With Specified Schottky Metallic Layer Patents (Class 257/453)
-
Patent number: 10333011Abstract: Resonant-cavity infrared photodetector (RCID) devices that include a thin absorber layer contained entirely within the resonant cavity. In some embodiments, the absorber is a single type-II InAs—GaSb interface situated between an AlSb/InAs superlattice n-type region and a p-type AlSb/GaSb region. In other embodiments, the absorber region comprises quantum wells formed on an upper surface of the n-type region. In other embodiments, the absorber region comprises a “W”-structured quantum well situated between two barrier layers, the “W”-structured quantum well comprising a hole quantum well sandwiched between two electron quantum wells. In other embodiments, the RCID includes a thin absorber region and an nBn or pBp active core within a resonant cavity. In some embodiments, the RCID is configured to absorb incident light propagating in the direction of the epitaxial growth of the RCID structure, while in other embodiments, it absorbs light propagating in the epitaxial plane of the structure.Type: GrantFiled: July 10, 2018Date of Patent: June 25, 2019Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, Mijin Kim, Eric Stanton
-
Patent number: 10214797Abstract: Disclosed is a method for producing and identifying a Weyl semimetal. Identification is enabled via a combination of the vacuum ultraviolet (low-photon energy) and soft X-ray (SX) angle resolved photoemission spectroscopy (ARPES). Production generally requires providing high purity raw materials, creating a mixture, heating the mixture in a container at a temperature sufficient for thermal decomposition of an impurity while preventing the possible reaction between the side walls of the container and the raw materials, depositing the resulting compound and a transfer agent onto the bottom surface of the ampule, differentially heating the ampule, and allowing a chemical vapor transport reaction to complete.Type: GrantFiled: November 15, 2016Date of Patent: February 26, 2019Assignee: TRUSTEES OF PRINCETON UNIVERSITYInventors: Suyang Xu, Ilya Belopolski, Nasser Alidoust, Madhab Neupane, Shuang Jia, M. Zahid Hasan
-
Patent number: 9946025Abstract: An integrated circuit includes optical waveguides defined in a semiconductor layer, and uses removable optical taps to allow for in-process characterization and trimming. These optical waveguides may be trimmed during fabrication of the integrated circuit to improve performance. Note that the trimming may modify indexes of refraction of portions of the optical waveguides or may involve a more invasive process. Moreover, the trimming may exclude or may not involve the use of a polymer and/or the carrier wavelengths at a given temperature may be stable as a function of time. The trimming process may use removable optical taps for external feedback to determine the amount of change required. These optical taps may be formed either in the semiconductor layer or the cladding layer, and they may be disabled with negligible impact to device performance via alterations to the cladding layer after the completion of trimming.Type: GrantFiled: July 21, 2016Date of Patent: April 17, 2018Assignee: Oracle International CorporationInventors: Jock T. Bovington, Ashok V. Krishnamoorthy, Patrick J. Decker
-
Patent number: 9171976Abstract: A light detection device includes a substrate, a buffer layer disposed on the substrate, a first band gap change layer disposed on a portion of the buffer layer, a light absorption layer disposed on the first band gap change layer, a Schottky layer disposed on a portion of the light absorption layer, and a first electrode layer disposed on a portion of the Schottky layer.Type: GrantFiled: December 24, 2013Date of Patent: October 27, 2015Assignee: Seoul Viosys Co., Ltd.Inventors: Ki Yon Park, Hwa Mok Kim, Young Hwan Son, Daewoong Suh
-
Patent number: 8878327Abstract: A Schottky barrier device includes a semiconductor substrate, a first contact metal layer, a second contact metal layer and an insulating layer. The semiconductor substrate has a first surface, and plural trenches are formed on the first surface. Each trench includes a first recess having a first depth and a second recess having a second depth. The second recess extends down from the first surface while the first recess extends down from the second recess. The first contact metal layer is formed on the second recess. The second contact metal layer is formed on the first surface between two adjacent trenches. The insulating layer is formed on the first recess. A first Schottky barrier formed between the first contact metal layer and the semiconductor substrate is larger than a second Schottky barrier formed between the second contact metal layer and the semiconductor substrate.Type: GrantFiled: December 28, 2012Date of Patent: November 4, 2014Assignee: Industrial Technology Research InstituteInventors: Cheng-Tyng Yen, Young-Shying Chen, Chien-Chung Hung, Chwan-Ying Lee
-
