With Stress Relief Patents (Class 257/669)
  • Patent number: 8174131
    Abstract: Methods are provided for packaging a semiconductor die having a first surface. In accordance with an exemplary embodiment, a method comprises the steps of forming a trench in the first surface of the die, electrically and physically coupling the die to a packaging substrate, forming a sealant layer on the first surface of the die, forming an engagement structure within the trench, and infusing underfill between the sealant layer and the engagement structure and the packaging substrate.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: May 8, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Zhen Zhang, Frank Kuechenmeister, Jaime Bravo, Michael Su, Ranjit Gannamani, Kevin Lim
  • Patent number: 8143707
    Abstract: A semiconductor device includes a circuit base including an inner lead portion and an outer lead portion. The inner lead portion has a plurality of inner leads. At least part of the inner leads is routed inside a chip mounting area. On both upper and lower surfaces of the circuit base, a first and a second semiconductor chip are mounted. At least part of electrode pads of the first semiconductor chip are electrically connected to electrode pads of the second semiconductor chip via the inner leads.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiaki Goto
  • Publication number: 20120061811
    Abstract: An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a heat sink plate and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the heat sink plate. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 15, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Peter Nelle, Matthias Stecher
  • Patent number: 8115284
    Abstract: A semiconductor device with its package size close to its chip size has a stress absorbing layer, allows a patterned flexible substrate to be omitted, and allows a plurality of components to be fabricated simultaneously. There is: a step of forming electrodes on a wafer; a step of providing a resin later as a stress relieving layer on the wafer, avoiding the electrodes; a step of forming a chromium layer as wiring from electrodes over the resin layer; and step of forming solder balls as external electrodes on the chromium layer over the resin layer; and a step of cutting the wafer into individual semiconductor chips; in the steps of forming the chromium layer and solder balls, metal thin film fabrication technology is used during the wafer process.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: February 14, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Patent number: 8110913
    Abstract: An integrated circuit package system includes: fabricating a lead frame including: providing inner leads having an inner lead pitch of progressive length, forming a lead shoulder, on the inner leads, having a shoulder height of a progressive height, and forming outer leads coupled to the lead shoulder and the inner leads; mounting an integrated circuit die on the lead frame; and molding a package body on the lead frame and the integrated circuit die.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: February 7, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Linda Pei Ee Chua, Zheng Zheng, Lee Sun Lim
  • Patent number: 8106493
    Abstract: Embodiments of the present invention relate to the use of stamping to form features on a lead frame of a semiconductor device package. In one embodiment, portions of the lead frame such as pins are moved out of the horizontal plane of a diepad by stamping. In certain embodiments, indentations or a complex cross-sectional profile, such as chamfered, may be imparted to portions of the pins and/or diepad by stamping. The complexity offered by such a stamped cross-sectional profile serves to enhance mechanical interlocking of the lead frame within the plastic molding of the package body. Other techniques such as selective electroplating and/or formation of a brown oxide guard band to limit spreading of adhesive material during die attach, may be employed alone or in combination to facilitate fabrication of a package having such stamped features.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: January 31, 2012
    Assignee: GEM Services, Inc.
