Phototransistor Patents (Class 257/462)
  • Patent number: 8062919
    Abstract: An integrated circuit, and method for manufacturing the integrated circuit, where the integrated circuit can include a phototransistor comprising a base having a SiGe base layer of a predetermined germanium composition and a thickness of more than 65 nm and less than about 90 nm. The integrated circuit can further include a transimpedance amplifier (TIA) receiving an output from the phototransistor. The phototransistor and the TIA can be built on a silicon substrate.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: November 22, 2011
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Alyssa B. Apsel, Anand M. Pappu, Cheng Po Chen, Tao Yin
  • Patent number: 8063424
    Abstract: An embedded photodetector apparatus for a three-dimensional complementary metal oxide semiconductor (CMOS) stacked chip assembly having a CMOS chip and one or more thinned CMOS layers is provided. At least one of the one or more thinned CMOS layers includes an active photodiode area defined within the one or more thinned CMOS layers, the active photodiode area being receptive of an optical signal incident thereon, and the active photodiode area comprising a bulk substrate portion of the thinned CMOS layer. The bulk substrate portion has a diode photodetector formed therein.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: November 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Fadi H. Gebara, Tak H. Ning, Qiqing C. Ouyang, Jeremy D. Schaub
  • Patent number: 8058111
    Abstract: An integrated circuit arrangement includes a pin photodiode and a highly doped connection region of a bipolar transistor. A production method produces an intermediate region of the pin diode with a large depth and without auto-doping in a central region.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: November 15, 2011
    Assignee: Infineon Technologies AG
    Inventors: Gernot Langguth, Karlheinz Mueller, Holger Wille
  • Patent number: 8058657
    Abstract: A thin film transistor comprises: a first transistor region and a second transistor region defined on a substrate; and a first transistor and a second transistor respectively disposed on the first and second transistor regions, the first transistor comprising: a first semiconductor layer having source, channel, and drain regions defined on the substrate; a first insulating film disposed on the first semiconductor layer; a first transparent electrode disposed on the first insulating film and formed corresponding to the channel region of the first semiconductor layer; and a second insulating film disposed on the first transparent electrode, and the second transistor comprising: a second semiconductor layer having source, channel, and drain regions defined on the substrate; the first insulating film disposed on the second semiconductor layer; a second transparent electrode disposed on the first insulating film and formed corresponding to the channel region of the second semiconductor layer; a second gate dispose
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: November 15, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Younghak Lee, Jaemin Seok
  • Patent number: 8053853
    Abstract: An image sensor device includes a semiconductor substrate having a light-sensing region, and a first and second electrode embedded within the substrate. The first and second electrode forms an array of slits, the array of slits is configured to allow a wavelength of light to pass through to the light-sensing region. A method for making an image sensor device includes providing a semiconductor substrate, forming a plurality of pixels on the semiconductor substrate, and forming a plurality of slits embedded within each of the plurality of pixels. The plurality of slits is configured to allow a wavelength of light to pass through to each of the plurality of pixels.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: November 8, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiunn-Yih Chyan, Gwo-Yuh Shiau, Chia-Shiung Tsai
  • Patent number: 8044484
    Abstract: The present invention provides an ultraviolet detecting device which comprises a silicon semiconductor layer having a thickness ranging from greater than or equal to 3 nm to less than or equal to 36 nm, which is formed over an insulating layer, lateral PN-junction type first and second photodiodes formed in the silicon semiconductor layer, an interlayer insulating film formed over the silicon semiconductor layer, a first filter layer made of silicon nitride, which is formed over the interlayer insulating film provided over the first photodiode and causes light lying in a wavelength range of an UV-B wave or higher to pass therethrough, and a second filter layer made of silicon nitride, which is formed over the interlayer insulating film provided over the second photodiode and allows light lying in a wavelength range of an UV-A wave or higher to pass therethrough.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 25, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Noriyuki Miura, Tadashi Chiba
  • Patent number: 8044483
    Abstract: A photo detector having an electrically conductive thin film and a light-receiving unit. A coupling periodic structure is provided on a surface of the film and converts incidence light to surface plasmon. The coupling periodic structure has an opening that penetrates the obverse and reverse surfaces of the thin film. The light-receiving unit is provided at one end of the opening in the surface that is opposite to the surface on which the coupling periodic structure is provided. The opening is shaped like a slit and is broader than half (½) the wavelength of the surface plasmon in a direction that intersects at right angles with a polarization direction of the incidence light and is narrower than half (½) the wavelength of the surface plasmon in a direction parallel to the polarization direction.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: October 25, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideto Furuyama
  • Patent number: 8026566
    Abstract: A semiconductor device includes a first metal foil, an insulating sheet mounted on an upper surface of the first metal foil main, at least one second metal foil mounted on the insulating sheet, at least one solder layer mounted on the at least one second metal foil, and at least one semiconductor element mounted on the at least one second metal foil through the at least one solder layer. The at least one semiconductor has a thickness of 50 ?m or greater and less than 100 ?m.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: September 27, 2011
    Assignee: Fuji Electric Systems Co., Ltd.
