Liquid Coolant Patents (Class 257/714)
  • Patent number: 8917508
    Abstract: The invention relates to a power electronic assembly (1, 2, 3) with a heat sink (2), a power semiconductor module (1) and a circuit arrangement (3) for controlling the power semiconductor module, wherein the heat sink (2) has at least two parallel channels through which a coolant can flow.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: December 23, 2014
    Assignee: AEG Power Solutions B.V.
    Inventors: Liviu Bajan, Samir El Gharib, Gerrit Schulte
  • Patent number: 8913383
    Abstract: An apparatus includes an electrically-powered component, a hermetically-sealed, liquid-impermeable, high thermal-conductivity, container encapsulating the electrically-powered component, and a liquid bath surrounding the hermetically-sealed container. The electrically-powered component can include a computer motherboard, a central processing unit of a computer, or an electrical power transformer. The container can include a substance in direct contact with the electrically-powered component and can include a silicone compound, an epoxy compound, or a polyurethane compound.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: December 16, 2014
    Assignee: Heatmine LLC
    Inventors: Wendi Goldsmith, James M. Kramer
  • Patent number: 8912645
    Abstract: A semiconductor element cooling structure includes a side wall provided on a downstream side of flow of cooling air in a cooling air passage, a plurality of cooling fins forming cooling air branch passages, and a plurality of cooling fins forming cooling air branch passages. The cooling fins each have an end portion at a tip extending toward the cooling air passage. A virtual line obtained by connecting the end portions of the plurality of cooling fins and a virtual line obtained by connecting the end portions of the plurality of cooling fins each have a gradient with respect to a direction of the flow of the cooling air in the cooling air passage which is greater on an upstream side of the flow of the cooling air in the cooling air passage than on the downstream side thereof.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: December 16, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroto Kusaka
  • Publication number: 20140361425
    Abstract: A semiconductor device includes a package and a cooler. The semiconductor package includes a semiconductor element, a metal member, and a molding member for encapsulating the semiconductor element and the metal member. The metal member has a metal portion thermally connected to the semiconductor element, an insulating layer on the metal portion, and a conducting layer on the insulating layer. The conducting layer is at least partially exposed outside the molding member and serves as a radiation surface for radiating heat of the semiconductor element. The cooler has a coolant passage through which a coolant circulates to cool the conducting layer. The conducting layer and the cooler are electrically connected together.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 11, 2014
    Inventors: Kuniaki MAMITSU, Takahisa KANEKO, Masaya TONOMOTO, Masayoshi NISHIHATA, Hiroyuki WADO, Chikage NORITAKE, Eiji NOMURA, Toshiki ITOH
  • Patent number: 8902589
    Abstract: A semiconductor module and a cooler capable of cooling a semiconductor element efficiently. The semiconductor module supplies a refrigerant to a water jacket configuring the cooler, to cool a circuit element part disposed on an outer surface of a fin base. This semiconductor module has: a fin connected thermally to the circuit element part; a refrigerant introducing passage in the water jacket, which has a guide part that has one surface and another surface inclined to guide the refrigerant toward one side surface of the fin; a refrigerant discharge passage disposed in the water jacket to be parallel to the refrigerant introducing passage, which has a side wall parallel to another side surface of the fin; and a cooling passage formed in a position for communicating the refrigerant introducing passage and the refrigerant discharge passage with each other in the water jacket. The fin is disposed in the cooling passage.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: December 2, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Hiromichi Gohara, Takeshi Ichimura, Akira Morozumi
  • Patent number: 8897010
    Abstract: A heat sink assembly includes a base plate coupled to a first side of an electronic device. A plurality of fins extend from the base plate and are positioned within a housing. The housing includes a first manifold defining a plurality of first passages and a second manifold defining a plurality of second passages in fluid communication with the plurality of first passages. At least one of the plurality of first passages extends between an adjacent pair of the plurality of second passages and is oriented to channel fluid toward at least one of the plurality of fins.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: November 25, 2014
    Assignee: General Electric Company
    Inventor: Mark Eugene Shepard
  • Publication number: 20140339693
    Abstract: Provided is an improved cooler-integrated semiconductor module. A semiconductor module (100) includes a plurality of cooling plates (12), and a plurality of flat-plate semiconductor packages (5) and flat-plate device packages (2). The semiconductor packages (5) each include a semiconductor element housed therein. The device packages (2) each include an electronic component housed therein, the electronic component being different in type from the semiconductor element housed in the semiconductor elements. The cooling plates (12) are laminated alternately with the semiconductor packages (5) or the device packages (2). Connecting tubes (13a, 13b) having refrigerant flowing therein are provided between the cooling plates (12) adjacent to each other.
