With Complementary (npn And Pnp) Bipolar Transistor Structures Patents (Class 257/511)
-
Patent number: 11329152Abstract: A method of manufacturing a semiconductor device of one embodiment includes the steps of: forming a drift region in a first surface of a semiconductor substrate; forming a body region having a first portion disposed in the first surface, and a second portion disposed in the first surface so as to surround the first portion and the drift region; forming a hard mask, having an opening over the drift region, in the first surface; forming a reverse conductivity region in the first surface by ion implantation using the hard mask; forming a trench in the first surface by anisotropic etching using the hard mask; and embedding an isolation film in the trench. The ion implantation is performed obliquely to the first surface such that ions are implanted below a first edge part, which is located on a first portion side of the opening, of the hard mask.Type: GrantFiled: April 4, 2019Date of Patent: May 10, 2022Assignee: RENESAS ELECTRONICS CORPORATIONInventors: Hiroaki Sekikawa, Takahiro Mori, Yuji Ishii
-
Patent number: 11296247Abstract: An electronics module assembly for detecting photons is provided to include: a substrate layer; a buried layer deposited upon a first surface area of the substrate layer; an intrinsic layer deposited upon a first portion of a first surface area of the buried layer; a plug layer deposited upon a second portion of the first surface area of the buried layer; a p-plus layer deposited upon a first surface area of the intrinsic layer; an n-plus layer deposited upon a first surface area of the plug layer; a pre-metal dielectric (PMD) layer deposited upon the p-plus layer and n-plus layer; a first node coupled, through the PMD layer, to the p-plus layer; and a second node coupled, through the PMD layer, to the n-plus layer.Type: GrantFiled: February 11, 2019Date of Patent: April 5, 2022Inventors: Bryan Cadugan, Harianto Wong, William P. Taylor
-
Patent number: 9966318Abstract: A substrate includes first and second semiconductor layers doped with opposite conductivity type in contact with each other at a PN junction to form a junction diode. At least one through silicon via structure, formed by a conductive region surrounded laterally by an insulating layer, extends completely through the first semiconductor layer and partially through the second semiconductor layer with a back end embedded in, and in physical and electrical contact with, the second semiconductor layer. A first electrical connection is made to the first through silicon via structure and a second electrical connection is made to the first semiconductor layer. A testing current is applied to and sensed at the first and second electrical connections in order to detect a defect in the at least one through silicon via structure.Type: GrantFiled: January 31, 2017Date of Patent: May 8, 2018Assignee: STMicroelectronics S.r.l.Inventor: Alberto Pagani
-
Patent number: 9755072Abstract: A method for fabricating a high-voltage transistor on a semiconductor substrate includes defining and forming shallow trench isolation regions for all of the transistors, defining and forming well regions for all of the transistors, forming a gate oxide layer in the well regions for all of the transistor, forming gates for all of the transistors over the gate oxide layer, implanting a dopant to form lightly-doped drain regions for all of the transistors, the lightly-doped drain regions for at least drains of the high-voltage transistors being spaced apart from an inner edge of the shallow trench isolation regions, forming gate spacers at sides of the gates of all of the transistors, and implanting a dopant to form sources and drains for all of the transistors, the drains of the high-voltage transistors being formed completely surrounded by the lightly-doped drain regions of the high-voltage transistors.Type: GrantFiled: March 21, 2016Date of Patent: September 5, 2017Assignee: MICROSEMI SoC CORPORATIONInventors: Fengliang Xue, Fethi Dhaoui, John L. McCollum
-
Patent number: 9437718Abstract: A method of forming a semiconductor structure includes forming a first seed layer, a second seed layer and an intrinsic base spaced apart from each other and with the intrinsic base located between the first seed layer and the second seed layer on an insulator layer. The method further includes forming an emitter on the first seed layer and on a first vertical surface of the intrinsic base by epitaxially growing the emitter from the first seed layer and the first vertical surface of the intrinsic base, and forming a collector on the second seed layer and on a second vertical surface of the intrinsic base by epitaxially growing the collector from the second seed layer and the second vertical surface of the intrinsic base.Type: GrantFiled: May 12, 2015Date of Patent: September 6, 2016Assignee: International Business Machines CorporationInventors: Jin Cai, Kevin K. Chan, Tak H. Ning, Jeng-Bang Yau, Joonah Yoon