    Inventors: Masafumi Horio, Yoshinari Ikeda, Eiji Mochizuki
  • Patent number: 8026565
    Abstract: A thin film semiconductor in the form of a metal semiconductor field effect transistor, includes a substrate 10 of paper sheet material and a number of thin film active inorganic layers that are deposited in layers on the substrate. The active layers are printed using an offset lithography printing process. A first active layer comprises source 12.1 and drain 12.2 conductors of colloidal silver ink, that are printed directly onto the paper substrate. A second active layer is an intrinsic semiconductor layer 14 of colloidal nanocrystalline silicon ink which is printed onto the first layer. A third active layer comprises a metallic conductor 16 of colloidal silver which is printed onto the second layer to form a gate electrode. This invention extends to other thin film semiconductors such as photovoltaic cells and to a method of manufacturing semiconductors.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: September 27, 2011
    Assignee: University of Cape Town
    Inventors: Margit Harting, David Thomas Britton
  • Patent number: 8026540
    Abstract: A system is provided for determining a color using a CMOS image sensor. The system includes an input port for receiving a user command. The system further includes an image sensor, an optical device that forms an image on the image sensor, and a processor. The image sensor includes an n-type substrate and a p-type epitaxy layer overlying the n-type substrate. The image sensor includes a control circuit that applies a first voltage on the n-type substrate to obtain a first output. The control circuit applies a second voltage on the n-type substrate to obtain a second output. The control circuit also applies a third voltage on the n-type substrate to obtain a third output. The p-type epitaxy layer includes a silicon germanium material. The image sensor additionally includes an epitaxy layer interposed between the n-type substrate and the p-type epitaxy layer.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: September 27, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Hong Zhu, Jim Yang
  • Patent number: 8003429
    Abstract: A method of fabricating an image sensor includes forming a photoelectric transformation device on a substrate and forming a dielectric layer structure on the substrate. The dielectric layer structure includes multi-layer interlayer dielectric layers and multi-layer metal interconnections which are located between the multi-layer interlayer dielectric layers. A cavity which penetrates the multi-layer interlayer dielectric layers on the photoelectric transformation device is formed. A heat treatment is performed on the substrate on which the cavity is formed.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: August 23, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Ho Lee, Sang-Il Jung, Young-Hoon Park, Jun-Seok Yang, An-Chul Shin, Min-Young Jung
  • Patent number: 7999342
    Abstract: Provided is a backside-illuminated sensor including a semiconductor substrate having a front surface and a back surface. A plurality of image sensor elements are formed on the front surface of the semiconductor substrate. At least one of the image sensor elements includes a transfer transistor and a photodetector. The gate of the transfer transistor includes an optically reflective layer. The gate of the transfer transistor, including the optically reflective layer, overlies the photodetector. In one embodiment, the gate overlies the photodetector by at least 5%.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: August 16, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd
    Inventors: Tzu-Hsuan Hsu, Dun-Nian Yaung, Ching-Chun Wang
  • Patent number: 7994551
    Abstract: An image sensor according to an example embodiment may include a plurality of photoelectric transformation active regions, a plurality of read active regions, and/or at least one read gate. The plurality of photoelectric transformation active regions may be formed on a substrate. Each read active region may be formed adjacent to one of the plurality of photoelectric transformation active regions. Each read gate may be formed on one of the read active regions and partially overlap at least one of the adjacent photoelectric transformation active regions. Each read gate may be electrically isolated from the overlapping portion of the photoelectric transformation active region.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: August 9, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-je Park, Duk-min Yi
  • Patent number: 7994464
    Abstract: A pixel cell array architecture having a dual conversion gain. A dual conversion gain element is coupled between a floating diffusion region and a respective storage capacitor. The dual conversion gain element having a control gate switches in the capacitance of the capacitor to change the conversion gain of the floating diffusion region from a first conversion gain to a second conversion gain. In order to increase the efficient use of space, the dual conversion gain element gate also functions as the bottom plate of the capacitor. In one particular embodiment of the invention, a high dynamic range transistor is used in conjunction with a pixel cell having a capacitor-DCG gate combination; in another embodiment, adjacent pixels share pixel components, including the capacitor-DCG combination.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: August 9, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Jeffrey A. McKee
  • Patent number: 7977760