    Type: Application
    Filed: December 20, 2011
    Publication date: November 20, 2014
    Inventor: Koji Hotta
  • Patent number: 8890311
    Abstract: A power conversion device is provided with a plurality of semiconductor modules. Each semiconductor module includes a heat dissipation member, an insulating substrate, a semiconductor element, an external connection terminal, and a resin portion. The insulating substrate is fixed to the heat dissipation member. The semiconductor element is mounted on the insulating substrate. The external connection terminal includes a first end, which is electrically connected to the semiconductor element, and an opposite second end. The resin portion is molded to the insulating substrate, the semiconductor element, the first end, and at least part of the heat dissipation member. The semiconductor modules each form a unit.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: November 18, 2014
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Shinsuke Nishi, Shogo Mori
  • Patent number: 8891235
    Abstract: A thermal interface unit includes a pedestal, a first contact surface below the pedestal to interface with a first die and a flat spring to enable the first contact surface to adapt to a variable height of a first die of a multi-chip package (MCP).
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 18, 2014
    Assignee: Intel Corporation
    Inventors: Joseph F. Walczyk, Jin Yang, James G. Maveety, Todd P. Albertson, Ashish Gupta, Jin Pan, Arun Krishnamoorthy
  • Patent number: 8889489
    Abstract: A heat dissipation device is provided. The heat dissipation device includes an integrated heat spreader and a base plate coupled to the integrated heat spreader, wherein the base plate comprises a plurality of metal pellets to dissipate heat from the integrated heat spreader.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: November 18, 2014
    Assignee: Intel Corporation
    Inventors: Gavin D. Stanley, Michael T. Crocker
  • Patent number: 8884426
    Abstract: A semiconductor device includes a package and a cooler. The semiconductor package includes a semiconductor element, a metal member, and a molding member for encapsulating the semiconductor element and the metal member. The metal member has a metal portion thermally connected to the semiconductor element, an insulating layer on the metal portion, and a conducting layer on the insulating layer. The conducting layer is at least partially exposed outside the molding member and serves as a radiation surface for radiating heat of the semiconductor element. The cooler has a coolant passage through which a coolant circulates to cool the conducting layer. The conducting layer and the cooler are electrically connected together.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: November 11, 2014
    Assignee: DENSO CORPORATION
    Inventors: Kuniaki Mamitsu, Takahisa Kaneko, Masaya Tonomoto, Masayoshi Nishihata, Hiroyuki Wado, Chikage Noritake, Eiji Nomura, Toshiki Itoh
  • Patent number: 8879254
    Abstract: Methods and apparatus for compact active cooling for missile applications generally comprise a circuit card assembly level closed loop fluid filled cooling system for cooling high power components such as microprocessors. The present invention utilizes a cooling system constrained to a single circuit card assembly providing for a drop in replacement for current passively cooled circuit card assemblies.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: November 4, 2014
    Assignee: Raytheon Company
    Inventors: Brendon R. Holt, Reagan Branstetter, Chad E. Boyack, Kevin R. Hopkins
  • Patent number: 8879256
    Abstract: An electric power conversion apparatus includes a plurality of semiconductor modules, a frame, a control circuit board, and a reinforcing and fixing member. Each of the semiconductor modules has a plurality of control terminals. The frame receives the semiconductor modules therein. The frame has, at least, a pair of side walls that face each other with the semiconductor modules interposed therebetween. The control circuit board is located outside of the frame and has the control terminals of the semiconductor modules connected thereto. The reinforcing and fixing member extends to connect the side walls of the frame, thereby reinforcing the frame. The reinforcing and fixing member also has the control circuit board fixed thereto so that the reinforcing and fixing member is positioned between the control circuit board and the semiconductor modules.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: November 4, 2014
    Assignee: Denso Corporation
    Inventors: Hiromi Ichijyo, Takahisa Kaneko, Takeshi Fujihara, Kenshiro Hida
  • Patent number: 8878358
    Abstract: Between a logic LSI (4) arranged on one side of a DRAM (1) and jointed to the DRAM and a radiating member (6) arranged on the other side of the DRAM (1) for irradiating the heats of the DRAM (1) and the logic LSI (4), there is disposed a heat bypass passage (5), which extends inbetween while bypassing the DRAM (1). Thus, it is possible to provide a semiconductor device, which can irradiate the heat generated from the logic LSI such as CPU or GPU thereby to reduce the temperature rise and the temperature distribution.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: November 4, 2014
