Insulated Gate Field Effect Transistor Adapted To Function As Load Element For Switching Insulated Gate Field Effect Transistor Patents (Class 257/393)
  • Patent number: 7872315
    Abstract: An integrated switching device has a switching IGFET connected between a pair of main terminals, a protector IGFET connected between the drain and gate electrodes of the switching IGFET, and a gate resistor connected between a main control terminal and the gate electrode of the switching IGFET. The protector IGFET has its gate electrode connected to the source electrode of the switching IGFET. The protector IGFET turns on in response to an application of a verse voltage to the switching IGFET thereby protecting the same from a reverse current flow.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: January 18, 2011
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Ryoji Takahashi
  • Patent number: 7872290
    Abstract: A memory cell of a semiconductor device and a method for forming the same, wherein the memory cell includes a substrate having active regions and field regions, a gate layer formed over the substrate, the gate layer including a plurality of access gates formed over the active regions of the substrate and a plurality of pass gates formed over the field regions of the substrate, first self-aligned contact regions formed between adjacent pass gates and access gates, and second self-aligned contact regions formed between adjacent access gates, wherein a width of each of the first self-aligned contact regions is larger than a width of each of the second self-aligned contact regions.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: January 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-Young Kim, Jin-Jun Park
  • Patent number: 7863691
    Abstract: Disclosed are embodiments of an improved integrated circuit switching device that incorporates multiple sets of series connected field effect transistors with each set further connected in parallel between two nodes. The sets are arranged in a linear fashion with each set positioned such that it is in contact with and essentially symmetrical relative to an adjacent set. Arranging the sets in this manner allows adjacent diffusion regions of the same type (i.e., sources or drains) from adjacent sets to be merged. Merging of the diffusion regions provides several benefits, including but not limited to, reducing the device size, reducing the amount of required wiring for the device (i.e., reducing resistance) and reducing side capacitance between the now merged diffusion regions and the substrate. Also disclosed are embodiments of an associated design structure for the device and an associated method of forming the device.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Lawrence F. Wagner, Jr., Randy L. Wolf
  • Publication number: 20100314692
    Abstract: A SRAM bit cell and an associated method of producing the SRAM bit cell with improved performance and stability is provided. In one configuration, channel mobility of the transistors within the SRAM bit cell may be adjusted to provide improved stability. In order to adjust the channel mobility, a stress memorization technique may be used, a wide spacer may be used, germanium may be implanted on tensile stress silicon nitride, a compressive liner may be used or silicon germanium may be embedded in one or more of the devices in the cell. In another configuration, the gate capacitance of each device within the SRAM bit cell may be adjusted to achieve high SRAM yield. For instance, a thick gate oxide may be used, phosphorous pre-doping may be used or fluorine pre-doping may be used in one or more of the devices within the cell.
    Type: Application
    Filed: August 23, 2010
    Publication date: December 16, 2010
    Applicant: TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.
    Inventor: Katsura Miyashita
  • Publication number: 20100308419
    Abstract: An integrated circuit containing an array of SRAM cells with T-shaped contacts in the inverters, in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. The drain connecting segments may also extend beyond gate connecting segments by a distance greater than one-third of the width of the gate connecting segments. A process of forming an integrated circuit containing an array of SRAM cells with T-shaped contacts in which drain connecting segments may extend beyond gate connecting segments by a distance greater than 10 percent of a separation distance between ends of opposite drain connecting segments. A process may also form the drain connecting segments to extend beyond gate connecting segments by greater than one-third of the width of the gate connecting segments.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Applicant: Texas Instruments Incorporated
    Inventors: Theodore W. Houston, Thomas J. Aton, Scott W. Jessen
  • Publication number: 20100289091
    Abstract: A semiconductor device is provided with an SRAM cell unit. The SRAM cell unit is provided with a data storing section composed of a pair of drive transistors and a pair of load transistors; a data write section composed of a pair of access transistors; and a data read section composed of an access transistor and a drive transistor. Each of the transistors is provided with a semiconductor layer protruding from a base plane; a gate electrode extending on the both facing side planes over the semiconductor layer from above; a gate insulating film between a gate electrode and a semiconductor layer; and a source/drain region. Each semiconductor layer is arranged to have its longitudinal direction along a first direction. In the adjacent SRAM cell units in the first direction, all the corresponding transistors have the semiconductor layer of one transistor on a center line which is along the first direction of the semiconductor layer of the other transistor.