    Abstract: A manufacturing method is provided for a photoelectric conversion device in which no plane channeling is produced. The photoelectric conversion device includes a silicon substrate and a photoelectric conversion element on one principal plane of the silicon substrate that forms an off-angle ? with at least two planes perpendicular to a reference (1 0 0) plane within a range of 3.5°???4.5°, and an ion injecting direction for forming a semiconductor region constituting the photoelectric conversion element forms an angle ? to a direction perpendicular to the principal plane within a range of 0°<??45°, and further a direction of a projection of the ion injecting direction to the principal plane forms each angle ? with the two plane direction within a range of 0°<?<90°.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: July 12, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Seiichi Tamura, Hiroshi Yuzurihara, Shigeru Nishimura, Ryuichi Mishima, Yasushi Nakata
  • Patent number: 7973346
    Abstract: Disclosed is a image sensor (e.g., a CMOS image sensor) including pixels each having a transfer transistor and a drive transistor, in which the gate of at least one of the transistors has a boosting gate disposed over it comprised of a conductive film pattern with interposing an insulation film. Thus, a voltage applied to the boosting gate is capacitively coupled to at least one of the transfer gate of the transfer transistor and a drive gate of the drive transistor. The transfer gate is supplied with the sum of the transfer voltage and the boosting gate-coupling voltage as a result and there is no need for providing a high voltage generator for the image sensor. The dynamic range of operation may be enhanced if such a coupling voltage is applied to the drive gate of the drive transistor.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Young-Hoon Park, Won-Je Park, Tae-Seok Oh, Jae-Ho Song
  • Patent number: 7915702
    Abstract: An image sensor that includes a plurality of pixels disposed on a substrate, each pixel includes at least one photosensitive region that collects charges in response to incident light; a charge-to-voltage conversion node for sensing the charge from the at least one photosensitive region and converting the charge to a voltage; an amplifier transistor having a source connected to an output node, having a gate connected to the charge-to-voltage conversion node and having a drain connected to at least a portion of a power supply node; and a reset transistor connecting the output node and the charge-to-voltage conversion node.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 29, 2011
    Assignee: Eastman Kodak Company
    Inventor: Christopher Parks
  • Patent number: 7902622
    Abstract: A solid-state imaging device includes a photoelectric conversion section which is provided for each pixel and which converts light incident on a first surface of a substrate into signal charges, a circuit region which reads signal charges accumulated by the photoelectric conversion section, a multilayer film including an insulating film and a wiring film, the multilayer film being disposed on a second surface of the substrate opposite to the first surface, and a transmission-preventing film disposed at least between the wiring film in the multilayer film and the substrate.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: March 8, 2011
    Assignee: Sony Corporation
    Inventors: Masakazu Furukawa, Keiji Mabuchi
  • Patent number: 7902623
    Abstract: A solid-state imaging device includes a photoelectric conversion section which is provided for each pixel and which converts light incident on a first surface of a substrate into signal charges, a circuit region which reads signal charges accumulated by the photoelectric conversion section, a multilayer film including an insulating film and a wiring film, the multilayer film being disposed on a second surface of the substrate opposite to the first surface, and a transmission-preventing film disposed at least between the wiring film in the multilayer film and the substrate.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: March 8, 2011
    Assignee: Sony Corporation
    Inventors: Masakazu Furukawa, Keiji Mabuchi
  • Patent number: 7898010
    Abstract: A pinned photodiode with improved short wavelength light response. In exemplary embodiments of the invention, a gate oxide is formed over a doped, buried region in a semiconductor substrate. A conductor is formed on top of the gate oxide. The gate conductor is transparent, and in one embodiment is a layer of indium-tin oxide. The transparent conductor can be biased to reduce the need for a surface dopant in creating a pinned photodiode region. The biasing of the transparent conductor produces a hole-rich accumulation region near the surface of the substrate. The gate conductor material permits a greater amount of charges from short wavelength light to be captured in the photo-sensing region in the substrate, and thereby increases the quantum efficiency of the photosensor.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: March 1, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Chandra Mouli, Howard E. Rhodes
  • Publication number: 20110031578
    Abstract: A semiconductor photodiode includes a semiconductor substrate; a first conduction type first semiconductor layer formed above the semiconductor substrate; a high resistance second semiconductor layer formed above the first semiconductor layer; a first conduction type third semiconductor layer formed above the second semiconductor layer; and a second conduction type fourth semiconductor layer buried in the second semiconductor layer, in which the fourth semiconductor layer is separated at a predetermined distance in a direction horizontal to the surface of the semiconductor substrate.