-
Patent number: 9412667Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.Type: GrantFiled: November 25, 2014Date of Patent: August 9, 2016Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Anthony I. Chou, Arvind Kumar, Chung-Hsun Lin, Shreesh Narasimha, Claude Ortolland, Jonathan T. Shaw
-
Patent number: 9379066Abstract: A device for detecting a laser attack made on an integrated circuit chip comprises a bipolar transistor of a first type formed in a semiconductor substrate, that bipolar transistor comprising a parasitic bipolar transistor of a second type. A buried region, forming the base of the parasitic bipolar transistor, operates as a detector of the variations in current flowing caused by impingement of laser light on the substrate.Type: GrantFiled: April 15, 2015Date of Patent: June 28, 2016Assignee: STMICROELECTRONICS (ROUSSET) SASInventors: Fabrice Marinet, Julien Mercier, Jimmy Fort, Alexandre Sarafianos
-
Patent number: 9337323Abstract: Device structures and design structures for a bipolar junction transistor. A first isolation structure is formed in a substrate to define a boundary for a device region. A collector is formed in the device region, and a second isolation structure is formed in the device region. The second isolation structure defines a boundary for the collector. The second isolation structure is laterally positioned relative to the first isolation structure to define a section of the device region between the first and second isolation structures.Type: GrantFiled: September 25, 2014Date of Patent: May 10, 2016Assignee: GLOBALFOUNDRIES INC.Inventors: James S. Dunn, Qizhi Liu
-
Patent number: 9230808Abstract: A method of fabricating a semiconductor device includes providing a substrate that is divided into a first region on which a pattern layer is formed and a second region on which a photo key is formed. A silicon layer is formed on the first region and second region of the substrate. The silicon layer is patterned to form a hole exposing a photo key portion of the second region on which the photo key is formed. A buried oxide layer is formed to fill the hole exposing the photo key portion. The silicon layer is patterned by using the photo key formed under the buried oxide layer to form a silicon pattern layer.Type: GrantFiled: August 2, 2013Date of Patent: January 5, 2016Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Je-woo Han, Jun-ho Yoon, Dong-chan Kim, Gyung-jin Min, Jae-hong Park, Yong-moon Jang
-
Patent number: 9202934Abstract: A method of forming a junction field effect transistor, the transistor comprising: a back gate; a channel; a top gate; a drain and a source in current flow with the channel; wherein the method comprises selecting a first channel dimension between the top gate and the back gate such that a significant current flow path in the channel occurs in a region of relatively low electric field strength.Type: GrantFiled: October 16, 2013Date of Patent: December 1, 2015Assignee: ANALOG DEVICES GLOBALInventor: Edward John Coyne
-
Patent number: 9176173Abstract: A method for detecting an imperfect mounting of an essentially rod-shaped metallic object in a metallic hollow shaft is provided. The imperfect mounting may lead to the formation of metallic particles. The rod-shaped object is mounted electrically insulated from the hollow shaft. The electrical resistance between the rod-shaped object and the hollow shaft is measured. An alert is issued when the electrical resistance is lower than a predefined level. A device includes a spin unit with a hollow drive shaft and a nozzle mounted inside the hollow shaft. The device is configured to use the inventive method.Type: GrantFiled: January 20, 2012Date of Patent: November 3, 2015Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Wolfgang Pfeiffer, Thomas Klein
-
Patent number: 8907452Abstract: A device for detecting a laser attack in an integrated circuit chip formed in the upper P-type portion of a semiconductor substrate incorporating an NPN bipolar transistor having an N-type buried layer, including a detector of the variations of the current flowing between the base of said NPN bipolar transistor and the substrate.Type: GrantFiled: January 28, 2013Date of Patent: December 9, 2014Assignee: STMicroelectronics (Rousset) SASInventors: Fabrice Marinet, Jimmy Fort, Alexandre Sarafianos, Julien Mercier
-
Patent number: 8872222Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises a first doped region, a second doped region, a doped strip and a top doped region. The first doped region has a first type conductivity. The second doped region is formed in the first doped region and has a second type conductivity opposite to the first type conductivity. The doped strip is formed in the first doped region and has the second type conductivity. The top doped region is formed in the doped strip and has the first type conductivity. The top doped region has a first sidewall and a second sidewall opposite to the first sidewall. The doped strip is extended beyond the first sidewall or the second sidewall.Type: GrantFiled: February 24, 2012Date of Patent: October 28, 2014Assignee: Macronix International Co., Ltd.Inventors: Ching-Lin Chan, Chen-Yuan Lin, Cheng-Chi Lin, Shih-Chin Lien