Patent number: 8878329Abstract: A high voltage device having a Schottky diode integrated with a MOS transistor includes a semiconductor substrate a Schottky diode formed on the semiconductor substrate, at least a first doped region having a first conductive type formed in the semiconductor substrate and under the Schottky diode, and a control gate covering a portion of the Schottky diode and the first doped region positioned on the semiconductor substrate.Type: GrantFiled: September 17, 2010Date of Patent: November 4, 2014Assignee: United Microelectronics Corp.Inventor: Min-Hsuan Tsai
-
Publication number: 20140225216Abstract: A photodetector includes a substrate, a first electrode layer, a first light absorbing layer, a second electrode layer, a second light absorbing layer, and a third electrode layer that are laminated on the substrate, a first electrode wire that intercouples the first electrode layer and the second electrode layer, a second electrode wire that intercouples the second electrode layer and the third electrode layer, a first diode formed at a place where the second electrode layer and the first electrode wire are mutually brought into contact, and a second diode formed at a place where the second electrode layer and the second electrode wire are mutually brought into contact.Type: ApplicationFiled: April 15, 2014Publication date: August 14, 2014Applicant: FUJITSU LIMITEDInventors: SHINICHIRO KAWAKAMI, Yasuo MATSUMIYA
-
Patent number: 8765523Abstract: A method for manufacturing a semiconductor device includes the steps of preparing a substrate made of silicon carbide and having an n type region formed to include a main surface, forming a p type region in a region including the main surface, forming an oxide film on the main surface across the n type region and the p type region, by heating the substrate having the p type region formed therein at a temperature of 1250° C. or more, removing the oxide film to expose at least a part of the main surface, and forming a Schottky electrode in contact with the main surface that has been exposed by removing the oxide film.Type: GrantFiled: November 6, 2012Date of Patent: July 1, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Keiji Wada, Takeyoshi Masuda
-
Patent number: 8610289Abstract: A semiconductor component including a first layer (10) of a semiconductor material as a substrate, a second layer (12) running on said first layer (10), and at least two intermediate layers (14, 16) made of the materials of the first and second layers running between the first and second layer, where the first intermediate layer (16) facing the second layer (12) may contain a eutectic mixture (18) made of the materials of the first and second layers. The invention is also directed to an electroconductive contact (15, 15a, 15b) forming an electroconductive connection to the first layer and originating at or running through the second layer, as well as to a method for producing the metal-semiconductor contact.Type: GrantFiled: June 12, 2008Date of Patent: December 17, 2013Assignee: Schott Solar AGInventors: Bernd Wildpanner, Hilmar Von Campe, Werner Buss
-
Patent number: 8344398Abstract: A method of making a diode begins by depositing an AlxGa1-xN nucleation layer on a SiC substrate, then depositing an n+ GaN buffer layer, an n? GaN layer, an AlxGa1-xN barrier layer, and an SiO2 dielectric layer. A portion of the dielectric layer is removed and a Schottky metal deposited in the void. The dielectric layer is affixed to the support layer with a metal bonding layer using an Au—Sn utectic wafer bonding process, the substrate is removed using reactive ion etching to expose the n+ layer, selected portions of the n+, n?, and barrier layers are removed to form a mesa diode structure on the dielectric layer over the Schottky metal, and an ohmic contact is deposited on the n+ layer.Type: GrantFiled: October 15, 2010Date of Patent: January 1, 2013Assignee: Cree, Inc.Inventors: Primit Parikh, Sten Heikman
-
Patent number: 8174089Abstract: The present invention relates to various switching device structures including Schottky diode, P—N diode, and P—I—N diode, which are characterized by low defect density, low crack density, low pit density and sufficient thickness (>2.5 um) GaN layers of low dopant concentration (<1E16 cm?3) grown on a conductive GaN layer. The devices enable substantially higher breakdown voltage on hetero-epitaxial substrates (<2 KV) and extremely high breakdown voltage on homo-epitaxial substrates (>2 KV).Type: GrantFiled: August 6, 2010Date of Patent: May 8, 2012Assignee: Cree, Inc.Inventors: Jeffrey S. Flynn, George R. Brandes, Robert P. Vaudo
-
Publication number: 20120104535Abstract: A photodetector includes a substrate, a first electrode layer, a first light absorbing layer, a second electrode layer, a second light absorbing layer, and a third electrode layer that are laminated on the substrate, a first electrode wire that intercouples the first electrode layer and the second electrode layer, a second electrode wire that intercouples the second electrode layer and the third electrode layer, a first diode formed at a place where the second electrode layer and the first electrode wire are mutually brought into contact, and a second diode formed at a place where the second electrode layer and the second electrode wire are mutually brought into contact.Type: ApplicationFiled: October 27, 2011Publication date: May 3, 2012Applicant: FUJITSU LIMITEDInventors: Shinichiro KAWAKAMI, Yasuo MATSUMIYA