    Type: Application
    Filed: July 17, 2010
    Publication date: February 10, 2011
    Inventors: Makoto MIURA, Shinichi Saito, Youngkun Lee, Katsuya Oda
  • Patent number: 7884436
    Abstract: In a solid-state imaging device, the pixel circuit formed on the first surface side of the semiconductor substrate is shared by a plurality of light reception regions. The second surface side of the semiconductor substrate is made the light incident side of the light reception regions. The second surface side regions of the light reception regions formed in the second surface side part of the semiconductor substrate are arranged at approximately even intervals and the first surface side regions of the light reception regions formed in the first surface side part of the semiconductor substrate are arranged at uneven intervals, respectively, and the second surface side regions and the first surface side regions are joined respectively in the semiconductor substrate so that the light reception regions extend from the second surface side to the first surface side of the semiconductor substrate.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: February 8, 2011
    Assignee: Sony Corporation
    Inventor: Keiji Mabuchi
  • Patent number: 7875915
    Abstract: An integrated circuit includes at least one photodiode associated with a read transistor. The photodiode is formed from a stack of three semiconductor layers comprising a buried layer, an floating substrate layer and an upper layer. The drain region and/or the source region of the transistor are incorporated within the upper layer. The buried layer is electrically isolated from the upper layer so as to allow the buried layer to be biased independently of the upper layer.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: January 25, 2011
    Assignee: STMicroelectronics S.A.
    Inventors: François Roy, Arnaud Tournier
  • Patent number: 7868367
    Abstract: A system and method for sensing image on CMOS. According to an embodiment, the present invention provide a CMOS image sensing pixel. The pixel includes an n-type substrate, which includes a first width and a first thickness. The pixel also includes a p-type epitaxy layer overlying the n-type substrate. The p-type epitaxy layer includes a second width and a second thickness. The second width is associated with one or more characteristics of a colored light. The pixel additionally includes an n-type layer overlying the p-type epitaxy layer. The n-type layer is associated with a third width and a third thickness. Additionally, the pixel includes an pn junction formed between the p-type epitaxy layer and the n-type layer. Moreover, the pixel includes a control circuit being coupled to the CMOS image sensing pixel.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: January 11, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Zhu Hong, Jim Yang
  • Patent number: 7863711
    Abstract: A semiconductor wafer and a method for cutting the same are provided, which enable separation of the semiconductor wafer by natural cleavage planes. The cutting method includes preparing a substrate including a semiconductor layer with at least one projection, formed on a predetermined area thereof; forming a post on an upper surface of the semiconductor layer at one or both sides of the projection to be placed on a cleaving line for cutting of the semiconductor layer; and cutting the substrate including the semiconductor layer along the cleaving line by performing a scribing process in a direction from the substrate and a breaking process in a direction from the semiconductor layer.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 4, 2011
    Assignee: LG Electronics Inc.
    Inventor: Ki Young Um
  • Publication number: 20100327148
    Abstract: An integrated circuit structure includes an image sensor cell, which further includes a photo transistor configured to sense light and to generate a current from the light.