-
Patent number: 8853043Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.Type: GrantFiled: September 11, 2012Date of Patent: October 7, 2014Assignee: International Business Machines CorporationInventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
-
Patent number: 8786024Abstract: A combined switching device includes a MOSFET disposed in a MOSFET area and IGBTs disposed in IGBT areas of a SiC substrate. The MOSFET and the IGBTs have gate electrodes respectively connected, a source electrode and emitter electrodes respectively connected, and a drain electrode and a collector electrode respectively connected. The MOSFET and the IGBTs are disposed with a common n-buffer layer. A top surface element structure of the MOSFET and top surface element structures of the IGBTs are disposed on the first principal surface side of the SiC substrate. Concave portions and convex portions are disposed on the second principal surface side of the SiC substrate. The MOSFET is disposed at a position corresponding to the convex portion of the SiC substrate. The IGBTs are disposed at positions corresponding to the concave portions of the SiC substrate.Type: GrantFiled: April 15, 2011Date of Patent: July 22, 2014Assignees: Yoshitaka Sugawara, Fuji Electric Co., Ltd.Inventor: Yoshitaka Sugawara
-
Patent number: 8785306Abstract: A method for manufacturing a semiconductor power device on a semiconductor substrate supporting a drift region composed of an epitaxial layer by growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers then carrying out a device manufacturing process on a top side of the epitaxial layer with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.Type: GrantFiled: September 27, 2011Date of Patent: July 22, 2014Assignee: Alpha and Omega Semiconductor IncorporatedInventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Yeeheng Lee, John Chen, Moses Ho
-
Patent number: 8685799Abstract: An RRAM at an STI region is disclosed with a vertical BJT selector. Embodiments include defining an STI region in a substrate, implanting dopants in the substrate to form a well of a first polarity around and below an STI region bottom portion, a band of a second polarity over the well on opposite sides of the STI region, and an active area of the first polarity over each band of second polarity at the surface of the substrate, forming a hardmask on the active areas, removing an STI region top portion to form a cavity, forming an RRAM liner on cavity side and bottom surfaces, forming a top electrode in the cavity, removing a portion of the hardmask to form spacers on opposite sides of the cavity, and implanting a dopant of the second polarity in a portion of each active area remote from the cavity.Type: GrantFiled: September 12, 2012Date of Patent: April 1, 2014Assignee: GlobalFoundries Singapore Pte. Ltd.Inventors: Shyue Seng Tan, Eng Huat Toh, Elgin Quek
-
Patent number: 8618584Abstract: An ESD protection element is formed by a PN junction diode including an N+ type buried layer having a proper impurity concentration and a first P+ type buried layer and a parasitic PNP bipolar transistor which uses a second P+ type buried layer connected to a P+ type diffusion layer as the emitter, an N? type epitaxial layer as the base, and the first P+ type buried layer as the collector. The first P+ type buried layer is connected to an anode electrode, and the P+ type diffusion layer and an N+ type diffusion layer surrounding the P+ type diffusion layer are connected to a cathode electrode. When a large positive static electricity is applied to the cathode electrode, and the parasitic PNP bipolar transistor turns on to flow a large discharge current.Type: GrantFiled: September 12, 2012Date of Patent: December 31, 2013Assignee: Semiconductor Components Industries, LLCInventors: Seiji Otake, Yasuhiro Takeda, Yuta Miyamoto
-
Patent number: 8598678Abstract: A parasitic vertical PNP bipolar transistor in BiCMOS process comprises a collector, a base and an emitter. The collector is formed by active region with p-type ion implanting layer (P type well in NMOS). It connects a P-type conductive region, which formed in the bottom region of shallow trench isolation (STI). The collector terminal connection is through the P-type buried layer and the adjacent active region. The base is formed by N type ion implanting layer above the collector which shares a N-type lightly doped drain (NLDD) implanting of NMOS. Its connection is through the N-type poly on the base region. The emitter is formed by the P-type epitaxy layer on the base region with heavy p-type doped, and connected by the extrinsic base region of NPN bipolar transistor device. This invention also includes the fabrication method of this parasitic vertical PNP bipolar transistor in BiCMOS process.Type: GrantFiled: December 8, 2010Date of Patent: December 3, 2013Assignee: Shanghai Hua Hong Nec Electronics Company, LimitedInventors: Wensheng Qian, Jun Hu, Donghua Liu