    Assignee: Nikon Corporation
    Inventor: Isao Sugaya
  • Patent number: 8872328
    Abstract: An integrated power module includes a substantially planar insulated metal substrate having at least one cut-out region; at least one substantially planar ceramic substrate disposed within the cut-out region, wherein the ceramic substrate is framed on at least two sides by the insulated metal substrate, the ceramic substrate including a first metal layer on a first side and a second metal layer on a second side; at least one power semiconductor device coupled to the first side of the ceramic substrate; at least one control device coupled to a first surface of the insulated metal substrate; a power overlay electrically connecting the at least one semiconductor power device and the at least one control device; and a cooling fluid reservoir operatively connected to the second metal layer of the at least one ceramic substrate, wherein a plurality of cooling fluid passages are provided in the cooling fluid reservoir.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: October 28, 2014
    Assignee: General Electric Company
    Inventors: Eladio Clemente Delgado, John Stanley Glaser, Brian Lynn Rowden
  • Patent number: 8867210
    Abstract: A cooling apparatus is disclosed. The cooling apparatus comprises a first outer portion comprising a fluid inlet and a first exterior cooling surface. A first fluid-diverting structure is in fluid communication with the fluid inlet. A second outer portion comprises a fluid outlet and a second exterior cooling surface. A second fluid-diverting structure is in fluid communication with the fluid outlet. An electrical substrate is coupled to at least one of the first and second exterior cooling surfaces. An intermediate portion is in a facing relationship with the first and second outer portions. The intermediate portion defines an aperture for transferring a fluid between a first cavity and a second cavity. The first cavity is defined between the first outer portion and the intermediate portion. The second cavity is defined between the second outer portion and the intermediate portion. The fluid absorbs heat from the electrical substrate.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: October 21, 2014
    Assignee: Deere & Company
    Inventors: Gregory K. Harmelink, Christopher J. Schmit
  • Publication number: 20140306336
    Abstract: A fluid cooled semiconductor die package includes a package support substrate with a die mounting surface and an opposite package mounting surface. The package support substrate has external connector solder deposits on respective external connector pads of the package mounting surface, and a package fluid inlet duct and a package fluid outlet duct each providing fluid communication between the die mounting surface and package mounting surface. A semiconductor die is mounted on the die mounting surface. The die has external terminals electrically connected to the external connector pads. An inlet solder deposit is soldered to an inlet pad of the package mounting surface. The inlet pad surrounds an entrance of the fluid inlet duct. An outlet solder deposit is soldered to an outlet pad of the package mounting surface. The outlet pad surrounds an exit of the package fluid inlet duct.
    Type: Application
    Filed: April 15, 2013
    Publication date: October 16, 2014
    Inventors: Chee Seng Foong, Tim V. Pham
  • Patent number: 8861202
    Abstract: A thermal management component for a Rechargeable Energy Storage Systems (RESS) assembly and a method of managing the temperature of a RESS battery module using the component are disclosed. The thermal management component comprises (i) a frame having a chamber defined therein; and (ii) a heat exchange plate in mechanical communication with at least a portion of the frame. The method comprises (a) providing a thermal management component as described herein; and (b) circulating at least one heat transfer fluid through said component.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: October 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Mathew L. Nassoiy
  • Patent number: 8859340
    Abstract: A method includes the operations performing a first anisotropic etching process to remove a portion of the metal sheet from a top surface of the metal sheet, thereby forming a plurality of first recesses in the metal sheet; mounting a carrier on the top surface of the metal sheet, covering the first recesses; performing a second anisotropic etching process to remove a portion of the metal sheet under the first recesses from the bottom surface of the metal sheet; filling a molding material from the bottom surface of the metal sheet, leaving the bottom surface of the metal sheet exposed; forming a passivation layer on the top surface of the metal sheet, having a plurality of openings therethrough; forming a plurality of first metal vias through the opening; and forming a solder mask layer on the passivation layer, leaving the first metal vias exposed.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: October 14, 2014
    Assignee: MediaTek Inc.