    Type: Application
    Filed: March 31, 2010
    Publication date: December 30, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shine Chung, Tao-Wen Chung, Fu-Lung Hsueh
  • Patent number: 7859077
    Abstract: A semiconductor device includes: an n-type MOS transistor and a p-type MOS transistor connected in series; and a first gate extending via an insulating film above a channel of the n-type MOS transistor and a channel of the p-type MOS transistor. By providing light to the first gate, electrons and holes are generated, at least one of either of the electrons and holes passes through above the channel of the n-type MOS transistor and at least one of the either of the electrons and holes passes through above the channel of the p-type MOS transistor, whereby the n-type MOS transistor and the p-type MOS transistor are switched.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: December 28, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazushige Yamamoto, Tatsuo Shimizu
  • Patent number: 7843031
    Abstract: The present invention provides an ultraviolet detecting device which comprises a silicon semiconductor layer having a thickness ranging from greater than or equal to 3 nm to less than or equal to 36 nm, which is formed over an insulating layer, lateral PN-junction type first and second photodiodes formed in the silicon semiconductor layer, an interlayer insulating film formed over the silicon semiconductor layer, a first filter layer made of silicon nitride, which is formed over the interlayer insulating film provided over the first photodiode and causes light lying in a wavelength range of an UV-B wave or higher to pass therethrough, and a second filter layer made of silicon nitride, which is formed over the interlayer insulating film provided over the second photodiode and allows light lying in a wavelength range of an UV-A wave or higher to pass therethrough.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: November 30, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Noriyuki Miura, Tadashi Chiba
  • Patent number: 7843030
    Abstract: Here, we demonstrate new material/structures for the photodetectors, using semiconductor material. For example, we present the Tunable Avalanche Wide Base Transistor as a photodetector. Particularly, SiC, GaN, AlN, Si and Diamond materials are given as examples. The desired properties of an optimum photodetector is achieved. Different variations are discussed, both in terms of structure and material.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: November 30, 2010
    Inventor: Ranbir Singh
  • Patent number: 7821093
    Abstract: A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: October 26, 2010
    Assignee: Sony Corporation
    Inventors: Yoshiaki Kitano, Hideshi Abe, Jun Kuroiwa, Kiyoshi Hirata, Hiroaki Ohki, Nobuhiro Karasawa, Ritsuo Takizawa, Mitsuru Yamashita, Mitsuru Sato, Katsunori Kokubun
  • Patent number: 7816755
    Abstract: A pixel space is narrowed without increasing PN junction capacitance. A photoelectric conversion device includes a plurality of pixels arranged therein, each including a first impurity region of a first conductivity type forming a photoelectric conversion region, a second impurity region of a second conductivity type forming a signal acquisition region arranged in the first impurity region, a third impurity region of the first conductivity type and a fourth impurity region of the first conductivity type are arranged in a periphery of each pixel for isolating the each pixel, the fourth impurity region is disposed between adjacent pixels, and an impurity concentration of the fourth impurity region is smaller than an impurity concentration of the third impurity region.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: October 19, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuo Yamazaki, Tetsunobu Kochi
  • Patent number: 7812380
    Abstract: A solid-state imaging device of the present invention includes: a semiconductor substrate including a first region of a first conductivity type; a signal accumulation region of a second conductivity type formed within the first region; a gate electrode formed above the first region; a drain region of a second conductivity type formed on the first region; an isolation region having insulation properties, which is formed to surround a region where the signal accumulation region, the gate electrode, and the drain region are formed; a first conductivity type dopant doping region formed in contact with a side face and a bottom face of the isolation region, the first conductivity type dopant doping region having a higher dopant concentration than the first region; and a second conductivity type dopant doping region formed in the first region, under an end of the gate electrode in a gate width direction.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: October 12, 2010
    Assignee: Panasonic Corporation
    Inventors: Tatsuya Hirata, Motonari Katsuno
  • Patent number: 7808022
    Abstract: A method and apparatus for reducing cross-talk between pixels in a semiconductor based image sensor. The apparatus includes neighboring pixels separated by a homojunction barrier to reduce cross-talk, or the diffusion of electrons from one pixel to another. The homojunction barrier being deep enough in relation to the other pixel structures to ensure that cross-pixel electron diffusion is minimized.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 5, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventor: Bart Dierickx
  • Publication number: 20100237455
    Abstract: A phototransistor used for an image sensor is provided. The phototransistor can reduce a dark current that occurs in the phototransistor and improve sensitivity at low luminance without crosstalk with a neighboring pixel or an image lag by including a buried collector. In the phototransistor including the buried collector, since the collector is not directly connected to outside, the phototransistor has a low dark current and a high photosensitive characteristic at low luminance. Since each image sensor is isolated, crosstalk between pixels or an image lag does not occur.