    Type: Application
    Filed: December 1, 2006
    Publication date: November 18, 2010
    Applicant: NEC CORPORATION
    Inventors: Koichi Takeda, Kiyoshi Takeuchi
  • Patent number: 7825457
    Abstract: There is provided a semiconductor device including a semiconductor substrate (10), a high concentration diffusion region (22) formed within the semiconductor substrate (10), a first low concentration diffusion region (24) that has a lower impurity concentration than the high concentration diffusion region (22) and is provided under the high concentration diffusion region (22), and a bit line (30) that includes the high concentration diffusion region (22) and the first low concentration diffusion region (24) and serves as a source region and a drain region, and a manufacturing method therefor. Reduction of source-drain breakdown voltage of the transistor is suppressed, and a low-resistance bit line can be formed. Thus, a semiconductor device that can miniaturize memory cells and a manufacturing method therefor can be provided.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: November 2, 2010
    Assignee: Spansion LLC
    Inventor: Masatomi Okanishi
  • Patent number: 7821050
    Abstract: A transistor fabricated on a semiconductor substrate includes a source and a drain in the substrate; a gate on the substrate, the gate being insulated from the substrate by gate dielectric; barrier layers covering two sides of the gate and the gate dielectric; spacers of high-k material covering the barrier layers; and nitride spacers covering the spacers of high-k material. The spacers of high-k material significantly increase the node capacitance of the transistor and therefore reduce the transistor's soft error rate.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: October 26, 2010
    Assignee: Altera Corporation
    Inventors: Yowjuang (Bill) Liu, Cheng-Hsiung Huang, Chih-Ching Shih
  • Publication number: 20100264497
    Abstract: Multiple threshold voltage (Vt) field-effect transistor (FET) devices and techniques for the fabrication thereof are provided. In one aspect, a FET device is provided including a source region; a drain region; at least one channel interconnecting the source and drain regions; and a gate, surrounding at least a portion of the channel, configured to have multiple threshold voltages due to the selective placement of at least one band edge metal throughout the gate.
    Type: Application
    Filed: April 21, 2009
    Publication date: October 21, 2010
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Renee T. Mo, Vijay Narayanan, Jeffrey W. Sleight
  • Patent number: 7816738
    Abstract: In order to reduce power dissipation requirements, obtain full potential transistor performance and avoid power dissipation limitations on transistor performance in high density integrated circuits, transistors are operated in a sub-threshold (sub-Vth) or a near sub-Vth voltage regime (generally about 0.2 volts rather than a super-Vth regime of about 1.2 volts or higher) and optimized for such operation, particularly through simplification of the transistor structure, since intrinsic channel resistance is dominant in sub-Vth operating voltage regimes. Such simplifications include an underlap or recess of the source and drain regions from the gate which avoids overlap capacitance to partially recover loss of switching speed otherwise caused by low voltage operation, an ultra-thin gate structure having a thickness of 500 ? or less which also simplifies forming connections to the transistor and an avoidance of silicidation or alloy formation in the source, drain and/or gate of transistors.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: October 19, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, William F. Clark, Jr., Jeffrey P. Gambino, Shih-Fen Huang, Edward J. Nowak, Anthony K. Stamper
  • Patent number: 7816740
    Abstract: An integrated circuit (IC) includes a memory cell having source/drain regions for defining source/drains of a first pull-up or pull-down (PU/PD) transistor for a first storage node, a second PU/PD transistor for a second storage node, and driver, cell pass, and buffer pass transistors. The memory cell includes a first gate electrode region for the first PU/PD and driver transistors, a second gate electrode region for the cell pass and buffer pass transistors, and a third gate electrode region for the second PU/PD transistor. The third gate electrode region and the cell pass transistor are coupled to the first storage node and the first gate electrode region is coupled to the second storage node. The buffer pass and driver transistors are coupled to a source/drain path of the cell pass transistor and the buffer pass transistor is coupled between a bitline (BL) node and the driver transistor.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: October 19, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore Warren Houston, Xiaowei Deng
  • Patent number: 7781846
    Abstract: Prior known static random access memory (SRAM) cells are required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one regions is provided per group of thirty two memory cell rows or sixty four cell rows.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: August 24, 2010
    Assignee: Renesas Technology Corporation
    Inventors: Kenichi Osada, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Patent number: 7759716
    Abstract: A semiconductor device in which a plurality of chips can be reliably stacked without reducing integration thereof. The semiconductor device includes a substrate on which a circuit is provided. Pads are disposed on the substrate for testing the circuit. At least one terminal is provided on the substrate. First conductors are used to electrically couple the pads and the circuit. Second conductors are used to electrically couple the at least one terminal and the circuit. A switching element is disposed in the middle of the first conductors to control the electrical connection between the pads and the circuit. A plurality of semiconductor devices may be stacked on top of one another to form a stacked module, wherein chip selection lines are formed, which extend to the bottom of each of the semiconductor devices to electrically couple chip selection terminals from among the at least one terminal of the semiconductor devices.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: July 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Duk Baek, Sun-Won Kang