    Inventors: Thomas Matthew Gregorich, Andrew C. Chang, Tzu-Hung Lin
  • Patent number: 8860212
    Abstract: A fluid cooled semiconductor die package includes a package support substrate with a die mounting surface and an opposite package mounting surface. The package support substrate has external connector solder deposits on respective external connector pads of the package mounting surface, and a package fluid inlet duct and a package fluid outlet duct each providing fluid communication between the die mounting surface and package mounting surface. A semiconductor die is mounted on the die mounting surface. The die has external terminals electrically connected to the external connector pads. An inlet solder deposit is soldered to an inlet pad of the package mounting surface. The inlet pad surrounds an entrance of the fluid inlet duct. An outlet solder deposit is soldered to an outlet pad of the package mounting surface. The outlet pad surrounds an exit of the package fluid inlet duct.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: October 14, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chee Seng Foong, Tim V. Pham
  • Publication number: 20140291832
    Abstract: A semiconductor module is disclosed having at least one power semiconductor device, wherein the at least one power semiconductor device has first and second planar sides; a first thermally conductive substrate in thermal contact with the first planar side of the power semiconductor device; a first cooling module defining a first cavity, the first cavity in thermal contact with the first thermally conductive substrate, and the first cooling module in mechanical connection with the first thermally conductive substrate; a first inlet provided in the first cavity for receiving a coolant; a first outlet provided in the first cavity for discharging said coolant; wherein the power semiconductor device is in coolant-proof isolation from the cavity.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Applicant: Infineon Technologies AG
    Inventor: Alexander Schwarz
  • Publication number: 20140284787
    Abstract: Jet impingement cooling apparatuses having non-uniformly sized jet orifices for producing an array of impingement jets that impinge a target surface are disclosed. In one embodiment, a cooling apparatus includes at least one fluid inlet channel, at least one fluid outlet channel, a target surface, and a jet orifice surface that is offset from the target surface. The jet orifice surface includes an array of jet orifices fluidly coupled to the at least one fluid inlet channel, wherein each individual jet orifice of the array of jet orifices has an area corresponding to a distance of the individual jet orifice to the at least one fluid outlet channel such that individual jet orifices closer to the at least one fluid outlet have an area that is smaller than individual jet orifices further from the at least one fluid outlet. Power electronics modules are also disclosed.
    Type: Application
    Filed: March 19, 2013
    Publication date: September 25, 2014
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Toyota Motor Engineering & Manufacturing North America, Inc.
  • Patent number: 8836092
    Abstract: A lead frame for assembling a semiconductor device has a die pad surrounded by lead fingers. Each of the lead fingers has a proximal end close to but spaced from an edge of the die pad and a distal end farther from the die pad. A semiconductor die is attached to a surface of the die pad. The die has die bonding pads on its upper surface that are electrically connected to the proximal ends of the lead fingers with bond wires. An encapsulation material covers the bond wires, semiconductor die and the proximal ends of the lead fingers. Prior to assembly, hot spots of the die are determined and the lead fingers closest to the hot spots are selected to project closer to the die than the other lead fingers. These longer lead fingers assist in dissipating the heat at the die hot spot.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: September 16, 2014
    Assignee: FreeScale Semiconductor, Inc.