-
Patent number: 8569867Abstract: According to one embodiment, a semiconductor device that has a rectification element includes a semiconductor substrate, a first well region of a first conductivity type formed on the semiconductor substrate, a second well region of a second conductivity type formed on the semiconductor substrate, and a plurality of fins arranged over the first well region and the second well region at a first pitch in the same direction. In the semiconductor device, the rectification element includes a cathode region, an anode region, a well contact region, and a trigger region that are configured using fins. These regions are connected to each wiring portion to form a PNP-type bipolar transistor and an NPN-type bipolar transistor.Type: GrantFiled: February 2, 2012Date of Patent: October 29, 2013Assignee: Kabushiki Kaisha ToshibaInventor: Satoshi Inaba
-
Patent number: 8564096Abstract: Methods and apparatus according to various aspects of the present invention may operate in conjunction with a resistor formed of a lightly-doped P-type region formed in a portion of a lightly-doped N-type semiconductor well extending on a lightly-doped P-type semiconductor substrate, the well being laterally delimited by a P-type wall extending down to the substrate, the portion of the well being delimited, vertically, by a heavily-doped N-type area at the limit between the well and the substrate and, horizontally, by a heavily-doped N-type wall. A diode may be placed between a terminal of the resistor and the heavily-doped N-type wall, the cathode of the diode being connected to said terminal.Type: GrantFiled: July 4, 2008Date of Patent: October 22, 2013Assignee: STMicroelectronics SAInventors: Serge Pontarollo, Dominique Berger
-
Patent number: 8455975Abstract: A parasitic PNP bipolar transistor, wherein a base region includes a first and a second region; the first region is formed in an active area, has a depth larger than shallow trench field oxides, and has its bottom laterally extended into the bottom of the shallow trench field oxides on both sides of an active area; the second region is formed in an upper part of the first region and has a higher doping concentration; an N-type and a P-type pseudo buried layer is respectively formed at the bottom of the shallow trench field oxides; a deep hole contact is formed on top of the N-type pseudo buried layer to pick up the base; the P-type pseudo buried layer forms a collector region separated from the active area by a lateral distance; an emitter region is formed by a P-type SiGe epitaxial layer formed on top of the active area.Type: GrantFiled: September 8, 2011Date of Patent: June 4, 2013Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.Inventors: Donghua Liu, Wensheng Qian
-
Patent number: 8330223Abstract: A bipolar transistor has a collector having a base layer provided thereon and a shallow trench isolation structure formed therein. A base poly layer is provided on the shallow trench isolation structure. The shallow trench isolation structure defines a step such that a surface of the collector projects from the shallow trench isolation structure adjacent the collector.Type: GrantFiled: September 2, 2010Date of Patent: December 11, 2012Assignee: Texas Instruments IncorporatedInventors: Klaus Schimpf, Manfred Schiekofer, Carl David Willis, Michael Waitschull, Wolfgang Ploss
-
Patent number: 8283730Abstract: A negative differential resistance (NDR) device is designed and a possible compact device implementation is presented. The NDR device includes a voltage blocker and a current blocker and exhibits high peak-to-valley current ratio (PVCR) as well as high switching speed. The corresponding process and design are completely compatible with contemporary Si CMOS technology and area efficient. A single-NDR element SRAM cell prototype with a compact size and high speed is also proposed as its application suitable for embedded memory.Type: GrantFiled: May 26, 2009Date of Patent: October 9, 2012Inventor: Shu-Lu Chen
-