    Inventors: Anthony C. Tsui, Mohammad Eslamy, Anthony Chia, Hongbo Yang, Ming Zhou, Jian Xu
  • Patent number: 8097934
    Abstract: A lead frame and package construction configured to attain a thin profile and low moisture sensitivity. Lead frames of this invention may include a die attach pad having a die attachment site and an elongate ground lead that extends from the die attach pad. The lead frame includes a plurality of elongate I/O leads arranged about the die attach pad and extending away from the die attach pad in at least two directions. An inventive lead frame features “up-set” bonding pads electrically connected with the die attach pad and arranged with a bonding surface for supporting a plurality of wire bonds. The bonding surfaces also constructed to define at least one mold flow aperture for each up-set bonding pad. A package incorporating the lead frame is further disclosed such that the package includes an encapsulant that surrounds the bonding support and flows through the mold flow aperture to establish well supported wire bonds such that the package has low moisture sensitivity.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: January 17, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Felix C. Li, Yee Kim Lee, Peng Soon Lim, Terh Kuen Yii, Lee Han Meng@Eugene Lee
  • Patent number: 8058719
    Abstract: A microelectronic device including a microelectronic circuit and at least one planar flexible lead. These planar flexible leads are adapted to bend and flex during mechanical stress allow direct mounting of the device to a member, and withstand extreme thermal cycling, such as ?197° C. to +150° C. such as encountered in space.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: November 15, 2011
    Inventor: Tracy Autry
  • Publication number: 20110233744
    Abstract: A method for manufacturing an integrated circuit package system includes: providing a leadframe; forming a protruding pad on the leadframe; attaching a die to the leadframe; electrically connecting the die to the leadframe; and encapsulating at least portions of the leadframe, the protruding pad, and the die in an encapsulant.
    Type: Application
    Filed: June 6, 2011
    Publication date: September 29, 2011
    Inventors: Seng Guan Chow, Ming Ying, Il Kwon Shim, Roger Emigh
  • Publication number: 20110233743
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a leadframe strip system, having a stress relief slot and a leadframe unit, the stress relief slot is at a frame corner of the leadframe strip system and spans adjacent sides of the leadframe unit, the leadframe unit includes a paddle, a tie bar therefrom, and a lead finger; connecting an integrated circuit and the lead finger; forming an encapsulation covering the integrated circuit; and singulating the integrated circuit in the encapsulation from the leadframe strip system with a package corner of the encapsulation free of micro-cracks with an inspection of the package corner at least 50× view.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Inventors: Jayby Agno, Erwin Aguas Sangalang, Dexter Anonuevo, Ramona Damalerio
  • Patent number: 8021929
    Abstract: An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a lead frame and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the lead frame. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: September 20, 2011
    Assignee: Infineon Technologies AG
    Inventors: Peter Nelle, Matthias Stecher
  • Patent number: 8022509
    Abstract: A crack stopping structure is disclosed. The crack stopping structure includes a semiconductor substrate having a die region, a die seal ring region, and a scribe line region; a metal interconnect structure disposed on the semiconductor substrate of the scribe line region; and a plurality of dielectric layers disposed on the semiconductor substrate of the die region, the die seal ring region, and the scribe line region. The dielectric layers include a first opening exposing the surface of the metal interconnect structure of the scribe line region and a second opening exposing the dielectric layer adjacent to the metal interconnect structure such that the metal interconnect structure and the exposed portion of the dielectric layer form a step.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: September 20, 2011
    Assignee: United Microelectronics Corp.
    Inventor: Jui-Meng Jao
  • Patent number: 8018042
    Abstract: A microelectronic device including a microelectronic circuit and at least one planar flexible lead. These planar flexible leads are adapted to bend and flex during mechanical stress, allowing direct mounting of the device to a member and able withstand extreme thermal cycling between ?20° C. to +80° C. encountered in terrestrial applications. Advantageously, the microelectronic device is adapted to be both weldable and solderable. The invention may comprise a solar cell diode, which is flexible and so thin that it can be affixed directly to the solar panel proximate the solar cell.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: September 13, 2011
    Assignee: Microsemi Corporation
    Inventor: Tracy Autry
  • Patent number: 8017445