    Type: Application
    Filed: May 7, 2008
    Publication date: September 23, 2010
    Applicant: SILICONFILE TECHNOLOGIES INC.
    Inventor: Byoung-Su Lee
  • Patent number: 7795064
    Abstract: The present invention provides a front-illuminated avalanche photodiode (APD) with improved intrinsic responsivity, as well as a method of fabricating such a front-illuminated APD. The front-illuminated APD comprises an APD body of semiconductor material, which includes a substrate and a layer stack disposed on a front surface of the substrate. The layer stack includes an absorption layer, a multiplication layer, and a field-control layer. Advantageously, a back surface of the APD body is mechanically and chemically polished, and a reflector having a reflectance of greater than 90% at the absorption wavelength band is disposed on the back surface of the APD body. Thus, incident light that is not absorbed in a first pass through the absorption layer is reflected by the reflector for a second pass through the absorption layer, increasing the intrinsic responsivity of the front-illuminated APD.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: September 14, 2010
    Assignee: JDS Uniphase Corporation
    Inventors: Zhong Pan, Craig Ciesla
  • Publication number: 20100213563
    Abstract: A semiconductor optoelectronic device including a substrate, a control chip, a light-sensing chip and a molding compound is provided. The control chip is disposed on the substrate and electrically connected to the substrate. The light-sensing chip is disposed on the substrate and electrically connected to the substrate and the control chip. The molding compound encapsulates the control chip and a material of the molding compound is an insulating material doped with a non-electro-conductive magnetic conductive material.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 26, 2010
    Applicant: EVERLIGHT ELECTRONICS CO., LTD.
    Inventor: Lu-Ming Lai
  • Patent number: 7781806
    Abstract: A method for providing an optical erase memory structure including: forming a metal-insulator-metal memory cell; positioning a light emitting diode adjacent to the metal-insulator-metal memory cell; and emitting a light emission from the light emitting diode for erasing the metal-insulator-metal memory cell.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: August 24, 2010
    Assignee: Spansion LLC
    Inventors: Michael VanBuskirk, Mark McClain
  • Publication number: 20100194950
    Abstract: In a rear surface incidence type CMOS image sensor having a wiring layer 720 on a first surface (front surface) of an epitaxial substrate 710 in which a photodiode, a reading circuit (an n-type region 750 and an n+ type region 760) and the like are disposed, and a light receiving plane in a second surface (rear surface), the photodiode and a P-type well region 740 on the periphery of the photodiode are disposed in a layer structure that does not reach the rear surface (light receiving surface) of the substrate, and an electric field is formed within the substrate 710 to properly lead electrons entering from the rear surface (light receiving surface) of the substrate to the photodiode. The electric field is realized by providing a concentration gradient in a direction of depth of the epitaxial substrate 710. Alternatively, the electric field can be realized by providing a rear-surface electrode 810 or 840 for sending a current.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 5, 2010
    Applicant: SONY CORPORATION
    Inventor: Keiji MABUCHI
  • Publication number: 20100194943
    Abstract: In a rear surface incidence type CMOS image sensor having a wiring layer 720 on a first surface (front surface) of an epitaxial substrate 710 in which a photodiode, a reading circuit (an n-type region 750 and an n+ type region 760) and the like are disposed, and a light receiving plane in a second surface (rear surface), the photodiode and a P-type well region 740 on the periphery of the photodiode are disposed in a layer structure that does not reach the rear surface (light receiving surface) of the substrate, and an electric field is formed within the substrate 710 to properly lead electrons entering from the rear surface (light receiving surface) of the substrate to the photodiode. The electric field is realized by providing a concentration gradient in a direction of depth of the epitaxial substrate 710. Alternatively, the electric field can be realized by providing a rear-surface electrode 810 or 840 for sending a current.