Patent number: 8227832Abstract: The present invention provides a multi-finger structure of a SiGe heterojunction bipolar transistor (HBT). It is consisted of plural SiGe HBT single cells. The multi-finger structure is in a form of C/BEBC/BEBC/.../C, wherein, C, B, E respectively stands for collector, base and emitter; CBEBC stands for a SiGe HBT single cell. The collector region is consisted of an n type ion implanted layer inside the active region. The bottom of the implanted layer is connected to two n type pseudo buried layers. The two pseudo buried layers are formed through implantation to the bottom of the shallow trenches that surround the collector active region. Two collectors are picked up by deep trench contact through the field oxide above the two pseudo buried layers. The present invention can reduce junction capacitance, decrease collector electrode output resistance, and improve device frequency characteristics.Type: GrantFiled: December 17, 2010Date of Patent: July 24, 2012Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.Inventors: Tzuyin Chiu, Zhengliang Zhou, Xiongbin Chen
-
Patent number: 8148774Abstract: To provide a semiconductor device in which an interval between first wells can be shortened by improving a separation breakdown voltage between the first wells and a method for manufacturing the same.Type: GrantFiled: October 27, 2009Date of Patent: April 3, 2012Assignee: Renesas Electronics CorporationInventors: Hidemitsu Mori, Kazuhiro Takimoto, Toshiyuki Shou, Kenji Sasaki, Yutaka Akiyama
-
Patent number: 8138570Abstract: An isolation structure for a semiconductor device comprises a floor isolation region, a dielectric filled trench above the floor isolation region and a sidewall isolation region extending downward from the bottom of the trench to the floor isolation region. This structure provides a relatively deep isolated pocket in a semiconductor substrate while limiting the depth of the trench that must be etched in the substrate. An isolated junction field-effect transistor is formed in the isolated pocket.Type: GrantFiled: December 17, 2007Date of Patent: March 20, 2012Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) LimitedInventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
-
Patent number: 8129249Abstract: Integrated transistor and method for the production is disclosed. An explanation is given of, inter alia, a transistor having an electrically insulating isolating trench extending from a main area in the direction of a connection region remote from the main area. Moreover, the transistor contains an auxiliary trench extending from the main area as far as the connection region remote from the main area. The transistor requires a small chip area and has outstanding electrical properties.Type: GrantFiled: September 9, 2010Date of Patent: March 6, 2012Assignee: Infineon Technologies AGInventors: Karlheinz Mueller, Klaus Roeschlau
-
Patent number: 8125051Abstract: A semiconductor device is provided that includes a semiconductor substrate having a first region and a second region, transistors having metal gates formed in the first region, an isolation structure formed in the second region, at least one junction device formed proximate the isolation structure in the second region, and a stopping structure formed overlying the isolation structure in the second region.Type: GrantFiled: May 22, 2009Date of Patent: February 28, 2012Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry Chuang, Kong-Beng Thei, Chiung-Han Yeh, Mong-Song Liang, Hou-Ju Li, Ming-Yuan Wu, Tzung-Chi Lee
-
Patent number: 8120189Abstract: A wiring structure having a wiring-terminal-connection adhesive that includes a curing agent capable of generating a free radical upon heating, a radically polymerizable substance and silicone particles.Type: GrantFiled: June 13, 2008Date of Patent: February 21, 2012Assignee: Hitachi Chemical Company, Ltd.Inventors: Motohiro Arifuku, Itsuo Watanabe, Kouji Motomura, Kouji Kobayashi, Yasushi Gotoh, Tohru Fujinawa
-
Patent number: 8115256Abstract: A semiconductor device includes an inverter having an NMOSFET and a PMOSFET having sources, drains and gate electrodes respectively, the drains being connected to each other and the gate electrodes being connected to each other, and a pnp bipolar transistor including a collector (C), a base (B) and an emitter (E), the base (B) receiving an output of the inverter.Type: GrantFiled: August 31, 2007Date of Patent: February 14, 2012Assignee: Sanyo Electric Co., Ltd.Inventors: Haruki Yoneda, Hideaki Fujiwara
-
Patent number: 8044488Abstract: The invention is based upon a semiconductor device where a high voltage bipolar transistor is manufactured on the same wafer with a high-speed bipolar transistor, and has a characteristic that the high-speed bipolar transistor and the high voltage bipolar transistor are formed on each epitaxial collector layer having the same thickness and are provided with a buried collector region formed in the same process and having the same impurity profile, the buried collector region exists immediately under a base of the high-speed bipolar transistor, no buried collector region and no SIC region exist immediately under a base of the high voltage bipolar transistor and distance between a base region and a collector plug region of the high voltage bipolar transistor is equal to or is longer than the similar distance of the high-speed bipolar transistor.Type: GrantFiled: June 23, 2008Date of Patent: October 25, 2011Assignees: Hitachi, Ltd., Hitachi Ulsi Systems Co., Ltd.Inventors: Mitsuru Arai, Shinichiro Wada, Hideyuki Hosoe