    Abstract: A method and packaging for semiconductor devices and integrated circuits is disclosed that eliminates warpage stress on packages caused by coefficient of thermal expansion (CTE) mismatch between the device, lead frame or die paddle and a molding compound. Generally, the method includes steps of: (i) mounting the die on which the device is fabricated to a die paddle of a leadframe; and (ii) encapsulating the die on the die paddle and at least a portion of the leadframe in a molding compound, wherein a difference between a first volume of molding compound above a plane of the leadframe and a second volume of molding compound below the plane of the leadframe is sufficiently reduced to substantially eliminate warpage of the finished package due to mismatch of CTEs of the device, lead frame and packaging compound. The die paddle may be etched or reduced to facilitate molding compound flowing under the plane of the leadframe. Other embodiments are also disclosed.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: September 13, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventors: Bo Chang, Carlo Gamboa
  • Publication number: 20110204497
    Abstract: A semiconductor integrated circuit having a semiconductor chip mounted over a tape- or film-like substrate, the semiconductor integrated circuit having a higher strength against bending, as well as a method for manufacturing the semiconductor integrated circuit, are disclosed. The semiconductor integrated circuit comprises a bendable tape-like substrate, the tape-like substrate including external terminals, internal terminals provided for coupling to a rectangular semiconductor chip, and wiring lines for coupling the internal terminals and the external terminals with each other; and a reinforcing member for reinforcing the semiconductor chip over the tape-like substrate in a longitudinal direction of the semiconductor chip, the semiconductor chip and the reinforcing member being sealed with resin.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 25, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Satoru Matsuda, Tsukasa Yasuda, Ichiro Matsumoto
  • Publication number: 20110180914
    Abstract: A method for manufacturing a multiple encapsulation integrated circuit package-in-package system includes: dicing a top integrated circuit wafer having a bottom encapsulant thereon to form a top integrated circuit die with the bottom encapsulant; positioning internal leadfingers adjacent and connected to a bottom integrated circuit die; pressing the bottom encapsulant on to the bottom integrated circuit die; connecting the top integrated circuit die to external leadfingers adjacent the internal leadfingers; and forming a top encapsulant over the top integrated circuit die.
    Type: Application
    Filed: April 6, 2011
    Publication date: July 28, 2011
    Inventors: Byung Tai Do, Seng Guan Chow, Heap Hoe Kuan, Linda Pei Ee Chua, Rui Huang
  • Patent number: 7982309
    Abstract: An integrated circuit includes a substrate including an active area and a gas phase deposited packaging material encapsulating the active area.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: July 19, 2011
    Assignee: Infineon Technologies AG
    Inventors: Louis Vervoort, Joachim Mahler
  • Patent number: 7977774
    Abstract: A semiconductor package which includes a generally planar die paddle defining multiple peripheral edge segments and a plurality of leads which are segregated into at least two concentric rows. Connected to the top surface of the die paddle is at least one semiconductor die which is electrically connected to at least some of the leads of each row. At least portions of the die paddle, the leads, and the semiconductor die are encapsulated by a package body, the bottom surfaces of the die paddle and the leads of at least one row thereof being exposed in a common exterior surface of the package body.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: July 12, 2011
    Assignee: Amkor Technology, Inc.
    Inventors: YeonHo Choi, GiJeong Kim, WanJong Kim
  • Patent number: 7977160
    Abstract: Methods are provided for fabricating a semiconductor device. In accordance with an exemplary embodiment, a method comprises the steps of providing a semiconductor die having a conductive terminal, forming an insulating layer overlying the semiconductor die, and forming a cavity in the insulating layer which exposes the conductive terminal. The method also comprises forming a first stress-relief layer in the cavity, forming an interconnecting structure having a first end electrically coupled to the first stress-relief layer, and having a second end, and electrically and physically coupling the second end of the interconnecting structure to a packaging substrate.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: July 12, 2011
    Assignee: GlobalFoundries, Inc.
    Inventors: Michael Su, Frank Kuchenmeister, Lei Fu
  • Patent number: 7977775
    Abstract: The present invention enables improvement of bonding reliability of the conductive adhesive interposed between a semiconductor chip and a die pad portion. Provided is a semiconductor device, in which a silicon chip is mounted over the die pad portion integrally formed with a drain lead, has a source pad over the main surface and a drain electrode of a power MOSFET over the back side, and is bonded onto the die pad portion via an Ag paste. In the device, a source lead and the source pad are electrically coupled via an Al ribbon. Over the back surface of the silicon chip, an Ag nanoparticle coated film is formed, while another Ag nanoparticle coated film is formed over the die pad portion and lead (drain lead and source lead).
