Group IVA compound and a solvent, and then the ink may be printed on a substrate to form thin films and conductive structures/devices, such as thin film transistors. By adding a customized amount of the dopant to the ink prior to printing, the threshold voltage of a thin film transistor made from the doped semiconductor ink may be independently controlled upon activation of the dopant.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: June 11, 2013
    Assignee: Kovio, Inc.
    Inventors: Wenzhuo Guo, Fabio Zürcher, Arvind Kamath, Joerg Rockenberger
  • Patent number: 8461641
    Abstract: Monolithic three dimensional NAND string includes a semiconductor channel having a U-shaped pipe shape. A plurality of control gate electrodes having a strip shape extends substantially parallel to the major surface of the substrate. The plurality of control gate electrodes include at least a first control gate electrode located in a first device level and a second control gate electrode located in a second device level located over the major surface of the substrate and below the first device level. A cut area separates the plurality of control gate electrodes in a direction substantially perpendicular to the major surface of the substrate. A blocking dielectric is located in contact with the plurality of control gate electrodes, a charge storage region located in contact with the blocking dielectric and a tunnel dielectric is located between the charge storage region and the semiconductor channel.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: June 11, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Johann Alsmeier, Vinod Robert Purayath, Henry Chien, George Matamis, Yao-Sheng Lee, James Kai, Yuan Zhang
  • Patent number: 8461640
    Abstract: A non-volatile memory cell has a substrate layer with a fin shaped semiconductor member of a first conductivity type on the substrate layer. The fin shaped member has a first region of a second conductivity type and a second region of the second conductivity type, spaced apart from the first region with a channel region extending between the first region and the second region. The fin shaped member has a top surface and two side surfaces between the first region and the second region. A word line is adjacent to the first region and is capacitively coupled to the top surface and the two side surfaces of a first portion of the channel region. A floating gate is adjacent to the word line and is insulated from the top surface and is capacitively coupled to the two side surfaces of a second portion of the channel region. A coupling gate is capacitively coupled to the floating gate. An erase gate is insulated from the second region and is adjacent to the floating gate and coupling gate.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: June 11, 2013
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Yaw Wen Hu, Prateep Tuntasood
  • Publication number: 20130134496
    Abstract: A method of manufacturing a semiconductor device, the method including forming a tunnel insulating layer on an upper surface of a substrate, forming gate patterns on an upper surface of the tunnel insulating layer, forming capping layer patterns on sidewalls of the gate patterns and on the upper surface of the tunnel insulating layer, etching a portion of the tunnel insulating layer that is not covered with the gate patterns or the capping layer patterns to form a tunnel insulating layer pattern, and forming a first insulating layer on the upper surface of the substrate to cover the gate patterns, the capping layer patterns, and the tunnel insulating layer pattern, wherein the first insulating layer has an air gap between the capping layer patterns.
    Type: Application
    Filed: August 30, 2012
    Publication date: May 30, 2013
    Inventors: Sung-Soo AHN, O IK KWON, Bum-Soo KIM, Hyun-Sung KIM, Kyoung-Sub SHIN, Min-Kyung YUN, Seung-Pil CHUNG, Won-Bong JUNG
  • Patent number: 8440527
    Abstract: A memory device and a method of fabricating the same are provided. The memory device includes a tunneling dielectric layer on a substrate, a charge storage layer on the tunneling dielectric layer, a blocking dielectric layer on the charge storage layer, the blocking dielectric layer including a first dielectric layer having silicon oxide, a second dielectric layer on the first dielectric layer and having aluminum silicate, and a third dielectric layer formed on the second dielectric layer and having aluminum oxide, and an upper electrode on the blocking dielectric layer.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 14, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Chul Yoo, Eun-Ha Lee, Hyung-Ik Lee, Ki-Hyun Hwang, Sung Heo, Han-Mei Choi, Yong-Koo Kyoung, Byong-Ju Kim
  • Patent number: 8436413
    Abstract: A nonvolatile floating gate analog memory cell (1) comprising a transistor having a source (2) and drain (3) formed inside a substrate or on an insulator body (not shown) and separated by a channel (4). The memory cell comprises at least one floating gate (5) formed on one side of the source and drain. (6) is a control gate formed on one side of the floating gate and connected to a first voltage (7). (8) is a back gate formed on the other side of the source and drain and connected to a second voltage (9). The channel is separated from the floating gate and the back gate by an insulation layer (10). The control gate is separated from the floating gate by an insulation layer (11) and the source and drain are isolated from the back gate, control gate and floating gate(s) by a spacer (12). The second voltage changes the intrinsic threshold voltage linearly during programming so that the programmed threshold voltage corresponds to the second voltage.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: May 7, 2013
    Assignee: Indian Institute of Technology, Bombay