    Type: Application
    Filed: April 20, 2010
    Publication date: August 5, 2010
    Applicant: SONY CORPORATION
    Inventor: Keiji MABUCHI
  • Patent number: 7768090
    Abstract: A semiconductor photodetector device includes a light receiving operation section converting incident light to an electric signal and a current amplifying operation section amplifying the electric signal. The light receiving operation section includes: a first conductivity type semiconductor layer a formed on a first conductivity type semiconductor substrate; a second conductivity type first semiconductor region formed on the semiconductor layer; and a first conductivity type second semiconductor region formed on the semiconductor layer and separated from the first semiconductor region. The current amplifying operation section includes: the second semiconductor region; a second conductivity type third semiconductor region formed in the semiconductor substrate; a second conductivity type fourth semiconductor region formed on the third semiconductor region and separated from the second semiconductor region.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: August 3, 2010
    Assignee: Panasonic Corporation
    Inventor: Hisatada Yasukawa
  • Publication number: 20100181552
    Abstract: Embodiments of the subject invention relate to a method and apparatus for infrared (IR) detection. Organic layers can be utilized to produce a phototransistor for the detection of IR radiation. The wavelength range of the IR detector can be modified by incorporating materials sensitive to photons of different wavelengths. Quantum dots of materials sensitive to photons of different wavelengths than the host organic material of the absorbing layer of the phototransistor can be incorporated into the absorbing layer so as to enhance the absorption of photons having wavelengths associated with the material of the quantum dots. A photoconductor structure can be used instead of a phototransistor. The photoconductor can incorporate PbSe or PbS quantum dots. The photoconductor can incorporate organic materials and part of an OLED structure. A detected IR image can be displayed to a user. Organic materials can be used to create an organic light-emitting device.
    Type: Application
    Filed: October 1, 2007
    Publication date: July 22, 2010
    Inventor: Franky So
  • Patent number: 7745858
    Abstract: A pinned photodiode with a pinned surface layer formed by a self-aligned angled implant is disclosed. The angle of the implant may be tailored to provide an adequate offset between the pinned surface layer and an electrically active area of a transfer gate of the pixel sensor cell. The pinned surface layer is formed by employing the same mask level as the one employed for the formation of the photodiode region, and then implanting dopants at angles other than zero degrees.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: June 29, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Chandra Mouli, Howard Rhodes
  • Patent number: 7745859
    Abstract: A solid-state image sensing apparatus has a signal storage portion of a second conductivity type provided within a substrate, a surface shield layer of the first conductivity type provided in a surface portion of the substrate which is located above the signal storage portion, a gate electrode provided over the substrate in adjacent relation to at least one end of the signal storage portion, and a drain region of the second conductivity type provided in a surface portion of the substrate which is on the side opposite to the surface shield layer when viewed from the gate electrode. A read control layer of the first conductivity type is further provided in a surface portion of the substrate which is located under the gate electrode in adjacent relation to one end of the surface shield layer.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: June 29, 2010
    Assignee: Panasonic Corporation
    Inventors: Tatsuya Hirata, Shouzi Tanaka, Ryohei Miyagawa, Kazunari Koga
  • Patent number: 7723766
    Abstract: A solid-state image sensing device includes a plurality of pixels. Each pixel has a photodiode, a first transistor, and a second transistor. The photodiode is constituted by a first-conductivity-type semiconductor region and a second-conductivity-type semiconductor region. The first and second conductivity types are opposite to each other. The first transistor has a first-conductivity-type drain region formed in the second-conductivity-type semiconductor region to transfer signal charge to the drain region. The second transistor has a source region and a drain region which are formed in the second-conductivity-type semiconductor region and which have the first conductivity type. At least one second-conductivity-type potential barrier is provided under the drain region of the first transistor and the source region and/or the drain region of the second transistor.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: May 25, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Mahito Shinohara, Shunsuke Inoue
  • Patent number: 7719099
    Abstract: Silicon substrates are applied to the package structure of solid-state lighting devices. Wet etching is performed to both top and bottom surfaces of the silicon substrate to form reflecting cavity and electrode access holes. Materials of the reflecting layer and electrode can be different from each other whose preferred materials can be chosen in accordance with a correspondent function. Formation of the electrode can be patterned by an etching method or a lift-off method.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: May 18, 2010
    Assignee: Advanced Optoelectronic Technology Inc.