    Inventors: Chetan Verma, Piyush Kumar Mishra, Cheong Chiang Ng
  • Patent number: 8829670
    Abstract: The present disclosure is directed to a device that includes a first substrate having a first plurality of hollow pillars on the first substrate and a first plurality of channels in the first substrate coupled to the first plurality of hollow pillars. The device includes a second substrate attached to the first substrate, the second substrate having a second plurality of hollow pillars on the second substrate and a second plurality of channels in the second substrate coupled to the second plurality of hollow pillars, the first plurality of hollow pillars being coupled to the second plurality of hollow pillars to allow a fluid medium to move through the substrate to cool the first substrate and the second substrate.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 9, 2014
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Edem Wornyo
  • Patent number: 8829669
    Abstract: A semiconductor device configured to enable efficient cooling of an element and downsizing of the device. The semiconductor device including an element unit connected to a surface of a cooler. A support member that has a condenser housing chamber that houses the condenser. The condenser has two parallel planar surfaces that are parallel with each other. The condenser housing chamber has a parallel opposing surface that is arranged in parallel with the element unit arrangement surface and faces the element unit arrangement surface, and houses the condenser in a state where the two parallel planar surfaces are arranged in parallel with the parallel opposing surface. The support member is fixed to the cooler in a state where the parallel opposing surface presses the element unit toward the cooler.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: September 9, 2014
    Assignees: Aisin Aw Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Yutaka Hotta, Tatsuyuki Uechi
  • Patent number: 8824145
    Abstract: A system and method for manufacturing an electric device package are disclosed. An embodiment comprises a carrier, a component disposed on the carrier, the component having a first component contact pad, and a first electrical connection between the first component contact pad and a first carrier contact pad, wherein the first electrical connection comprises a first hollow space, the first hollow space comprising a first liquid.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 2, 2014
    Assignee: Infineon Technologies AG
    Inventors: Khalil Hosseini, Joachim Mahler
  • Patent number: 8824144
    Abstract: A power module base includes a heat radiation substrate formed of a high-thermal-conduction material, an insulating substrate joined to an upper surface of the heat radiation substrate, a wiring layer provided on an upper surface of the insulating substrate, and a heat radiation fin joined to a lower surface of the heat radiation substrate. A component attachment plate thicker than the heat radiation substrate and including a through hole for accommodating the insulating substrate is joined to the upper surface of the heat radiation substrate such that the insulating substrate is located within the through hole. This power module base can maintain the upper surface of the component attachment plate flat, and various components for a power module, such as a casing, can be attached onto the component attachment plate.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: September 2, 2014
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Keiji Toh, Shogo Mori, Hideyasu Obara, Nobuhiro Wakabayashi, Shintaro Nakagawa, Shinobu Yamauchi
  • Publication number: 20140239486
    Abstract: A cooling device for a semiconductor module supplying a coolant from outside into a water jacket and cooling a semiconductor element, includes a heat sink thermally connected to the semiconductor element; a first flow channel extending from a coolant introducing port and including a guide section having an inclined surface for guiding the coolant toward one side surface of the heat sink; a second flow channel disposed parallel to the first flow channel and extending toward a coolant discharge port; a flow velocity adjusting plate disposed in the second flow channel and formed parallel to the other side surface of the heat sink at a distance therefrom; and a third flow channel formed to communicate the first flow channel and the second flow channel. The heat sink is disposed in the third flow channel.
    Type: Application
    Filed: October 12, 2012
    Publication date: August 28, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Hiromichi Gohara, Akira Morozumi, Takeshi Ichimura
  • Publication number: 20140225249
    Abstract: A semiconductor device according to the present invention has a semiconductor module 2; a cooling unit 3, the semiconductor module 2 being joined to an upper surface of the cooling unit 3, and a pipe 14, 15 for circulating a refrigerant being fixed to a side surface 20, 22 of the cooling unit 3; and a resin mold layer 4 that covers outer peripheries of the semiconductor module 2 and the cooling unit 3 . Further, a protruding portion 25, 26 that protrudes from the side surface 20, 22 of the cooling unit 3 and surrounds the pipe 14, 15 is provided on the side surface 20, 22 of the cooling unit 3.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 14, 2014
    Applicant: Calsonic Kansei Corporation
    Inventors: Toshikazu Yoshihara, Satoshi Tamagawa, Yasuyuki Oi, Hideki Kobayashi
  • Patent number: 8791564
    Abstract: In the disclosed method for manufacturing a semiconductor module, a metal layer and a cooler, which have different coefficients of thermal expansion from each other, are joined into a single unit via an insulating resin sheet. A work, comprising a semiconductor element placed on the metal layer with solder interposed therebetween, is fed into a reflow furnace. The work, in that state, is heated in the reflow furnace, thereby mounting the semiconductor element to the metal layer. The heating is carried out such that the temperature of the cooler and the temperature of the metal layer differ by an amount that make the cooler and the metal layer undergo the same amount of thermal expansion as each other.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: July 29, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroki Mizuno
  • Patent number: 8792239
    Abstract: Disclosed herein are a power module package and a method for manufacturing the same. The power module package includes: a base substrate made of a metal material; cooling channels formed to allow a cooling material to flow in an inner portion of the base substrate; an anodized layer formed on an outer surface of the base substrate; a metal layer formed on a first surface of the base substrate having the anodized layer and including circuits and connection pads; and semiconductor devices mounted on the metal layer.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: July 29, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jin Suk Son, Kwang Soo Kim, Young Ki Lee, Sun Woo Yun, Sung Keun Park
  • Patent number: 8789578
    Abstract: A cooling structure for an electric device includes a plurality of cooling medium paths (724) through which a cooling medium for an inverter flows, an inlet (722) into which the cooling medium to be supplied to the plurality of cooling medium paths (724) flows, and a wall (726) provided between the inlet (722) and the plurality of cooling medium paths (724) to promote distribution of the cooling medium to each of the cooling medium paths (724).