    Inventors: Mayank Shrivatsava, Maryam Shojaei Baghini, Dinesh Kumar Sharma, Ramgopal Rao
  • Patent number: 8431983
    Abstract: A non-volatile memory device and a method of fabricating the same are provided. The method can include disposing an isolation layer on a semiconductor substrate. The isolation layer may protrude from the main surface of the semiconductor substrate and define an active region. In a recess defined by the protrusion of the isolation layer and the active region, a diffusion-retarding poly pattern and a floating gate may be formed in sequence. A control gate may be disposed on the isolation layer to cover the diffusion-retarding poly pattern and the floating gate.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: April 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woong Lee, Jung-Yoon Ko, Sang-Kyoung Lee, Ho-Min Son, Won-Jun Jang, Jung-Geun Jee
  • Patent number: 8426280
    Abstract: There is provided a charge trap type non-volatile memory device and a method for fabricating the same, the charge trap type non-volatile memory device including: a tunnel insulation layer formed over a substrate; a charge trap layer formed over the tunnel insulation layer, the charge trap layer including a charge trap polysilicon thin layer and a charge trap nitride-based layer; a charge barrier layer formed over the charge trap layer; a gate electrode formed over the charge barrier layer; and an oxide-based spacer formed over sidewalls of the charge trap layer and provided to isolate the charge trap layer.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: April 23, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Cha-Deok Dong
  • Patent number: 8426905
    Abstract: The present invention relates to electrically active devices (e.g., capacitors, transistors, diodes, floating gate memory cells, etc.) having dielectric, conductor, and/or semiconductor layers with smooth and/or dome-shaped profiles and methods of forming such devices by depositing or printing (e.g., inkjet printing) an ink composition that includes a semiconductor, metal, or dielectric precursor. The smooth and/or dome-shaped cross-sectional profile allows for smooth topological transitions without sharp steps, preventing feature discontinuities during deposition and allowing for more complete step coverage of subsequently deposited structures. The inventive profile allows for both the uniform growth of oxide layers by thermal oxidation, and substantially uniform etching rates of the structures. Such oxide layers may have a uniform thickness and provide substantially complete coverage of the underlying electrically active feature.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: April 23, 2013
    Assignee: Kovio, Inc.
    Inventors: Arvind Kamath, Erik Scher, Patrick Smith, Aditi Chandra, Steven Molesa
  • Patent number: 8421143
    Abstract: Disclosure is semiconductor device of a selective gate region, comprising a semiconductor layer, a first insulating film formed on the semiconductor layer, a first electrode layer formed on the first insulating layer, an element isolating region comprising an element isolating insulating film formed to extend through the first electrode layer and the first insulating film to reach an inner region of the semiconductor layer, the element isolating region isolating a element region and being self-aligned with the first electrode layer, a second insulating film formed on the first electrode layer and the element isolating region, an open portion exposing a surface of the first electrode layer being formed in the second insulating film, and a second electrode layer formed on the second insulating film and the exposed surface of the first electrode layer, the second electrode layer being electronically connected to the first electrode layer via the open portion.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: April 16, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michiharu Matsui, Seiichi Mori, Riichiro Shirota, Yuji Takeuchi, Takeshi Kamigaichi
  • Patent number: 8421106
    Abstract: A light emitting device includes a light emitting structure formed from an active layer located between two semiconductor layers. An insulator extends through the active layer and at least partially through the semiconductor layers, and the light emitting structure is located between a first electrode and a second electrode layer. The first electrode and insulator overlap one another and may have the same or different widths.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 16, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sung Min Hwang
  • Patent number: 8405139
    Abstract: Disclosure is semiconductor device of a selective gate region, comprising a semiconductor layer, a first insulating film formed on the semiconductor layer, a first electrode layer formed on the first insulating layer, an element isolating region comprising an element isolating insulating film formed to extend through the first electrode layer and the first insulating film to reach an inner region of the semiconductor layer, the element isolating region isolating a element region and being self-aligned with the first electrode layer, a second insulating film formed on the first electrode layer and the element isolating region, an open portion exposing a surface of the first electrode layer being formed in the second insulating film, and a second electrode layer formed on the second insulating film and the exposed surface of the first electrode layer, the second electrode layer being electronically connected to the first electrode layer via the open portion.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: March 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michiharu Matsui, Seiichi Mori, Riichiro Shirota, Yuji Takeuchi, Takeshi Kamigaichi