  • Patent number: 7759743
    Abstract: A metal supplying an N well voltage is provided in a first metal interconnection layer. The metal is electrically coupled to an active layer provided in an N well region by shared contacts so that the N well voltage is supplied to the N well region. A metal supplying a P well voltage is provided in a third metal interconnection layer. The metal supplying the N well voltage is formed using a metal in the first metal interconnection layer and thus does not require a piling region to the underlayer, and only a piling region to the underlayer of the metal for the P well voltage needs to be secured. Therefore, the length in the Y direction of a power feed cell can be reduced thereby reducing the layout area of the power feed cell.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: July 20, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Yuichiro Ishii
  • Patent number: 7755148
    Abstract: Logic LSI includes first power domains PD1 to PD4, thick-film power switches SW1 to SW4, and power switch controllers PSWC1 to PSWC4. The thick-film power switches are formed by thick-film power transistors manufactured in a process common to external input/output circuits I/O. The first power domains include second power domains SPD11 to SPD42 including logic blocks, control circuit blocks SCB1 to SCB4, and thin-film power switches SWN11 to SWN42 that are connected to the thick-film power switches via virtual ground lines VSSM1 to VSSM4, and formed by thin-film power transistors manufactured in a process common to the logic blocks. In this way, power switches having different thickness of gate insulating films from one another are vertically stacked so as to be in a hierarchical structure, and each power switch is individually controlled by a power switch controller and a control circuit block correspondingly to each mode.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: July 13, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Yusuke Kanno, Kenichi Yoshizumi
  • Patent number: 7738285
    Abstract: In a multiport SRAM memory cell of the present invention, an access transistor of a first port is disposed in a p-type well, and an access transistor of a second port is disposed in a p-type well. The gates of all of transistors disposed in a memory cell extend in the same direction. With the configuration, a semiconductor memory device having a low-power consumption type SRAM memory cell with an increased margin of variations in manufacturing, by which a bit line can be shortened in a multiport SRAM memory cell or an associative memory, can be obtained.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: June 15, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Koji Nii
  • Publication number: 20100127337
    Abstract: An inverter structure is disclosed. The inverter structure includes an NMOS transistor and a PMOS transistor. Preferably, the NMOS transistor includes an n-type gate electrode and an n-type source/drain region, and the PMOS transistor includes a p-type gate electrode and a p-type source/drain region. Specifically, the n-type gate electrode and the p-type gate electrode are physically separated and electrically connected by a conductive contact.
    Type: Application
    Filed: November 27, 2008
    Publication date: May 27, 2010
    Inventors: Chien-Li Kuo, Chia-Chun Sun, Chuan-Hsien Fu, Chun-Liang Hou, Yun-San Huang
  • Patent number: 7723795
    Abstract: A semiconductor memory device includes a first active region formed having a first portion extending laterally and second portion extendedly vertically upward from a central portion of the first portion; a second active region formed spaced from the first active region, the second active region having a third portion extending laterally, fourth and fifth portions extending vertically downwardly at distal end portions of the third portion, and a sixth portion extending vertically downwardly at a central portion of the third portion; a first gate formed extending vertically and overlapping the first portion of the first active region and the third portion of the second active regions; a second gate formed extending vertically and overlapping the first portion of the first active region and the third portion of the second active regions; a third gate formed extending in a direction perpendicular to the first and second gates and overlapping of the fourth and fifth portions of the second active region; and a plur
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: May 25, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Ji-Ho Hong
  • Patent number: 7723804
    Abstract: A semiconductor device includes a semiconductor layer, and a first transistor and a second transistor that are formed using the semiconductor layer, wherein each conductance of the first and second transistors changes complementarily to each other according to a curvature of the semiconductor layer.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: May 25, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Yoshiharu Ajiki
  • Publication number: 20100084716
    Abstract: Provided is a semiconductor device including a substrate, a gate insulating film which is formed on the substrate, and a gate electrode which is provided on the gate insulating film. The gate electrode includes a first metal silicide including a first metal material, and a second metal silicide including one of a second metal material and the second metal material in a contact portion between the gate insulating film and the gate electrode. The second metal silicide including the second metal material is a metal-rich silicide in which the composition ratio of the second metal material to silicon in the second metal silicide including the second metal is greater than 1.