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: July 12, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yuichi Yato, Takuya Nakajo, Hiroi Oka
  • Publication number: 20110163392
    Abstract: By increasing the area of a source electrode 3a of a semiconductor element 3 and the area of a source terminal 2b of a lead frame 2, it is possible to extend a joint 8a of the source electrode 3a bonded to a conductive ribbon 6 and a joint 8b of the source terminal 2b. Thus it is possible to reduce an on resistance and easily reduce the number of times a bonding tool comes into contact with the joints to reduce a stress on the semiconductor element 3.
    Type: Application
    Filed: September 17, 2009
    Publication date: July 7, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Chie Fujioka, Toshiyuki Yokoe, Daichi Kumano
  • Patent number: 7968981
    Abstract: An integrated circuit package system including: providing a leadframe with an integrated circuit mounted thereover; encapsulating the integrated circuit with an encapsulation; mounting an etch barrier below the leadframe; and etching the leadframe.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: June 28, 2011
    Assignee: STATS ChipPAC Ltd.
    Inventors: Jae Hak Yee, Junwoo Myung, Byoung Wook Jang, YoungChul Kim
  • Publication number: 20110133319
    Abstract: A semiconductor package comprises a die attach pad and an auxiliary support member at least partially circumscribing the die attach pad. A set of contact leads is formed extending outward from the die attach pad. A first set of contact pads is formed on the bottom surface of the distal ends of the contact leads. An optional second set of contact pads is formed at the bottom surface of the proximal end. The auxiliary support member prevents damage to the contact leads and prevents the leads from bending during the manufacturing process.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 9, 2011
    Applicant: UTAC THAI LIMITED
    Inventor: Saravuth Sirinorakul
  • Patent number: 7955884
    Abstract: A semiconductor package includes a semiconductor chip including a semiconductor substrate and a plurality of cell transistors arranged on the semiconductor substrate. Channel regions of the cell transistors have channel lengths that extend in a first direction, and the package further includes a supporting substrate having an upper surface on which the semiconductor chip is affixed. The supporting substrate is configured to bend in response to a temperature increase in a manner that applies a tensile stress to the channel regions of the semiconductor chip in the first direction. Related methods are also disclosed.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: June 7, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Soo Kang, Choong-Ho Lee, Hye-Jin Cho
  • Patent number: 7947534
    Abstract: An integrated circuit package system is provided including: forming a plurality of leads with a predetermined thickness and a predetermined interval gap between each of the plurality of leads; configuring each one of the plurality of leads to include first terminal ends disposed adjacent an integrated circuit and second terminal ends disposed along a periphery of a package; and forming the second terminal ends of alternating leads disposed along the periphery of the package to form an etched lead-to-lead gap in excess of the predetermined interval gap.
    Type: Grant
    Filed: February 4, 2006
    Date of Patent: May 24, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Jeffrey D. Punzalan, Henry D. Bathan, Il Kwon Shim, Keng Kiat Lau
  • Patent number: 7943961
    Abstract: A semiconductor structure includes an active region; a gate strip overlying the active region; and a metal-oxide-semiconductor (MOS) device. A portion of the gate strip forms a gate of the MOS device. A portion of the active region forms a source/drain region of the MOS device. The semiconductor structure further includes a stressor region over the MOS device; and a stressor-free region inside the stressor region and outside the region over the active region.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: May 17, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Sen Wang, Chung-Te Lin, Min Cao, Sheng-Jier Yang
  • Publication number: 20110101511
    Abstract: The present invention features a power semiconductor package and a method of forming the same that includes forming, in the body, a stress relief region disposed between a pair of mounting regions and attaching a semiconductor die in each of the mounting regions. The semiconductor die has first and second sets of electrical contacts with the first set being on a first surface of the semiconductor die and the second set being disposed upon a second surface of the semiconductor die opposite to the first surface. The first set is in electrical communication with the mounting region. Walls are formed on outer sides of the pair of mounting regions, defining a shaped body, with the shaped body and walls defining an electrically conductive path that extends from the first set and terminates on side of the package common with the second set.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Inventors: Jun Lu, François Hébert
  • Publication number: 20110089545
    Abstract: An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a lead frame and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the lead frame. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Peter Nelle, Matthias Stecher
  • Patent number: 7928540
    Abstract: An integrated circuit package system is provided including forming an external interconnect having a lead body and a lead tip, forming a lead protrusion in the lead tip, connecting a device and the external interconnect, and encapsulating the device and the external interconnect.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: April 19, 2011
    Assignee: STATS ChipPAC Ltd.