-
Patent number: 8164154Abstract: A low profile high power Schottky barrier bypass diode for solar cells and panels with the cathode and anode electrodes on the same side of the diode and a method of fabrication thereof are disclosed for generating a thin chip with both electrodes being on the same side of the chip. In an embodiment, a mesa isolation with a Zener diode over the annular region surrounding the central region of the mesa anode in the Epi of the substrate is formed. In an embodiment, a P-type Boron dopant layer is ion implanted in the annular region for the Zener Diode. This controls recovery from high voltage spikes from the diode rated voltage. A Schottky barrier contact for the anode and a contact for the cathode are simultaneously created on the same side of the chip.Type: GrantFiled: December 17, 2010Date of Patent: April 24, 2012Inventors: Aram Tanielian, Garo Tanielian
-
Patent number: 8035185Abstract: An electrode is composed of a carbon carrying a metal and a binder polymer, and it is used as a counter electrode of a dye-sensitized solar cell. The metal carried by carbon is at least one kind of metal selected from the group consisting of Pt, Ru, Co, Ti, Ni, Al and Au. The carbon is needle-like carbon, fullerene, carbon nanotube, conductive carbon black, or the like, and its specific surface area is equal to or larger than 100 m2/g.Type: GrantFiled: May 26, 2004Date of Patent: October 11, 2011Assignee: Sony CorporationInventors: Yusuke Suzuki, Masahiro Morooka, Kazuhiro Noda
-
Patent number: 8022494Abstract: A lateral photodiode, with improved response speed, includes a semiconductor substrate having active regions, and a p-type region and an n-type region arranged parallel to the surface of the substrate. The active regions are an n-layer and a p-layer respectively, and stacked in the thickness direction of the substrate to form a p-n junction. In addition, a barrier layer, for preventing movement of carriers from the substrate toward the active region, is provided on the side of the active regions toward the substrate.Type: GrantFiled: January 31, 2007Date of Patent: September 20, 2011Assignees: FUJIFILM Corporation, Massachusetts Institute of TechnologyInventors: Yukiya Miyachi, Wojciech P. Giziewicz, Jurgen Michel, Lionel C. Kimerling
-
Patent number: 7999344Abstract: An optoelectronic device comprises a photodetector feature, an interfacial layer disposed above at least a portion of the photodetector feature, and a vertical contact disposed on at least a portion of the interfacial layer. The photodetector feature comprises germanium and is operative to convert a light signal into an electrical signal. The interfacial layer comprises nickel. Finally, the vertical contact is operative to transmit the electrical signal from the photodetector feature.Type: GrantFiled: May 6, 2010Date of Patent: August 16, 2011Assignee: International Business Machines CorporationInventors: Solomon Assefa, Stephen Walter Bedell, Yurii A. Vlasov, Fengnian Xia
-
Patent number: 7939902Abstract: The present invention is a field effect transistor having a strained semiconductor substrate and Schottky-barrier source and drain electrodes, and a method for making the transistor. The bulk charge carrier transport characteristic of the Schottky barrier field effect transistor minimizes carrier surface scattering, which enables the strained substrate to provide improved power and speed performance characteristics in this device, as compared to conventional devices.Type: GrantFiled: September 25, 2009Date of Patent: May 10, 2011Assignee: Avolare 2, LLCInventors: John P. Snyder, John M. Larson
-
Patent number: 7863682Abstract: A semiconductor device having a junction barrier Schottky diode includes: a SiC substrate; a drift layer on the substrate; an insulation film on the drift layer having an opening in a cell region; a Schottky barrier diode having a Schottky electrode contacting the drift layer through the opening of the insulation film and an ohmic electrode on the substrate; a terminal structure having a RESURF layer surrounding the cell region; and multiple second conductive type layers on an inner side of the RESURF layer. The second conductive type layers and the drift layer provide a PN diode. The Schottky electrode includes a first Schottky electrode contacting the second conductive type layers with ohmic contact and a second Schottky electrode contacting the drift layer with Schottky contact.Type: GrantFiled: March 31, 2008Date of Patent: January 4, 2011Assignee: Denso CorporationInventors: Eiichi Okuno, Takeo Yamamoto
-
Patent number: 7834367Abstract: A method of making a diode begins by depositing an AlxGa1?xN nucleation layer on a SiC substrate, then depositing an n+ GaN buffer layer, an n? GaN layer, an AlxGa1?xN barrier layer, and an SiO2 dielectric layer. A portion of the dielectric layer is removed and a Schottky metal deposited in the void. The dielectric layer is affixed to the support layer with a metal bonding layer using an Au-Sn utectic wafer bonding process, the substrate is removed using reactive ion etching to expose the n+ layer, selected portions of the n+, n?, and barrier layers are removed to form a mesa diode structure on the dielectric layer over the Schottky metal,; and an ohmic contact is deposited on the n+ layer.Type: GrantFiled: January 19, 2007Date of Patent: November 16, 2010Assignee: Cree, Inc.Inventors: Primit Parikh, Sten Heikman