-
Patent number: 8035168Abstract: Roughly described, transistor channel regions are elevated over the level of certain adjacent STI regions. Preferably the STI regions that are transversely adjacent to the diffusion regions are suppressed, as are STI regions that are longitudinally adjacent to N-channel diffusion regions. Preferably STI regions that are longitudinally adjacent to P-channel diffusions are not suppressed; preferably they have an elevation that is at least as high as that of the diffusion regions.Type: GrantFiled: February 27, 2006Date of Patent: October 11, 2011Assignee: Synopsys, Inc.Inventors: Victor Moroz, Dipankar Pramanik, Xi-Wei Lin
-
Patent number: 8030731Abstract: An isolated diode comprises a floor isolation region, a dielectric-filled trench and a sidewall region extending from a bottom of the trench at least to the floor isolation region. The floor isolation region, dielectric-filled trench and a sidewall region are comprised in one terminal (anode or cathode) of the diode and together form an isolated pocket in which the other terminal of the diode is formed. In one embodiment the terminals of the diode are separated by a second dielectric-filled trench and sidewall region.Type: GrantFiled: December 17, 2007Date of Patent: October 4, 2011Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) LimitedInventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
-
Patent number: 8021952Abstract: Integrated transistor and method for the production is disclosed. An explanation is given of, inter alia, a transistor having an electrically insulating isolating trench extending from a main area in the direction of a connection region remote from the main area. Moreover, the transistor contains an auxiliary trench extending from the main area as far as the connection region remote from the main area. The transistor requires a small chip area and has outstanding electrical properties.Type: GrantFiled: July 15, 2009Date of Patent: September 20, 2011Assignee: Infineon Technologies AGInventors: Karlheinz Mueller, Klaus Roeschlau
-
Patent number: 8015538Abstract: The invention relates to noise isolation in semiconductor devices, and a design structure on which a subject circuit resides. A design structure is embodied in a machine readable medium used in a design process. The design structure includes a deep sub-collector located in a first epitaxial layer, and a doped region located in a second epitaxial layer, which is above the first epitaxial layer. The design structure further includes a reach-through structure penetrating from a surface of the device through the first and second epitaxial layers to the deep sub-collector, and a trench isolation structure penetrating from a surface of the device and surrounding the doped region.Type: GrantFiled: November 16, 2007Date of Patent: September 6, 2011Assignee: International Business Machines CorporationInventors: Douglas D Coolbaugh, Xuefeng Liu, Robert M. Rassel, David C. Sheridan, Steven H. Voldman
-
Patent number: 7960758Abstract: A bipolar transistor and a radio frequency amplifier circuit capable of preventing thermal runaway in the bipolar transistor without affecting the radio frequency amplifier circuit, which includes: a direct-current (DC) bias terminal to which a DC bias is supplied; a DC base electrode connected to the DC terminal; a radio frequency (RF) power terminal to which a radio frequency signal is supplied; an RF base electrode connected to the RF terminal; and a base layer connected to the DC base electrode and the RF base electrode.Type: GrantFiled: April 3, 2006Date of Patent: June 14, 2011Assignee: Panasonic CorporationInventor: Masahiro Maeda
-
Patent number: 7923810Abstract: A semiconductor device may include a semiconductor region of a semiconductor substrate wherein a P-N junction is defined between the semiconductor region and a bulk of the semiconductor substrate. An insulating isolation structure in the semiconductor substrate may surround sidewalls of the semiconductor region. An interlayer insulating layer may be on the semiconductor substrate, on the semiconductor region, and on the insulating isolation structure, and the interlayer insulating layer may have first and second spaced apart element holes exposing respective first and second portions of the semiconductor region. A first semiconductor pattern may be in the first element hole on the first exposed portion of the semiconductor region, and a second semiconductor pattern may be in the second element hole on the second exposed portion of the semiconductor region.Type: GrantFiled: October 17, 2008Date of Patent: April 12, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Dae-Won Ha, Sang-Yoon Kim