    Inventors: Il Kwon Shim, Antonio B. Dimaano, Jr., Henry D. Bathan, Jeffrey D. Punzalan
  • Publication number: 20110084370
    Abstract: A package carrier includes: (a) a dielectric layer defining a plurality of openings; (b) patterned electrically conductive layer, embedded in the dielectric layer and disposed adjacent to a first surface of the dielectric layer; a plurality of electrically conductive posts, disposed in respective ones of the openings, wherein the openings extend between a second surface of the dielectric layer to the patterned electrically conductive layer, the electrically conductive posts a connected to the patterned electrically conductive layer, and an end of each of the electrically conductive posts has a curved profile and is faced away from the patterned electrically conductive layer; and (d) a patterned solder resist layer, disposed adjacent to the first surface of the dielectric layer and exposing portions of the patterned electrically conductive layer corresponding to contact pads. A semiconductor package includes the package carrier, a chip, and an encapsulant covering the chip and the package carrier.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 14, 2011
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: YUAN-CHANG SU, SHIH-FU HUANG, CHIA-CHENG CHEN, CHIA-HSIUNG HSIEH, TZU-HUI CHEN, KUANG-HSIUNG CHEN, PAO-MING HSIEH
  • Publication number: 20110068444
    Abstract: A semiconductor device is made by mounting a semiconductor wafer to a temporary carrier. A plurality of TSV is formed through the wafer. A cavity is formed partially through the wafer. A first semiconductor die is mounted to a second semiconductor die. The first and second die are mounted to the wafer such that the first die is disposed over the wafer and electrically connected to the TSV and the second die is disposed within the cavity. An encapsulant is deposited over the wafer and first and second die. A portion of the encapsulant is removed to expose a first surface of the first die. A portion of the wafer is removed to expose the TSV and a surface of the second die. The remaining portion of the wafer operates as a TSV interposer for the first and second die. An interconnect structure is formed over the TSV interposer.
    Type: Application
    Filed: September 23, 2009
    Publication date: March 24, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: HeeJo Chi, NamJu Cho, HanGil Shin
  • Patent number: 7911039
    Abstract: A component arrangement comprising a carrier, a component in a housing with electrical contacts and a moulding compound that encloses the carrier, the semiconductor component in the housing and the electrical contacts, wherein the component is applied on the carrier, and wherein the carrier is provided with holes, and a method for producing a component arrangement, wherein the carrier is provided with holes, the component is positioned on the carrier, the component is connected to the carrier, the component with the carrier is positioned in the leadframe, and this arrangement is enclosed by a moulding compound.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 22, 2011
    Assignee: Infineon Technologies AG
    Inventors: Michael Bauer, Alfred Haimerl, Angela Kessler, Joachim Mahler, Wolfgang Schober
  • Patent number: 7911062
    Abstract: The present invention proposes a semiconductor device including a semiconductor chip having a plurality of electrodes, a plurality of leads electrically connected to the plurality of electrodes of the semiconductor chip by bonding wires, and a resin for implementing the semiconductor chip, wherein the plurality of leads are comprised of two or more kinds of leads having different rigidities.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: March 22, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Tetsuya Nakatsuka, Koji Serizawa
  • Publication number: 20110062566
    Abstract: A semiconductor device comprising: a substrate; a terminal on the substrate's first surface; a first electrode on the first surface connected to the terminal; an electronic element on the substrate's second surface; a second electrode connected to the electronic element; a groove on the second surface leading to the second electrode; a conductive portion inside the grove connected to the second electrode's rear face; a first wiring on the first surface connected to the first electrode; a second wiring connecting the first wiring and the terminal; a stress-absorbing layer between the substrate and terminal; a land connecting the first wiring and the second wiring, the land opening a part of the stress-absorbing layer and exposing the first wiring, the land being in a region surrounded by terminals, and the land being along a straight line connecting the centers of diagonal terminals, with the region between the terminals.