    Type: Application
    Filed: October 1, 2009
    Publication date: April 8, 2010
    Applicant: NEC Electronics Corporation
    Inventors: Hiroshi SUNAMURA, Kouji MASUZAKI
  • Publication number: 20100072560
    Abstract: A method of manufacturing a nonvolatile memory device wherein first gate lines and second gate lines are formed over a semiconductor substrate. The first gate lines are spaced-from each other at a first width, the second gate lines are spaced-from each other at a second width, and the first width is wider than the second width. A first ion implantation process of forming first junction regions in the semiconductor substrate between the first gate lines and the second gate lines is performed. A second ion implantation process of forming second junction regions in the respective first junction regions between the first gate lines is then performed.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 25, 2010
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Hee Youl Lee, Jae Yoon Noh
  • Publication number: 20100072559
    Abstract: A semiconductor device having a string gate structure and a method of manufacturing the same suppress leakage current. The semiconductor device includes a selection gate and a memory gate. The channel region of the selection gate has a higher impurity concentration than that of the memory gate. Impurities may be implanted at different angles to form the channel regions having different impurity concentrations.
    Type: Application
    Filed: September 9, 2009
    Publication date: March 25, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Changhyun LEE, Jungal CHOI
  • Patent number: 7679144
    Abstract: The semiconductor device includes a silicon substrate, a device isolation insulating film dividing an active region of the silicon substrate into plural pieces, a gate electrode formed on the active region, a source/drain region which is formed in the active region on both sides of the gate electrode, and which constitutes a MOS transistor of an SRAM memory cell with the gate electrode, an interlayer insulating film formed over each of the active region and the device isolation insulating film, a first hole which is formed in the interlayer isolation insulating film, and which commonly overlaps with two adjacent active regions and the device isolation insulating film between the active regions, and a first conductive plug which is formed in the first hole, and which electrically connects the two active regions.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: March 16, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Hiroshi Kudo, Kenji Ishikawa
  • Patent number: 7667276
    Abstract: There is provided a small-type semiconductor integrated circuit whose circuit area is small and whose wiring length is short. The semiconductor integrated circuit is constructed in a multi-layer structure and is provided with a first semiconductor layer, a first semiconductor layer transistor formed in the first semiconductor layer, a wiring layer which is deposited on the first semiconductor layer and in which metal wires are formed, a second semiconductor layer deposited on the wiring layer and a second semiconductor layer transistor formed in the second semiconductor layer. It is noted that insulation of a gate insulating film of the first semiconductor layer transistor is almost equal with that of a gate insulating film of the second semiconductor layer transistor and the gate insulating film of the second semiconductor layer transistor is formed by means of radical oxidation or radical nitridation.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: February 23, 2010
    Assignees: Advantest Corporation, National University Corporation Tohoku University
    Inventors: Tadahiro Ohmi, Koji Kotani, Kazuyuki Maruo, Takahiro Yamaguchi
  • Patent number: 7652337
    Abstract: Nanotube-based switching elements and logic circuits. Under one aspect, a switching element includes an input node; an output node; a nanotube channel element comprising a ribbon of nanotube fabric; and a control electrode disposed in relation to the nanotube channel element to form an electrically conductive channel between the input node and the output node, wherein the electrically conductive channel at least includes the nanotube channel element. Under another aspect, a switching element includes an input node; an output node; a nanotube channel element comprising at least one electrically conductive nanotube, the nanotube being clamped at both ends by a clamping structure; and a control electrode disposed in relation to the nanotube channel element to form an electrically conductive channel between the input node and the output node, wherein the electrically conductive channel at least includes the nanotube channel element.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: January 26, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Patent number: 7652333
    Abstract: The semiconductor integrated circuit has so-called SOI type first MOS transistors (MNtk, MPtk) and second MOS transistors (MNtn, MPtn). The first MOS transistors have a gate isolation film thicker than that the second MOS transistors have. The first and second MOS transistors constitute a power-supply-interruptible circuit (6) and a power-supply-uninterrupted circuit (7). The power-supply-interruptible circuit has the first MOS transistors each constituting a power switch (10) between a source line (VDD) and a ground line (VSS), and the second MOS transistors connected in series with the power switch. A gate control signal for the first MOS transistors each constituting a power switch is made larger in amplitude than that for the second MOS transistors. This enables power-source cutoff control with a high degree of flexibility commensurate with the device isolation structure, which an SOI type semiconductor integrated circuit has originally.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 26, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Osamu Ozawa, Toshio Sasaki, Ryo Mori, Takashi Kuraishi, Yoshihiko Yasu, Koichiro Ishibashi