-
Publication number: 20100264506Abstract: A light-tight silicon detector. The detector utilizes a silicon substrate having a sensitive volume for the detection of ionizing radiation and a rectifying contact or electrode through which the ionizing radiation may enter. A diffused or boron-implanted p+ layer may act at the rectifying electrode. A first layer of titanium nitride is deposited on the entrance window to prevent light from being admitted to the sensitive volume and to increase the abrasion and corrosion resistance of the detector. Alternatively a titanium nitride layer may be deposited directly on the silicon substrate, said layer acting as a surface barrier or Schottky barrier rectifying contact. A layer of titanium nitride may be deposited on the backside contact wherein this titanium nitride layer serves as an ohmic contact. The second layer may be further utilized as a conductive contact for surface mount connections.Type: ApplicationFiled: April 12, 2010Publication date: October 21, 2010Inventors: Olivier Evrard, Marijke Keters
-
Patent number: 7816733Abstract: A semiconductor device having a JBS diode includes: a SiC substrate; a drift layer on the substrate; an insulation film on the drift layer having an opening in a cell region; a Schottky barrier diode having a Schottky electrode contacting the drift layer through the opening and an ohmic electrode on the substrate; a terminal structure having a RESURF layer in the drift layer surrounding the cell region; and multiple second conductive type layers in the drift layer on an inner side of the RESURF layer contacting the Schottky electrode. The second conductive type layers are separated from each other. The second conductive type layers and the drift layer provide a PN diode. Each second conductive type layer has a depth larger than the RESURF layer.Type: GrantFiled: March 31, 2008Date of Patent: October 19, 2010Assignee: DENSO CORPORATIONInventors: Eiichi Okuno, Takeo Yamamoto
-
Patent number: 7790495Abstract: An optoelectronic device comprises a photodetector feature, an interfacial layer disposed above at least a portion of the photodetector feature, and a vertical contact disposed on at least a portion of the interfacial layer. The photodetector feature comprises germanium and is operative to convert a light signal into an electrical signal. The interfacial layer comprises nickel. Finally, the vertical contact is operative to transmit the electrical signal from the photodetector feature.Type: GrantFiled: October 26, 2007Date of Patent: September 7, 2010Assignee: International Business Machines CorporationInventors: Solomon Assefa, Stephen Walter Bedell, Yurii A. Vlasov, Fengnian Xia
-
Patent number: 7768091Abstract: In a conventional ultraviolet sensing device using a diamond semiconductor in a light-receiving unit, an Au-based electrode material is used for both a rectifier electrode and an ohmic electrode. However, the Au-based electrode material has fatal defects, such as poor adhesion to diamond, low mechanical strength, and furthermore poor thermal stability. While avoiding complication of the device structure and exploiting the characteristics of a photoconductive sensing device, by using a carbide compound (TiC, ZrC, HfC, VC, NbC, TaC, CrC, MoC, and WC) of a high melting metal having a high mechanical strength for a rectifier electrode and/or a ohmic electrode, there is provided an extremely heat-stable diamond ultraviolet sensor having a light-receiving sensitivity to ultraviolet light having a wavelength of 260 nm or less.Type: GrantFiled: November 22, 2005Date of Patent: August 3, 2010Assignee: National Institute for Materials ScienceInventors: Yasuo Koide, Meiyong Liao, Antonio Alvarez Jose
-
Patent number: 7768092Abstract: A semiconductor device comprises a first layer (1) of a wide band gap semiconductor material doped according to a first conductivity type and a second layer (3) on top thereof designed to form a junction blocking current in the reverse biased state of the device at the interface to said first layer. The device comprises extension means for extending a termination of the junction laterally with respect to the lateral border (6) of the second layer. This extension means comprises a plurality of rings (16-21) in juxtaposition laterally surrounding said junction (15) and being arranged as seen in the lateral direction away from said junction alternatively a ring (16-18) of a semiconductor material of a second conductivity type opposite to that of said first layer and a ring (19-21) of a semi-insulating material.Type: GrantFiled: July 20, 2005Date of Patent: August 3, 2010Assignee: Cree Sweden ABInventors: Christopher Harris, Cem Basceri
-