    Type: Application
    Filed: November 17, 2010
    Publication date: March 17, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Haruki ITO, Nobuaki HASHIMOTO
  • Patent number: 7888782
    Abstract: An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a lead frame and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the lead frame. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 15, 2011
    Assignee: Infineon Technologies AG
    Inventors: Peter Nelle, Matthias Stecher
  • Patent number: 7880278
    Abstract: Warpage and breakage of integrated circuit substrates is reduced by compensating for the stress imposed on the substrate by thin films formed on a surface of the substrate. Particularly advantageous for substrates having a thickness substantially less than about 150 ?m, a stress-tuning layer is formed on a surface of the substrate to substantially offset or balance stress in the substrate which would otherwise cause the substrate to bend. The substrate includes a plurality of bonding pads on a first surface for electrical connection to other component.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 1, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shin-Puu Jeng, Clinton Chao, Szu Wei Lu
  • Patent number: 7863737
    Abstract: An integrated circuit package system including providing a plurality of substantially identical package leads formed in a single row, and attaching bond wires having an offset on adjacent locations of the package leads.
    Type: Grant
    Filed: April 1, 2006
    Date of Patent: January 4, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Byoung Wook Jang, Hun Teak Lee, Kwang Soon Hwang
  • Patent number: 7863108
    Abstract: A method of manufacture of an integrated circuit packaging system is provided including: forming a D-ring includes half etching a paddle, etching a ring, and etching a tie bar. The tie bar is between the paddle and the ring. The system further includes mounting an integrated circuit die on a central portion of the D-ring, connecting the integrated circuit die and the D-ring, and encapsulating the integrated circuit die and a portion of the D-ring.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: January 4, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Antonio B. Dimaano, Jr., Il Kwon Shim, Sheila Rima C. Magno
  • Patent number: 7859089
    Abstract: A copper strap for a semiconductor device package having a contact electrically connected to a die electrode, a leg portion electrically connected to a lead frame, a web portion positioned between the contact and the leg portion and connected to the leg portion and a connection region connecting the web portion to the contact. The contact includes a body having a plurality of formations, each of the plurality of formations having a concavity and an opposing convexity positioned to generally face the die electrode.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: December 28, 2010
    Assignee: International Rectifier Corporation
    Inventors: Kunzhong Hu, Chuan Cheah
  • Patent number: 7847391
    Abstract: An integrated circuit package that comprises a lead frame, an integrated circuit located on the lead frame and a shunt resistor coupled to the lead frame and to the integrated circuit. The shunt resistor has a lower temperature coefficient of resistance than the lead frame, and the lead frame has a lower resistivity than the shunt resistor. The shunt resistor has a low-resistance coupling to external leads of the lead frame, or, the shunt resistor has its own integrated external leads.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: December 7, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Ubol Udompanyavit, Sreenivasan K. Koduri, Gerald William Steele, Jason Marc Cole, Steven Kummerl
  • Patent number: 7838339
    Abstract: Embodiments of the present invention relate to the use of stamping to form features on a lead frame of a semiconductor device package. In one embodiment, portions of the lead frame such as pins are moved out of the horizontal plane of a diepad by stamping. In certain embodiments, indentations or a complex cross-sectional profile, such as chamfered, may be imparted to portions of the pins and/or diepad by stamping. The complexity offered by such a stamped cross-sectional profile serves to enhance mechanical interlocking of the lead frame within the plastic molding of the package body. Other techniques such as selective electroplating and/or formation of a brown oxide guard band to limit spreading of adhesive material during die attach, may be employed alone or in combination to facilitate fabrication of a package having such stamped features.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: November 23, 2010
    Assignee: GEM Services, Inc.