  • Publication number: 20100001329
    Abstract: In a complete CMOS SRAM having a memory cell composed of six MISFETs formed over a substrate, a capacitor element having a stack structure is formed of a lower electrode covering the memory cell, an upper electrode, and a capacitor insulating film (dielectric film) interposed between the lower electrode and the upper electrode. One electrode (the lower electrode) of the capacitor element is connected to one storage node of a flip-flop circuit, and the other electrode (the upper electrode) is connected to the other storage node. As a result, the storage node capacitance of the memory cell of the SRAM is increased to improve the soft error resistance.
    Type: Application
    Filed: September 14, 2009
    Publication date: January 7, 2010
    Inventors: Naotaka Hashimoto, Yutaka Hoshino, Shuji Ikeda
  • Publication number: 20090309170
    Abstract: Disclosed herein is a semiconductor device having a power cutoff transistor including a semiconductor substrate of a first conductivity type; and first and second wells of the first conductivity type formed to be spaced from each other in the semiconductor substrate.
    Type: Application
    Filed: May 13, 2009
    Publication date: December 17, 2009
    Applicant: Sony Corporation
    Inventor: Masakatsu Nakai
  • Publication number: 20090289302
    Abstract: A semiconductor device 1 comprises: a semiconductor substrate 100; first semiconductor element regions formed on the semiconductor substrate 100 in which first semiconductor elements of first conductivity type are to be formed; second semiconductor element regions formed on the semiconductor substrate 100 in which second semiconductor elements of second conductivity type are to be formed; and element separation regions 120 for separating the first semiconductor element regions and the second semiconductor element regions, wherein the first semiconductor element regions are formed at the locations higher than those of the element separation regions 120 neighboring to the first semiconductor element regions.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 26, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Eiji MORIFUJI
  • Patent number: 7612417
    Abstract: Prior known static random access memory (SRAM) cells are required that a diffusion layer be bent into a key-like shape in order to make electrical contact with a substrate with a P-type well region formed therein, which would result in a decrease in asymmetry leading to occurrence of a problem as to the difficulty in micro-patterning. To avoid this problem, the P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one regions is provided per group of thirty two memory cell rows or sixty four cell rows.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: November 3, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Kenichi Osada, Masataka Minami, Shuji Ikeda, Koichiro Ishibashi
  • Patent number: 7605435
    Abstract: A bi-directional power switch is formed as a monolithic semiconductor device. The power switch has two MOSFETs formed with separate source contacts to the external package and a common drain. The MOSFETs have first and second channel regions formed over a well region above a substrate. A first source is formed in the first channel. A first metal makes electrical contact to the first source. A first gate region is formed over the first channel. A second source region is formed in the second channel. A second metal makes electrical contact to the second source. A second gate region is formed over the second channel. A common drain region is disposed between the first and second gate regions. A local oxidation on silicon region and field implant are formed over the common drain region. The metal contacts are formed in the same plane as a single metal layer.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: October 20, 2009
    Assignee: Great Wall Semiconductor Corporation
    Inventors: Samuel J. Anderson, David N. Okada
  • Patent number: 7605434
    Abstract: A semiconductor memory device of this invention includes a first bank, a second bank, and a bank decoder that selects a bank to be activated from the first and second banks. When testing operations of first memory cells and second memory cells, the bank decoder simultaneously selects the first and second banks, and first and second write load circuits simultaneously write data in memory cells in first and second blocks, respectively.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: October 20, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tomohito Kawano
  • Patent number: 7598558