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: July 29, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Ken Asakura
  • Publication number: 20140203426
    Abstract: A semiconductor device includes a package and a cooler. The semiconductor package includes a semiconductor element, a metal member, and a molding member for encapsulating the semiconductor element and the metal member. The metal member has a metal portion thermally connected to the semiconductor element, an insulating layer on the metal portion, and a conducting layer on the insulating layer. The conducting layer is at least partially exposed outside the molding member and serves as a radiation surface for radiating heat of the semiconductor element. The cooler has a coolant passage through which a coolant circulates to cool the conducting layer. The conducting layer and the cooler are electrically connected together.
    Type: Application
    Filed: March 20, 2014
    Publication date: July 24, 2014
    Applicant: DENSO CORPORATION
    Inventors: Kuniaki MAMITSU, Takahisa KANEKO, Masaya TONOMOTO, Masayoshi NISHIHATA, Hiroyuki WADO, Chikage NORITAKE, Eiji NOMURA, Toshiki ITOH
  • Patent number: 8786078
    Abstract: Jet-impingement, two-phase cooling apparatuses and power electronics modules having a target surface with single- and two-phase surface enhancement features are disclosed. In one embodiment, a cooling apparatus includes a jet plate surface and a target layer. The jet plate surface includes a jet orifice having a jet orifice geometry, wherein the jet orifice is configured to generate an impingement jet of a coolant fluid. The target layer has a target surface, single-phase surface enhancement features, and two-phase surface enhancement features. The target surface is configured to receive the impingement jet, and the single-phase surface enhancement features and the two-phase enhancement features are arranged on the target surface according to the jet orifice geometry.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: July 22, 2014
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Purdue Research Foundation
    Inventors: Matthew Joseph Rau, Ercan Mehmet Dede, Shailesh N. Joshi, Suresh V. Garimella
  • Patent number: 8780557
    Abstract: A power electronics inverter includes a housing which forms a cold plate with coolant passages. The housing encloses an insulated gate bipolar transistor (IGBT), and a DC Link capacitor. The capacitor comprises a bus-bar which exits from a bottom side of the capacitor, and the bus-bar is positioned adjacent to the cold plate. The cold plate forms a cooling passage which underlies the IGBT and the capacitor bus-bar. Thermally conductive gap pads are located between the capacitor bus-bar and the cold plate.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: July 15, 2014
    Assignee: Deere & Company
    Inventors: Jeffrey Scott Duppong, David Michael Loken, Erich Joel Drees
  • Patent number: 8766433
    Abstract: The invention relates to an electronic chip, comprising: a semiconductor substrate (6) having an active area (8) formed by at least one P doped region and at least one N doped region which form one or more P-N junctions through which most of the useful current flows when said electronic chip is in a conductive state, and at least one channel (44) through which a heat transport coolant can flow, the channel(s) passing through at least said P or N doped region of the active area. Each channel (44) is rectilinear and passes through the substrate (6) in a direction which is collinear with a direction F to the nearest ±45°, where the direction F is perpendicular to the plane of the substrate.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: July 1, 2014
    Assignees: Commissariat a l'energie atomique et aux energies alternatives, Centre National de la Recherche Scientifique, Institut Polytechnique de Grenoble
    Inventors: Yvan Avenas, Jean-Christophe Crebier, Julie Widiez, Laurent Clavelier, Kremena Vladimirova
  • Patent number: 8754437
    Abstract: The invention relates to an LED module (1) comprising at least one light-emitting diode (LED) (3) and at least one heat sink (2) for active cooling, having at least one coolant channel (6) through which a cooling fluid flows. The dimensions of the at least one coolant channel (6) are selected so that a predominantly laminar flow of the fluid is set up in the at least one coolant channel (5) during operation of the LED module (1).