    Inventors: Anthony C. Tsui, Mohammad Eslamy, Anthony Chia, Hongbo Yang, Ming Zhou, Jian Xu
  • Patent number: 7839003
    Abstract: While a semiconductor device is provided with a plurality of element electrodes 5 formed on a semiconductor element 4 and a plurality of lead terminal electrodes 6 formed on a lead frame, the semiconductor device is equipped with a coupling conductor which electrically connects at least one electrode among the above-described element electrodes 5 to at least one electrode among the above-described lead terminal electrodes 6; the above-described coupling conductor is manufactured by a first conductor 1 and a second conductor 2, the major components of which are metals; the first conductor 1 has been electrically connected to the second conductor 2; and the element electrodes 5 and the lead terminal electrodes 6 have been electrically connected to the second conductor 2 respectively.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: November 23, 2010
    Assignee: Panasonic Corporation
    Inventors: Mitsuhiro Hamada, Kouichi Tomita
  • Patent number: 7834432
    Abstract: A chip package having asymmetric molding includes a lead frame, a chip, an adhesive layer, bonding wires and a molding compound. The lead frame includes a turbulent plate and a frame body having inner lead portions and outer lead portions. The turbulent plate is bended downwards to form a concave portion. The first end of the turbulent plate is connected to the frame body, and the second end is lower than the inner lead portions. The chip is fixed under the inner lead portions through the adhesive layer. The bonding wires are connected between the chip and the inner lead portions. The molding compound encapsulates the chip, the bonding wires, and the turbulent plate. The ratio between the thickness of the molding compound over and under the concave portion is larger than 1. The thickness of the molding compound under and over the outer lead portions is not equal.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: November 16, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd
    Inventors: Wu-Chang Tu, Geng-Shin Shen
  • Patent number: 7821112
    Abstract: A semiconductor device having linear zigzag(s) for wire bonding is revealed, primarily comprising a chip, a plurality of leads made of a lead frame and a plurality of bonding wires electrically connecting the chip and the leads. At least one of the leads has a linear zigzag including a first finger and a second finger connected each other in a zigzag form. One end of one of the bonding wire is bonded to a bonding pad on the chip and the other end is selectively bonded to either the first finger or the second finger but not both in a manner that the wire-bonding direction of the bonding wire is parallel to or in a sharp angle with the direction of the connected fingers for easy wire bonding processes. Therefore, the semiconductor device can assemble chips with diverse dimensions or with diverse bonding pads layouts by flexible wire-bonding angles at linear zigzag to avoid electrical short between the adjacent leads.
    Type: Grant
    Filed: March 9, 2008
    Date of Patent: October 26, 2010
    Assignee: Powertech Technology Inc
    Inventors: Wen-Jeng Fan, Yu-Mei Hsu
  • Patent number: 7820480
    Abstract: A redistributed lead frame for use in a molded plastic semiconductor package (38) is formed from an electrically conductive substrate by a sequential metal removal process. The process includes: (a) patterning a first side of an electrically conductive substrate to form an array of lands separated by channels, (b) disposing a first molding compound (18) within these channels, (c) patterning a second side of the electrically conductive substrate to form an array of chip attach sites (24) and routing circuits (26) electrically interconnecting the array of lands and the array of chip attach sites (24), (d) directly electrically interconnecting input/output pads on the at least one semiconductor device (28) to chip attach site members (24) of the array of chip attach sites (24), and (e) encapsulating the at least one semiconductor device (28), the array of chip attach sites (24) and the routing circuits (26) with a second molding compound (36).