    Abstract: In a complete CMOS SRAM having a memory cell composed of six MISFETs formed over a substrate, a capacitor element having a stack structure is formed of a lower electrode covering the memory cell, an upper electrode, and a capacitor insulating film (dielectric film) interposed between the lower electrode and the upper electrode. One electrode (the lower electrode) of the capacitor element is connected to one storage node of a flip-flop circuit, and the other electrode (the upper electrode) is connected to the other storage node. As a result, the storage node capacitance of the memory cell of the SRAM is increased to improve the soft error resistance.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: October 6, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Naotaka Hashimoto, Yutaka Hoshino, Shuji Ikeda
  • Patent number: 7598541
    Abstract: A semiconductor device has transistors (P1,P10,P11) formed in an active region (22) isolated by a trench isolation region, and a predetermined circuit including a first and second transistors (P10,P11) that require symmetry or relativity characteristics, wherein the distances (S1) between a gate electrode and one end of the active region on a source side viewed from the gate electrode in the first and second transistor are substantially same, and the distances (D1) between a gate electrode and one end of the active region on a drain side viewed from the gate electrode in the first and second transistor are substantially same. The predetermined circuit includes, for example, a current mirror circuit that has a transistor pair of which gate is commonly connected, and a differential circuit that has a transistor pair whose sources are commonly connected, where an input signal is supplied to the gate, and an output signal is generated in the drain.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: October 6, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Atsushi Okamoto, Toshiharu Takaramoto
  • Patent number: 7595533
    Abstract: When n-channel thin film transistors(TFTs) and p-channel TFTs are formed on a polycrystalline silicon film formed on a glass substrate, a process is included in which P-dopant or N-dopant is introduced at the same time to the channel region of a part of the n-channel TFTs and a part of the p-channel TFTs. In one channel doping operation, a set of low-VT and high-VT p-channel TFTs and a set of low-VT and high-VT n-channel TFTs can be formed. This method is used for forming high-VT TFTs, which can reduce the off-current, in logics and switch circuits and for forming low-VT TFTs, which can enlarge the dynamic range, in analog circuits to improve the performance of a thin film semiconductor.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: September 29, 2009
    Assignee: NEC Corporation
    Inventors: Kenji Sera, Hiroshi Tsuchi
  • Patent number: 7595536
    Abstract: A semiconductor device that can prevent an unnecessary current path from being formed so that a normal signal is transmitted is provided. The semiconductor device comprises an N? region formed in a surface region of a P type substrate, a P region formed in the surface region, the P region included in the N? region or adjacent to the N? region, one or more semiconductor elements each of which has a first N type region and a second N type region formed in a portion of the P region, the first N type region and the second N type region being separated from each other, a first electrode formed on the first N type region, a second electrode formed on the second N type region, and a gate electrode formed over a surface of the P region between the first N type region and the second N type region. The first N type region and the second N type region are surrounded by the P region and separated from the N? region.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: September 29, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Tomohide Terashima
  • Publication number: 20090224334
    Abstract: Disclosed are embodiments of an improved integrated circuit switching device that incorporates multiple sets of series connected field effect transistors with each set further connected in parallel between two nodes. The sets are arranged in a linear fashion with each set positioned such that it is in contact with and essentially symmetrical relative to an adjacent set. Arranging the sets in this manner allows adjacent diffusion regions of the same type (i.e., sources or drains) from adjacent sets to be merged. Merging of the diffusion regions provides several benefits, including but not limited to, reducing the device size, reducing the amount of required wiring for the device (i.e., reducing resistance) and reducing side capacitance between the now merged diffusion regions and the substrate. Also disclosed are embodiments of an associated design structure for the device and an associated method of forming the device.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 10, 2009
    Inventors: Lawrence F. Wagner, JR., Randy L. Wolf
  • Patent number: 7586155
    Abstract: An apparatus and method for manufacturing metal-oxide semiconductor (MOS) transistors that are operable at voltages below 1.5V, which MOS transistors are area efficient, and where the drive strength and leakage current of the MOS transistors is improved. The invention uses a dynamic threshold voltage control scheme that does not require a change to the existing MOS technology process. The invention provides a technique that controls the threshold voltage of the transistor. In the OFF state, the threshold voltage of the transistor is set high, keeping the transistor leakage to a small value. In the ON state, the threshold voltage is set to a low value, resulting in increased drive strength. The invention is particularly useful in MOS technology for both bulk and silicon on insulator (SOI) CMOS.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: September 8, 2009
    Assignee: Semi Solutions LLC.