    Inventors: Wen Liang Tseng, Lung Hsin Chen
  • Patent number: 7709919
    Abstract: A solid-state image sensing device including an anti-reflection structure that uses polysilicon and a method of manufacturing the same, in which the solid-state image sensing device includes a photodiode region and a transistor region. The photodiode region includes a semiconductor substrate, a first anti-refection layer, a second anti-reflection layer, and a top layer. The first anti-reflection layer is formed on the semiconductor substrate, and the second anti-reflection layer is formed on the first anti-reflection layer. The top layer is formed on the second anti-reflection layer. Each of the semiconductor substrate and the second anti-reflection layer is formed of a first material, and each of the first anti-reflection layer and the top layer is formed of a second material different from the first material.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: May 4, 2010
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Getman Alexander, Bum-suk Kim, Yun-ho Jang, Sae-young Kim
  • Publication number: 20100101960
    Abstract: Described herein are single-sided lateral-field optoelectronic tweezers (LOET) devices which use photosensitive electrode arrays to create optically-induced dielectrophoretic forces in an electric field that is parallel to the plane of the device. In addition, phototransistor-based optoelectronic tweezers (PhOET) devices are described that allow for optoelectronic tweezers (OET) operation in high-conductivity physiological buffer and cell culture media.
    Type: Application
    Filed: September 24, 2009
    Publication date: April 29, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Aaron Ohta, Pei-Yu Chiou, Hsan-Yin Hsu, Arash Jamshidi, Ming-Chiang Wu, Steven L. Neale
  • Patent number: 7705381
    Abstract: A solid-state image sensing device includes a plurality of pixels. Each pixel has a photodiode, a first transistor, and a second transistor. The photodiode is constituted by a first-conductivity-type semiconductor region and a second-conductivity-type semiconductor region. The first and second conductivity types are opposite to each other. The first transistor has a first-conductivity-type drain region formed in the second-conductivity-type semiconductor region to transfer signal charge to the drain region. The second transistor has a source region and a drain region which are formed in the second-conductivity-type semiconductor region and which have the first conductivity type. At least one second-conductivity-type potential barrier is provided under the drain region of the first transistor and the source region and/or the drain region of the second transistor.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: April 27, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Mahito Shinohara, Shunsuke Inoue
  • Publication number: 20100097084
    Abstract: The invention relates to a method for monitoring the breakdown of a pn junction in a semiconductor component and to a semiconductor component adapted to carrying out said method. According to the method, optical radiation which is emitted if a breakdown occurs on a pn junction is detected by a photosensitive electronic component (8) integrated into the semiconductor component. The supply of the pn junction is controlled according to the detected radiation to prevent a complete breakdown during operation of the semiconductor component. The method according to the invention and the semiconductor component adapted thereto permit the operating range of the semiconductor component to be extended and the power output to be increased without the risk of destruction.
    Type: Application
    Filed: January 11, 2008
    Publication date: April 22, 2010
    Applicant: Universitat Stuttgart
    Inventors: Erich Kasper, Michael Morschbach
  • Patent number: 7701028
    Abstract: The pixel for use in an image sensor comprises a low-doped semiconductor substrate (A). On the substrate (A), an arrangement of a plurality of floating areas e.g., floating gates (FG2-FG6), is provided. Neighboring floating gates are electrically isolated from each other yet capacitively coupled to each other. By applying a voltage (V2-V1) to two contact areas (FG1, FG7), a lateral steplike electric field is generated. Photogenerated charge carriers move along the electric-field lines to the point of highest potential energy, where a floating diffusion (D) accumulate the photocharges. The charges accumulated in the various pixels are sequentially read out with a suitable circuit known from image-sensor literature, such as a source follower or a charge amplifier with row and column select mechanisms. The pixel of offers at the same time a large sensing area, a high photocharge-detection sensitivity and a high response speed without any static current consumption.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: April 20, 2010
    Assignee: MESA Imaging AG
    Inventors: Rolf Kaufmann, Michael Lehmann, Peter Seitz