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: October 26, 2010
    Assignee: Unisem (Mauritius) Holdings Limited
    Inventors: Shafidul Islam, Romarico Santos San Antonio, Anang Subagio
  • Patent number: 7812463
    Abstract: One aspect of the invention pertains to a semiconductor package suitable for use in high stress environments, such as ones involving high pressures, temperatures and/or corrosive substances. In this aspect, a die and leadframe are fully encapsulated in a first plastic casing. The first plastic casing is fully encapsulated in turn with a second plastic casing. The two casings have different compositions. The first plastic casing, for example, may be made of a thermoset plastic material and the second plastic casing may be made of a thermoplastic material. The first plastic casing may have recesses, indentations and/or slots suitable for securing it to the second plastic casing. In some embodiments, a corrosion resistant coating is added to the second plastic casing. Methods for forming semiconductor packages suitable for use in high stress environments are also described.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: October 12, 2010
    Assignee: National Semiconductor Corporation
    Inventor: Felix C. Li
  • Patent number: 7808086
    Abstract: The present invention includes a plurality of mounting portions on which a semiconductor element is mounted, a plurality of electrodes to which the semiconductor elements that are mounted on each of the mounting portions are electrically connected, a corner portion which connects the plurality of mounting portions and which has a hanging lead piece that supports the mounting portions and an electrode connection piece that connects the plurality of electrodes, and a half-blanking portion that has a concave portion formed in a thickness direction of the lead frame and a protrusion formed at a position corresponding to the concave portion, and which is covered with a sealing resin material that seals the semiconductor element. A stress-dispersing portion for dispersing stress that arises, when the half-blanking portion is formed, is provided in the corner portion.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: October 5, 2010
    Assignees: NEC Electronics Corporation, Hitachi Cable Precision Co., Ltd.
    Inventors: Akimi Saiki, Hiroyuki Shoji, Gousuke Takahashi, Noriyuki Hasegawa, Fumio Takano, Kouji Sato
  • Patent number: 7808088
    Abstract: A semiconductor device comprises a die having a first surface and a second surface, a first leadframe connected to the first surface and the second surface, and a second leadframe connected to the first surface.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: October 5, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Bernhard P Lange
  • Patent number: 7800219
    Abstract: An exemplary semiconductor die package of the invention has a metal-oxide substrate disposed between a first surface of a semiconductor die and a heat-sinking component, with a conductive die clip or one or more electrical interconnect traces disposed between the metal-oxide substrate and the first surface of the semiconductor die. The heat-sinking component may comprise a heat sink, or an adaptor plate to which a heat sink may be coupled. The conductive die clip or electrical trace(s) provides electrical connection(s) to the first surface of the semiconductor die, while the metal-oxide substrate electrically insulates the die from the heat-sinking component, and provides a path of high thermal conductivity between the die and the heat-sinking component. The second surface of the semiconductor die may be left free to connect to a circuit board, or a leadframe or interconnect substrate may be attached to it.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: September 21, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Oseob Jeon, Chung-Lin Wu, Eddy Tjhia, Bigildis C. Dosdos
  • Patent number: 7791178
    Abstract: A lead frame unit, a semiconductor package having a lead frame unit, a stacked semiconductor package having a semiconductor package, and methods of manufacturing the same are provided. The lead frame unit in a stacked semiconductor package may include a die pad supporting a semiconductor chip, an inner lead electrically connected to the semiconductor chip, an outer lead extending from the inner lead, and a heat-resistant insulation member surrounding the connection portion. The outer lead may include a connection portion connected to the inner lead and a junction portion connected to the connection portion and a circuit board. An external signal may be applied to the junction portion. If the lead frame unit is used in the stacked semiconductor package, the outer lead and a dummy outer lead in the stacked semiconductor package may have substantially the same shape.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyo-Jae Bang, Heui-Seog Kim, Seong-Chan Han, Jung-Hyeon Kim, Sung-Hwan Kim