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: June 17, 2014
    Assignee: OSRAM Gesellschaft mit beschraenkter Haftung
    Inventors: Alexander Faller, Moritz Kaiser, Martin Reuter
  • Patent number: 8730673
    Abstract: A self-contained fluid-cooled electro-optical plug in type module capable of being exchangeably mounted in an external chassis incorporates electronic or electro-optical devices mounted on one or more interposers which provide electrical power and electric and optical signal connections to the devices and are also provided with fluid conduits through which a cooling fluid is circulated in a closed-loop cooling path to a heat exchanger for transferring the heat generated in the devices to external heat disposal equipment in the mounting chassis.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: May 20, 2014
    Assignee: Lockheed Martin Corporation
    Inventor: David L. Vos
  • Patent number: 8730674
    Abstract: Magnetic fluid cooling devices and power electronic devices are disclosed. In one embodiment, a magnetic fluid cooling device includes a magnetic field generating device, a magnetic fluid chamber assembly, and a heat sink device. The magnetic field generating device includes a plurality of magnetic regions having alternating magnetic directions such that magnetic flux generated by the magnetic field generating device is enhanced on a first side of the magnetic field generating device and inhibited on a second side of the magnetic field generating device. The magnetic fluid chamber assembly defines a magnetic fluid chamber configured to receive magnetic fluid. The heat sink device includes a plurality of extending fins, and is thermally coupled to the magnetic fluid chamber assembly. Power electronic devices are also disclosed, wherein the magnetic fluid chamber may be configured as opened or closed.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: May 20, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Ercan Mehmet Dede, Jaewook Lee, Tsuyoshi Nomura
  • Patent number: 8724324
    Abstract: A rectifier comprising an electrically conductive support 32, a first plurality of rectifier components 24 carried by the support 32 and having their anodes connected to a first bus bar 26, a second plurality of rectifier components 28 carried by the support 32 and having their cathodes connected to a second bus bar 30, the cathode of each of the first rectifier components 24 being connected to the anode of an associated one of the second rectifier components 28, and first and second resistance paths 40, 42 between the first and second bus bars 26, 30 and the support 32.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: May 13, 2014
    Assignee: Goodrich Control Systems
    Inventors: Sepideh Ford, Lyndon Paul Fountain, Raymond Richard Bomford, Mark Wesley Bailey
  • Patent number: 8723205
    Abstract: A thermal conductivity and phase transition heat transfer mechanism has an opto-luminescent phosphor contained within the vapor chamber of the mechanism. The housing includes a section that is thermally conductive and a member that is at least partially optically transmissive, to allow emission of light produced by excitation of the phosphor. A working fluid also is contained within the chamber. The pressure within the chamber configures the working fluid to absorb heat during operation of the lighting device, to vaporize at a relatively hot location at or near at least a portion of the opto-luminescent phosphor as the working fluid absorbs heat, to transfer heat to and condense at a relatively cold location, and to return as a liquid to the relatively hot location. Also, the working fluid is in direct contact with or contains at least a portion of the opto-luminescent phosphor.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: May 13, 2014
    Assignee: ABL IP Holding LLC
    Inventors: David Ramer, Jack Rains
  • Patent number: 8704352
    Abstract: A semiconductor device comprises a mounting substrate, a semiconductor element provided above said mounting substrate, a package substrate provided above said mounting substrate with said semiconductor element therebetween and electrically connected to said semiconductor element via a primary connecting bump, a liquid cooling module cooling said semiconductor element by a liquid refrigerant, in which a heat receiving section of the liquid cooling module is disposed between said semiconductor element and said mounting substrate, and a plurality of secondary connecting bumps provided between said package substrate and said mounting substrate.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: April 22, 2014
    Inventors: Nae Hisano, Shigeo Ohashi, Yasuo Osone, Yasuhiro Naka, Hiroyuki Tenmei, Kunihiko Nishi, Hiroaki Ikeda, Masakazu Ishino, Hideharu Miyake, Shiro Uchiyama
  • Patent number: 8699225
    Abstract: A liquid cooled power electronics assembly configured to use electrically conductive coolant to cool power electronic devices that uses dielectric plates sealed with a metallic seal around the perimeter of the dielectric plates to form a device assembly, and then forms another metallic seal between the device assembly and a housing. The configuration allows for more direct contact between the electronic device and the coolant, while protecting the electronic device from contact with potentially electrically conductive coolant. Material used to form the dielectric plates and the housing are selected to have similar coefficients of thermal expansion (CTE) so that the reliability of the seals is maximized.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 15, 2014
    Assignee: Delphi Technologies, Inc.