    Inventor: Ashok Kumar Kapoor
  • Patent number: 7576382
    Abstract: A method of providing shield interconnection, the method shielding an interconnection pattern to be shielded with shield interconnection patterns for shielding on the substrate of a semiconductor integrated device, is disclosed. The method includes the steps of disposing multiple interconnection layers having the corresponding shield interconnection patterns formed therein so that the interconnection layers surround the interconnection pattern to be shielded; setting different potentials for at least a first one of the shield interconnection patterns formed in a first one of the interconnection layers and a second one of the shield interconnection patterns formed in a second one of the interconnection layers; and shielding the interconnection pattern to be shielded with the first one and the second one of the shield interconnection patterns.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: August 18, 2009
    Assignee: Ricoh Company, Ltd.
    Inventor: Tsuyoshi Ueno
  • Publication number: 20090200617
    Abstract: Logic LSI includes first power domains PD1 to PD4, thick-film power switches SW1 to SW4, and power switch controllers PSWC1 to PSWC4. The thick-film power switches are formed by thick-film power transistors manufactured in a process common to external input/output circuits I/O. The first power domains include second power domains SPD11 to SPD42 including logic blocks, control circuit blocks SCB1 to SCB4, and thin-film power switches SWN11 to SWN42 that are connected to the thick-film power switches via virtual ground lines VSSM1 to VSSM4, and formed by thin-film power transistors manufactured in a process common to the logic blocks. In this way, power switches having different thickness of gate insulating films from one another are vertically stacked so as to be in a hierarchical structure, and each power switch is individually controlled by a power switch controller and a control circuit block correspondingly to each mode.
    Type: Application
    Filed: April 23, 2009
    Publication date: August 13, 2009
    Inventors: Yusuke KANNO, Kenichi Yoshizumi
  • Publication number: 20090194824
    Abstract: By providing a body controlled double channel transistor, increased functionality in combination with enhanced stability may be accomplished. For instance, flip flop circuits usable for static RAM cells may be formed on the basis of the body controlled double channel transistor, thereby reducing the number of transistors required per cell, which may result in increased information density.
    Type: Application
    Filed: June 23, 2008
    Publication date: August 6, 2009
    Inventor: Frank Wirbeleit
  • Patent number: 7569899
    Abstract: Logic LSI includes first power domains PD1 to PD4, thick-film power switches SW1 to SW4, and power switch controllers PSWC1 to PSWC4. The thick-film power switches are formed by thick-film power transistors manufactured in a process common to external input/output circuits I/O. The first power domains include second power domains SPD11 to SPD42 including logic blocks, control circuit blocks SCB1 to SCB4, and thin-film power switches SWN11 to SWN42 that are connected to the thick-film power switches via virtual ground lines VSSM1 to VSSM4, and formed by thin-film power transistors manufactured in a process common to the logic blocks. In this way, power switches having different thickness of gate insulating films from one another are vertically stacked so as to be in a hierarchical structure, and each power switch is individually controlled by a power switch controller and a control circuit block correspondingly to each mode.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: August 4, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Yusuke Kanno, Kenichi Yoshizumi
  • Publication number: 20090189227
    Abstract: A SRAM bit cell and an associated method of producing the SRAM bit cell with improved performance and stability is provided. In one configuration, channel mobility of the transistors within the SRAM bit cell may be adjusted to provide improved stability. In order to adjust the channel mobility, a stress memorization technique may be used, a wide spacer may be used, germanium may be implanted on tensile stress silicon nitride, a compressive liner may be used or silicon germanium may be embedded in one or more of the devices in the cell. In another configuration, the gate capacitance of each device within the SRAM bit cell may be adjusted to achieve high SRAM yield. For instance, a thick gate oxide may be used, phosphorous pre-doping may be used or fluorine pre-doping may be used in one or more of the devices within the cell.
    Type: Application
    Filed: January 25, 2008
    Publication date: July 30, 2009
    Applicant: TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.