-
Patent number: 7911023Abstract: A semiconductor apparatus is disclosed. The semiconductor apparatus includes a semiconductor substrate that has a first surface and a second surface opposite to each other. The semiconductor apparatus further includes multiple double-sided electrode elements each having a pair of electrodes located respectively on the first and second surfaces of the semiconductor substrate. A current flows between the first and second electrode. Each double-sided electrode element has a PN column region located in the semiconductor substrate. The semiconductor apparatus further includes an insulation trench that surrounds each of multiple double-sided electrode elements, and that insulates and separates the multiple double-sided electrode elements from each other.Type: GrantFiled: November 4, 2008Date of Patent: March 22, 2011Assignee: Denso CorporationInventors: Nozomu Akagi, Hitoshi Yamaguchi, Tetsuo Fujii
-
Patent number: 7898008Abstract: A bipolar device is integrated in an active layer, wherein delimitation trenches surround respective active areas housing bipolar transistors of complementary types. Each active area accommodates a buried layer; a well region extending on top of the buried layer; a top sinker region extending between the surface of the device and the well region; a buried collector region extending on top of the well region and laterally with respect to the top sinker region; a base region, extending on top of the buried collector region laterally with respect to the top sinker region; and an emitter region extending inside the base region. The homologous regions of the complementary transistors have a similar doping level, being obtained by ion-implantation of epitaxial layers wherein the concentration of dopant added during the growth is very low, possibly zero.Type: GrantFiled: July 18, 2007Date of Patent: March 1, 2011Assignee: STMicroelectronics S.r.l.Inventors: Piero Giorgio Fallica, Roberto Modica
-
Patent number: 7868387Abstract: A high-voltage, low-leakage, bidirectional electrostatic discharge (ESD, or other electrical overstress) protection device includes a doped well disposed between the terminal regions and the substrate. The device includes an embedded diode for conducting current in one direction, and a transistor feedback circuit for conducting current in the other direction. Variations in the dimensions and doping of the doped well, as well as external passive reference via resistor connections, allow the circuit designer to flexibly adjust the operating characteristics of the device, such as trigger voltage and turn-on speed, to suit the required mixed-signal operating conditions.Type: GrantFiled: June 13, 2008Date of Patent: January 11, 2011Assignee: Analog Devices, Inc.Inventors: Javier A. Salcedo, Jean-Jacques Hajjar, Todd Thomas
-
Patent number: 7868414Abstract: A bipolar transistor is formed in an isolation structure comprising a floor isolation region, a dielectric filled trench above the floor isolation region and a sidewall isolation region extending downward from the bottom of the trench to the floor isolation region. This structure provides a relatively deep isolated pocket in a semiconductor substrate while limiting the depth of the trench that must be etched in the substrate.Type: GrantFiled: December 17, 2007Date of Patent: January 11, 2011Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) LimitedInventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
-
Patent number: 7863610Abstract: An integrated circuit is disclosed. One embodiment includes a first diode, a second diode, and a semiconductor line coupled to the first diode and the second diode. The line includes a first silicide region between the first diode and the second diode.Type: GrantFiled: August 22, 2007Date of Patent: January 4, 2011Assignees: Qimonda North America Corp., International Business Machines CorporationInventors: Bipin Rajendran, Shoaib Hasan.Zaidi
-
Patent number: 7859062Abstract: Systems and methods for integrated circuits comprising multiple body biasing domains. In accordance with a first embodiment of the present invention, a semiconductor structure comprises a substrate of first type material. A first closed structure comprising walls of second type material extends from a surface of the substrate to a first depth. A planar deep well of said second type material underlying and coupled to the closed structure extends from the first depth to a second depth. The closed structure and the planar deep well of said second type material form an electrically isolated region of the first type material. A second-type semiconductor device is disposed to receive a first body biasing voltage from the electrically isolated region of the first type material. A well of the second-type material within the electrically isolated region of the first type material is formed and a first-type semiconductor device is disposed to receive a second body biasing voltage from the well of second-type material.Type: GrantFiled: September 30, 2004Date of Patent: December 28, 2010Inventors: Kleanthes G. Koniaris, Robert Paul Masleid, James B. Burr