    Inventors: Scott D. Brandenburg, Richard D. Parker, Erich W. Gerbsch, Gary L. Eesley, Carl W. Berlin
  • Patent number: 8684564
    Abstract: The present invention relates to an LED illumination apparatus. The apparatus includes a body having a lower portion adapted for coupling to a power socket and an upper portion provided with a power source module accommodating chamber. A heat-dissipating module includes a funnel-shaped hollow case disposed at a top end of the upper portion and filled with a coolant fluid, wherein the hollow case has a small diameter open end adjacent to the body and a large diameter open end remote from the body. A light source module includes amounting substrate disposed at the small diameter open end, an LED mounted on the mounting substrate, and a power source module disposed within the power source module accommodating chamber in a manner electrically connected to and supplying working power to the LED.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: April 1, 2014
    Inventors: Yu-Nung Shen, Tsung-Chi Wang
  • Patent number: 8681497
    Abstract: A board coolant jacket jig system includes a main frame that includes a board installation stand on which a board is installed, and a coolant jacket separation unit that is coupled to the main frame and selectively coupled to the coolant jacket coupled to the board, to separate the coolant jacket.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Mu Yer Lee
  • Patent number: 8665592
    Abstract: A multi-core microprocessor provides an indication of the power management state of each of the cores on output terminals. Cooling of the cores is adjusted responsive to the indication of the power management state of the respective cores with additional cooling being provided to those cores in a more active state and less cooling provided to those cores in a less active state.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: March 4, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Anthony C. Mowry, David G. Farber, Michael J. Austin, John E. Moore
  • Publication number: 20140054762
    Abstract: A semiconductor module cooler supplies a cooling medium to a cooling medium jacket from outside to cool a plurality of semiconductor elements thermally connected to the cooling medium jacket through a heat sink. The cooling medium jacket has a cooling fin cooling room including an opening for inserting cooling fins, and cooling the cooling fins; a cooling medium introduction port to introduce the cooling medium; a cooling medium diffusion room to diffuse and supply the cooling medium to the cooling fin cooling room; a cooling medium diffusion wall provided in the cooling medium diffusion room in which the cooling medium diffused by the cooling medium diffusion room flows over to be introduced to the cooling fin cooling room side; a cooling medium discharge port discharging the cooling medium to the outside; and a cooling medium convergence room provided between the cooling fin cooling room and the cooling medium discharge port.
    Type: Application
    Filed: May 14, 2012
    Publication date: February 27, 2014
    Applicant: FUJI ELECTRIC CO., LTD
    Inventor: Fumio Nagaune
  • Patent number: 8659903
    Abstract: A device has a passive cooling device having a surface, at least one active cooling device on the surface of the passive cooling device, and a thermal switch coupled to the passive cooling device, the switch having a first position that connects the active cooling device to a path of high thermal conductivity and a second position that connects the passive cooling device to the path of high thermal conductivity.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 25, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventor: David Eric Schwartz
  • Patent number: 8659898
    Abstract: The invention relates to an integrated circuit stack (1) comprising a plurality of integrated circuit layers (2) and at least one cooling layer (3) arranged in a space between two circuit layers (2). The integrated circuit stack (1) is cooled using a cooling fluid (10) pumped through the cooling layer (3). The invention further relates to a method for configuring of such an integrated circuit stack (1) by optimizing a configuration of the cooling layer (3).
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: February 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Ryan J. Linderman, Bruno Michel, Hugo E. Rothuizen
  • Patent number: 8659130
    Abstract: A power module includes: a sealing body including a semiconductor element having a plurality of electrode surfaces, a first conductor plate connected to one electrode surface of the semiconductor element via solder, and a sealing material for sealing the semiconductor element and the first conductor plate, the sealing body having at least a first surface and a second surface on the opposite side of the first surface; and a case for housing the sealing body. The case is configured by a first heat radiation plate opposed to the first surface of the sealing body, a second heat radiation plate opposed to the second surface of the sealing body, and an intermediate member that connects the first heat radiation plate and the second heat radiation plate. The intermediate member has a first thin section having thickness smaller than the thickness of the first heat radiation plate, more easily elastically deformed than the first heat radiation plate, and formed to surround the first heat radiation plate.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: February 25, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Yusuke Takagi, Kaoru Uchiyama, Tokihito Suwa, Kinya Nakatsu, Takeshi Tokuyama, Shinji Hiramitsu