Publication number: 20100175745Abstract: Photovoltaic devices are driven by intense photoemission of “hot” electrons from a suitable nanostructured metal. The metal should be an electron source with surface plasmon resonance within the visible and near-visible spectrum range (near IR to near UV (about 300 to 1000 nm)). Suitable metals include silver, gold, copper and alloys of silver, gold and copper with each other. Silver is particularly preferred for its advantageous opto-electronic properties in the near UV and visible spectrum range, relatively low cost, and simplicity of processing.Type: ApplicationFiled: July 17, 2008Publication date: July 15, 2010Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Robert Kostecki, Samuel S. Mao
-
Patent number: 7679662Abstract: Disclosed herein is a solid-state imaging element which includes a plurality of drive signal inputs, a plurality of bus lines, and a plurality of vertical transfer register electrodes. In the solid-state imaging element, a charge accumulated in light-receiving elements in a pixel region is vertically transferred by the drive signals input to the electrodes. Each of the electrodes has a contact part connected to the second contact and having a width smaller than a width of the electrodes in the pixel region, and a blank region is formed between predetermined adjacent two of the contact parts so that a width of the blank region is larger than a distance between respective two of the contact parts other than the predetermined adjacent two of the contact parts. The first contact is disposed on the blank region.Type: GrantFiled: November 9, 2006Date of Patent: March 16, 2010Assignee: Sony CorporationInventors: Sadamu Suizu, Masaaki Takayama
-
Patent number: 7633135Abstract: This invention discloses a bottom-anode Schottky (BAS) diode that includes an anode electrode disposed on a bottom surface of a semiconductor substrate. The bottom-anode Schottky diode further includes a sinker dopant region disposed at a depth in the semiconductor substrate extending substantially to the anode electrode disposed on the bottom surface of the semiconductor and the sinker dopant region covered by a buried Schottky barrier metal functioning as an Schottky anode.Type: GrantFiled: July 22, 2007Date of Patent: December 15, 2009Assignee: Alpha & Omega Semiconductor, Ltd.Inventor: François Hébert
-
Patent number: 7622752Abstract: A Schottky diode with a vertical barrier extending perpendicularly to the surface of a semiconductor chip having a vertical central metal conductor in contact on the one hand with the substrate of the semiconductor chip with an interposed interface forming a Schottky barrier, and on the other hand with radially-extending conductive fingers.Type: GrantFiled: December 23, 2005Date of Patent: November 24, 2009Assignees: STMicroelectronics S.A., STMicroelectronics MarocInventors: Frédéric Lanois, Sylvain Nizou
-
Publication number: 20090152536Abstract: A semiconductor device provides a metal contact, a DNA layer, wherein the metal layer and the DNA layer are adapted to form a Schottky barrier junction there between, and a conductive contact with the DNA layer.Type: ApplicationFiled: May 12, 2008Publication date: June 18, 2009Applicant: IPICOM, Inc.Inventor: De Yu Zang
-
Patent number: 7508045Abstract: A semiconductor device includes a first-conductivity-type SiC substrate, a first-conductivity-type SiC semiconductor layer formed on the substrate, whose impurity concentration is lower than that of the substrate, a first electrode formed on the semiconductor layer and forming a Schottky junction with the semiconductor layer, a barrier height of the Schottky junction being 1 eV or less, plural second-conductivity-type junction barriers formed to contact the first electrode and each having a depth d1 from an upper surface of the semiconductor layer, a width w, and a space s between adjacent ones of the junction barriers, a second-conductivity-type edge termination region formed outside the junction barriers to contact the first electrode and having a depth d2 from the upper surface of the semiconductor layer, and a second electrode formed on the second surface of the substrate, wherein following relations are satisfied d1/d2?1, s/d1?0.6, and s/(w+s)?0.33.Type: GrantFiled: July 12, 2007Date of Patent: March 24, 2009Assignee: Kabushiki Kaisha ToshibaInventors: Johji Nishio, Takuma Suzuki, Chiharu Ota, Takashi Shinohe
-
Publication number: 20080308892Abstract: A semiconductor component including a first layer (10) of a semiconductor material as a substrate, a second layer (12) running on said first layer (10), and at least two intermediate layers (14, 16) made of the materials of the first and second layers running between the first and second layer, where the first intermediate layer (16) facing the second layer (12) may contain a eutectic mixture (18) made of the materials of the first and second layers. The invention is also directed to an electroconductive contact (15, 15a, 15b) forming an electroconductive connection to the first layer and originating at or running through the second layer, as well as to a method for producing the metal-semiconductor contact.Type: ApplicationFiled: June 12, 2008Publication date: December 18, 2008Applicant: SCHOTT SOLAR GMBHInventors: Bernd WILDPANNER, Hillmar VON CAMPE, Werner BUSS
-