    Inventor: Katsura Miyashita
  • Publication number: 20090166757
    Abstract: A design structure embodied in a machine readable medium is provided for use in the design, manufacturing, and/or testing of Ics that include at least one SRAM cell. In particular, the present invention provides a design structure of an IC embodied in a machine readable medium, the IC including at least one SRAM cell with a gamma ratio of about 1 or greater. In the present invention, the gamma ratio is increased with degraded pFET device performance. Moreover, in the inventive IC, there is no stress liner boundary present in the SRAM region and ion variation for all devices is reduced as compared to that of a conventional SRAM structure. The present invention provides a design structure of an IC embodied in a machine readable medium, the IC comprising at least one static random access memory cell including at least one nFET and at least one pFET; and a continuous relaxed stressed liner located above and adjoining the at least one nFET and the at least one pFET.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 2, 2009
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Christopher V. Baiocco, Xiandong Chen, Young G. Ko, Melanie J. Sherony
  • Publication number: 20090166758
    Abstract: A method of forming an IC is presented. The method includes providing a substrate having a plurality of transistors formed thereon. The transistors have gate stack, source and drain regions. An electrical strap is formed and in contact with at least a portion of at least one sidewall of the gate stack of a first transistor to provide a continuous electrical flowpath over a gate electrode of the first transistor and the source or drain region of a second transistor.
    Type: Application
    Filed: September 30, 2008
    Publication date: July 2, 2009
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Lieyong YANG, Siau Ben CHIAH, Ming LEI, Hua XIAO, Xiongfei YU, Kelvin Tianpeng GUAN, Puay San CHIA, Chor Shu CHENG, Gary CHIA, Chee Kong LEONG, Sean LIAN, Kin San PEY, Chao Yong LI
  • Patent number: 7554163
    Abstract: A first semiconductor region has a smaller width along a gate length direction than a second semiconductor region. In this case, the first semiconductor region has a larger width along a gate width direction than the second semiconductor region.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: June 30, 2009
    Assignee: Panasonic Corporation
    Inventors: Takayuki Yamada, Atsuhiro Kajiya, Satoshi Ishikura
  • Patent number: 7541254
    Abstract: A first electrode layer having protrusions and depressions on its surface are formed on a lower insulating layer on a semiconductor substrate, and a sacrificial layer is formed on the first electrode layer with a material that is reflowable when heated. After reflowing the sacrificial layer by heat treatment, the reflowed sacrificial layer and first electrode layer are etched so that the protrusions of the first electrode layer are curved, and a dielectric layer and a second electrode layer are sequentially formed on the first electrode layer. When manufactured using the above method, a thin film capacitor may have higher capacitance without increasing the area of the electrode.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: June 2, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Ki-Min Lee
  • Patent number: 7541627
    Abstract: The invention describes in detail the structure of a CMOS image sensor pixel that senses color of impinging light without having absorbing filters placed on its surface. The color sensing is accomplished by having a vertical stack of three-charge detection nodes placed in the silicon bulk, which collect electrons depending on the depth of their generation. The small charge detection node capacitance and thus high sensitivity with low noise is achieved by using fully depleted, potential well forming, buried layers instead of undepleted junction electrodes. Two embodiments of contacting the buried layers without substantially increasing the node capacitances are presented.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: June 2, 2009
    Assignee: Foveon, Inc.
    Inventors: Jaroslav Hynecek, Richard B. Merrill, Russel A. Martin
  • Patent number: 7541655
    Abstract: A semiconductor device includes: a first circuit in which a diffusion area A1, a first gate G1, a diffusion area A2, a second gate G2 and a diffusion area A3 constitute two transistors; and a second circuit in which a diffusion area B1, the first gate G1, a diffusion area B2, the second gate G2 and a diffusion area B3 constitute two transistors. The diffusion areas A1 and B3, the diffusion areas A2 and B2 and the diffusion areas A3 and B1 are connected. Alternatively, the diffusion areas A1, A3 and B2 and the diffusion areas A2, B1 and B3 are connected.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: June 2, 2009
    Assignee: Fujitsu Limited
    Inventors: Akio Iwata, Gaku Itoh
  • Publication number: 20090134473
    Abstract: A semiconductor device has a pair of gate electrodes extending adjacent to and non-parallel to each other, a source and/or drain region located between the pair of gate electrodes for forming a pair of transistors with the gate electrodes, and a contact electrode disposed between the pair of gate electrodes in contact with the source and/or drain region in a contact area so that the center of the contact area is shifted from the center of the source and/or drain region in a direction along which the distance between the pair of gate electrodes becomes greater.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 28, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Takuji TANAKA