-
Patent number: 7842971Abstract: A silicon-controlled rectifier (SCR) device having a high holding voltage includes a PNP transistor and an NPN transistor, each transistor having both p-type and n-type dopant regions in their respective emitter areas. The device is particularly suited to high voltage applications, as the high holding voltage provides a device which is more resistant to latchup subsequent to an electrostatic discharge event compared to devices having a low holding voltage.Type: GrantFiled: February 5, 2009Date of Patent: November 30, 2010Assignees: Intersil Americas Inc., University of Central Florida Research Foundation, Inc.Inventors: Zhiwei Liu, Juin J. Liou, James E. Vinson
-
Patent number: 7816264Abstract: A wafer processing method having a step of reducing the thickness of a wafer in only a device forming area where semiconductor chips are formed by grinding and etching the back side of the wafer to thereby form a recess on the back side of the wafer. At the same time, an annular projection is formed around the recess to thereby ensure the rigidity of the wafer. Accordingly, handling in shifting the wafer from the back side recess forming step to a subsequent step of forming a back side rewiring layer can be performed safely and easily.Type: GrantFiled: July 7, 2008Date of Patent: October 19, 2010Assignee: Disco CorporationInventors: Keiichi Kajiyama, Kazuhisa Arai
-
Patent number: 7790564Abstract: Methods for fabricating a device structure in a semiconductor-on-insulator substrate. The method includes forming a first isolation region in the substrate device layer that extends from a top surface of the device layer to a first depth and forming a second isolation region in the semiconductor layer that extends from the top surface of the semiconductor layer to a second depth greater than the first depth. The method further includes forming a doped region of the device structure in the semiconductor layer that is located vertically between the first isolation region and the insulating layer.Type: GrantFiled: April 24, 2008Date of Patent: September 7, 2010Assignee: International Business Machines CorporationInventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Robert R. Robison, William R. Tonti
-
Patent number: 7772060Abstract: A method of fabricating an integrated BiCMOS circuit is provided, the circuit including bipolar transistors 10 and CMOS transistors 12 on a substrate. The method comprises the step of forming an epitaxial layer 28 to form a channel region of a MOS transistor and a base region of a bipolar transistor. Growing of the epitaxial layer includes growing a first sublayer of silicon 28a, a first sublayer of silicon-germanium 28b onto the first sublayer of silicon, a second sublayer of silicon 28c onto the first sublayer of silicon-germanium, and a second sublayer of silicon-germanium 28d onto the second sublayer of silicon. Furthermore, an integrated BiCMOS circuit is provided, which includes an epitaxial layer 28 as described above.Type: GrantFiled: June 11, 2007Date of Patent: August 10, 2010Assignee: Texas Instruments Deutschland GmbHInventors: Reiner Jumpertz, Klaus Schimpf
-
Patent number: 7755161Abstract: A device comprises a first sub-collector formed in an upper portion of a substrate and a lower portion of a first epitaxial layer and a second sub-collector formed in an upper portion of the first epitaxial layer and a lower portion of a second epitaxial layer. The device further comprises a reach-through structure connecting the first and second sub-collectors and an N-well formed in a portion of the second epitaxial layer and in contact with the second sub-collector and the reach-through structure. The device further comprises N+ diffusion regions in contact with the N-well, a P+ diffusion region in contact with the N-well, and shallow trench isolation structures between the N+ and P+ diffusion regions.Type: GrantFiled: September 24, 2008Date of Patent: July 13, 2010Assignee: International Business Machines CorporationInventors: Xuefeng Liu, Robert M. Rassel, Steven H. Voldman
-
Patent number: RE41477Abstract: An N type buried layer is formed, in one embodiment, by a non selective implant on the surface of a wafer and later diffusion. Subsequently, the wafer is masked and a selective P type buried layer is formed by implant and diffusion. The coefficient of diffusion of the P type buried layer dopant is greater than the N type buried layer dopant so that connections can be made to the P type buried layer by P wells which have a lower dopant concentration than the N buried layer.Type: GrantFiled: October 5, 2004Date of Patent: August 10, 2010Inventor: James D. Beasom