Patent number: 7432577Abstract: A semiconductor component for detecting electromagnetic radiation includes a contact between a metal and a semiconductor. The semiconductor has at least one metal-chalcogenide compound semiconductor as an optical absorbing material or is configured completely from said semiconductor. This allows a cost-effective component to be produced which reacts to electromagnetic radiation in a specifically defined manner. The semiconductor component can be used in an electronic component and a sensor system. A method is also described for producing a semiconductor component by bringing a substrate into contact with a solution, in which a precursor of metal-chalcogenide compound semiconductor is dissolved and/or suspended.Type: GrantFiled: October 10, 2000Date of Patent: October 7, 2008Assignee: Satronic AGInventors: Tilman Weiss, Christoph Thiedig, Stefan Langer, Oliver Hilt, Hans Georg Koerner, Sebastian Stahn, Stephan Swientek
-
Patent number: 7420215Abstract: A transparent conductive film substantially made from In2O3, SnO2 and ZnO, having a molar ratio In/(In+Sn+Zn) of 0.65 to 0.8 and also a molar ratio Sn/Zn of 1 or less: The transparent conductive film has a favorable electric contact property with an electrode or line made from Al or Al alloy film. Further, a semiconductor device having an electrode or line made from the transparent conductive film has high reliability and productivity.Type: GrantFiled: June 22, 2007Date of Patent: September 2, 2008Assignee: Mitsubishi Electric CorporationInventors: Kazunori Inoue, Nobuaki Ishiga, Kensuke Nagayama, Toru Takeguchi, Kazumasa Kawase
-
Patent number: 7385271Abstract: Electro-hole production at a Schottky barrier has recently been observed experimentally as a result of chemical processes. This conversion of chemical energy to electronic energy may serve as a basic link between chemistry and electronics and offers the potential for generation of unique electronic signatures for chemical reactions and the creation of a new class of solide state chemical sensors. Detection of the following chemical species was established: hydrogen, deuterium, carbon monoxide, molecular oxygen. The detector (1b) consists of a Schottky diode between an Si layer and an ultrathin metal layer with zero force electrical contacts.Type: GrantFiled: April 29, 2005Date of Patent: June 10, 2008Assignee: Adrena, Inc.Inventors: Eric W. McFarland, Henry W. Weinberg, Hermann Nienhaus, Howard S. Bergh, Brian Gergen, Arunava Mujumdar
-
Patent number: 7294898Abstract: The present invention is a field effect transistor having a strained semiconductor substrate and Schottky-barrier source and drain electrodes, and a method for making the transistor. The bulk charge carrier transport characteristic of the Schottky barrier field effect transistor minimizes carrier surface scattering, which enables the strained substrate to provide improved power and speed performance characteristics in this device, as compared to conventional devices.Type: GrantFiled: July 16, 2004Date of Patent: November 13, 2007Assignee: Spinnaker Semiconductor, Inc.Inventors: John P. Snyder, John M. Larson
-
Patent number: 7279765Abstract: A pixel electrode employs a transparent electrode made from indium-zinc-oxide (IZO) that is capable of preventing damage and bending thereof. In a liquid crystal display device containing pixel electrodes, the transparent electrode is made from indium-zinc-oxide (IZO) having an amorphous structure so that it can be etched within a short period of time with a low concentration of etchant. Accordingly, it is possible to prevent damage and bending of the transparent electrode upon the patterning thereof.Type: GrantFiled: August 18, 2003Date of Patent: October 9, 2007Assignee: LG.Philips LCD Co., Ltd.Inventors: You Shin Ahn, Hu Kag Lee
-
Patent number: 7262434Abstract: A semiconductor device provided with a silicon carbide semiconductor substrate, and an ohmic metal layer joined to one surface of the silicon carbide semiconductor substrate in an ohmic contact and composed of a metal material whose silicide formation free energy and carbide formation free energy respectively take negative values. The ohmic metal layer is composed of, for example, a metal material such as molybdenum, titanium, chromium, manganese, zirconium, tantalum, or tungsten.Type: GrantFiled: March 27, 2003Date of Patent: August 28, 2007Assignee: Rohm Co., Ltd.Inventors: Yuji Okamura, Masashi Matsushita
-
Patent number: 7180094Abstract: Provided are a nitride-based light emitting device and a method of manufacturing the same. The nitride-based light emitting device has a structure in which at least an n-cladding layer, an active layer, and a p-cladding layer are sequentially formed on a substrate. The light emitting device further includes an ohmic contact layer composed of a zinc (Zn)-containing oxide containing a p-type dopant formed on the p-cladding layer. The method of manufacturing the nitride-based light emitting device includes forming an ohmic contact layer composed of Zn-containing oxide containing a p-type dopant on the p-cladding layer, the ohmic contact layer being made and annealing the resultant structure. The nitride-based light emitting device and manufacturing method provide excellent I–V characteristics by improving ohmic contact with a p-cladding layer while significantly enhancing light emission efficiency of the device due to high light transmittance of a transparent electrode.Type: GrantFiled: October 5, 2004Date of Patent: February 20, 2007Assignees: Samsung Electronics Co., Ltd., Gwangju Institute of Science and TechnologyInventors: Tae-yeon Seong, Kyoung-kook Kim, June-o Song, Dong-seok Leem
-
Patent number: 7176537Abstract: A semiconductor device having a metal/metal silicide gate and a Schottky source/drain and a method of forming the same are provided. The semiconductor device includes a gate dielectric overlying a semiconductor substrate, a metal or metal silicide gate electrode having a work function of less than about 4.3 eV or greater than about 4.9 eV overlying the gate dielectric, a spacer having a thickness of less than about 100 ? on a side of the gate electrode, and a Schottky source/drain having a work function of less than about 4.3 eV or greater than about 4.9 eV wherein the Schottky source/drain region overlaps the gate electrode. The Schottky source/drain region preferably has a thickness of less than about 300 ?.Type: GrantFiled: May 23, 2005Date of Patent: February 13, 2007Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wen-Chin Lee, Chung-Hu Ke, Min-Hwa Chi
-
Patent number: 7087834Abstract: An apparatus and method for solar energy production comprises a multi-layer solid-state structure including a photosensitive layer, a thin conductor, a charge separation layer, and a back ohmic conductor, wherein light absorption occurs in a photosensitive layer and the charge carriers produced thereby are transported through the thin conductor through the adjacent potential energy barrier. The open circuit voltage of the solar cell can be manipulated by choosing from among a wide selection of materials making up the thin conductor, the charge separation layer, and the back ohmic layer.Type: GrantFiled: December 31, 2003Date of Patent: August 8, 2006Assignee: Andrena, Inc.Inventor: Eric W. McFarland
-
Patent number: 7012314Abstract: A method of making a semiconductor device having a predetermined epitaxial region, such as an active region, with reduced defect density includes the steps of: (a) forming a dielectric cladding region on a major surface of a single crystal body of a first material; (b) forming a first opening that extends to a first depth into the cladding region; (c) forming a smaller second opening, within the first opening, that extends to a second depth greater than the first depth and that exposes an underlying portion of the major surface of the single crystal body; (d) epitaxially growing regions of a second semiconductor material in each of the openings and on the top of the cladding region; (e) controlling the dimensions of the second opening so that defects are confined to the epitaxial regions grown within the second opening and on top of the cladding region, a first predetermined region being located within the first opening and being essentially free of defects; (D planarizing the top of the device to remove allType: GrantFiled: June 3, 2003Date of Patent: March 14, 2006Assignee: Agere Systems Inc.Inventors: Jeffrey Devin Bude, Malcolm Carroll, Clifford Alan King
-
Patent number: 6998690Abstract: A gallium nitride-based III-V Group compound semiconductor device has a gallium nitride-based III-V Group compound semiconductor layer provided over a substrate, and an ohmic electrode provided in contact with the semiconductor layer. The ohmic electrode is formed of a metallic material, and has been annealed.Type: GrantFiled: July 1, 2003Date of Patent: February 14, 2006Assignee: Nichia CorporationInventors: Shuji Nakamura, Takao Yamada, Masayuki Senoh, Motokazu Yamada, Kanji Bando
-
Patent number: 6956163Abstract: An apparatus and method for solar energy production comprises a multi-layer solid-state structure including a photosensitive layer, a thin conductor, a charge separation layer, and a back ohmic conductor, wherein light absorption occurs in a photosensitive layer and the charge carriers produced thereby are transported through the thin conductor through the adjacent potential energy barrier. The open circuit voltage of the solar cell can be manipulated by choosing from among a wide selection of materials making up the thin conductor, the charge separation layer, and the back ohmic layer.Type: GrantFiled: August 20, 2003Date of Patent: October 18, 2005Assignee: Adrena, Inc.Inventor: Eric W. McFarland
-
Patent number: 6946717Abstract: A compound semiconductor device is comprising a compound semiconductor substrate (219) having a ground plane (205); an active element (201) disposed on the substrate; a passive element (211) disposed on the substrate and electrically coupled to the active element; and an insulating layer (202) adjacent the substrate and interposed between the passive device and ground surface such that there is no resistive ground path from the passive device to the ground surface.Type: GrantFiled: January 30, 2002Date of Patent: September 20, 2005Assignee: M/A-Com, Inc.Inventors: David Russell Hoag, Timothy Edward Boles, Daniel G. Curcio
-
Patent number: 6852615Abstract: A process and related product in which ohmic contacts are formed in High Electron Mobility Transistors (HEMTs) employing compound substrates such as gallium nitride. An improved device and an improvement to a process for fabrication of ohmic contacts to GaN/AlGaN HEMTs using a novel two step resist process to fabricate the ohmic contacts are described. This novel two-step process consists of depositing a plurality of layers having compounds of Group III V elements on a substrate; patterning and depositing a first photoresist on one of the layers; etching recessed areas into this layer; depositing ohmic metals on the recessed areas; removing the first photoresist; patterning and depositing a second photoresist, smaller in profile than the first photoresist, on the layer; depositing more ohmic metal on the layer allowing for complete coverage of the recessed areas; removing the second photoresist, and annealing the semiconductor structure.Type: GrantFiled: June 9, 2003Date of Patent: February 8, 2005Assignee: HRL Laboratories, LLCInventors: Miroslav Micovic, Tahir Hussain, Paul Hashimoto, Janna Ruth Duvall
-
Patent number: 6831309Abstract: A unipolar photodiode and methods of making and using employ a Schottky contact as a cathode contact. The Schottky cathode contact is created directly on a carrier traveling or collector layer of the unipolar photodiode resulting in a simpler overall structure to use and make. The unipolar photodiode comprises a light absorption layer, the collector layer adjacent to the light absorption layer, the Schottky cathode contact in direct contact with the collector layer, and an anode contact either directly or indirectly interfaced to the light absorption layer. The light absorption layer has a doping concentration that is greater than a doping concentration of the collector layer. The light absorption layer has a band gap energy that is less than that of the collector layer. The light absorption layer and the collector layer may be of the same or opposite conduction type.Type: GrantFiled: December 18, 2002Date of Patent: December 14, 2004Assignee: Agilent Technologies, Inc.Inventor: Kirk S. Giboney
-
Patent number: 6798034Abstract: A passive mechanism suppresses injection, into any active guard regions interposed between the edge of a photodiode array chip and the outer photodiode pixels or into the outer pixels themselves, of minority carrier current generated in the physically disrupted region at the edge of the semiconductor die created by cleaving, sawing or otherwise separating the chip from the remainder of the wafer on which the die was fabricated. A thin metallic layer covers all or part of the edge region, thereby creating a Schottky barrier. This barrier generates a depletion region in the adjacent semiconductor material. The depletion region inherently creates an energy band distribution which preferentially accelerates minority carriers generated or near the metal-semiconductor interface towards the metal, thereby suppressing collection of these carriers by any active regions of the guard structure or by the photodiode pixels.Type: GrantFiled: August 7, 2002Date of Patent: September 28, 2004Assignee: Diglrad CorporationInventor: Lars S. Carlson
-
Publication number: 20040155311Abstract: The invention relates to an opto-electronic component for converting electromagnetic radiation into an intensity-dependent photocurrent, comprising a substrate (1) with a microelectronic circuit whose surface is provided with a first layer (7) which is electrically contacted thereto and made of amorphous silicon a-i:H or alloys thereof, and at least one other optically active layer (8) is disposed upstream from said first layer in the direction of incident light thereof (7). The invention also relates to the production thereof. The aim of the invention is to improve upon an opto-electronic component of tho above-mentioned variety in order to obtain high spectral sensitivity within the visible light range and, correspondingly, significantly reduce sensitivity to radiation in the infrared range without incurring any additional construction costs.Type: ApplicationFiled: April 12, 2004Publication date: August 12, 2004Inventors: Peter Rieve, Jens Prima, Konstantin Seibel, Marcus Walder
-
Patent number: 6774449Abstract: The semiconductor device of the present invention includes: a gallium nitride (GaN) compound semiconductor layer; and a Schottky electrode formed on the GaN compound semiconductor layer, wherein the Schottky electrode contains silicon.Type: GrantFiled: September 18, 2000Date of Patent: August 10, 2004Assignee: Matsushita Electric Industrial Co., Ltd.Inventors: Katsunori Nishii, Yoshito Ikeda, Hiroyuki Masato, Kaoru Inoue
-
Patent number: 6774300Abstract: An apparatus and method for solar energy production comprises a multi-layer solid-state structure including a photosensitive layer, a thin conductor, a charge separation layer, and a back ohmic conductor, wherein light absorption occurs in a photosensitive layer and the charge carriers produced thereby are transported through the thin conductor through the adjacent potential energy barrier. The open circuit voltage of the solar cell can be manipulated by choosing from among a wide selection of materials making up the thin conductor, the charge separation layer, and the back ohmic layer.Type: GrantFiled: January 25, 2002Date of Patent: August 10, 2004Assignee: Adrena, Inc.Inventor: Eric W. McFarland