Refractory Or Platinum Group Metal Or Alloy Or Silicide Thereof Patents (Class 257/768)
  • Patent number: 8349730
    Abstract: An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a semiconductor substrate; a dielectric layer over the semiconductor substrate; an opening in the dielectric layer; a conductive line in the opening; a metal alloy layer overlying the conductive line; a first metal silicide layer overlying the metal alloy layer; and a second metal silicide layer different from the first metal silicide layer on the first metal silicide layer. The metal alloy layer and the first and the second metal silicide layers are substantially vertically aligned to the conductive line.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: January 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hsueh Shih, Shau-Lin Shue
  • Patent number: 8344438
    Abstract: The present invention refers to an electrode comprising a first metallic layer and a compound comprising at least one of a nitride, oxide, and oxynitride of a second metallic material.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: January 1, 2013
    Assignee: Qimonda AG
    Inventors: Uwe Schroeder, Stefan Jakschik, Johannes Heitmann, Tim Boescke, Annette Saenger
  • Publication number: 20120326318
    Abstract: A method for forming a metal-semiconductor alloy layer uses particular thermal annealing conditions to provide a stress free metal-semiconductor alloy layer through interdiffusion of a buried semiconductor material layer and a metal-semiconductor alloy forming metal layer that contacts the buried semiconductor material layer within an aperture through a capping layer beneath which is buried the semiconductor material layer. A resulting semiconductor structure includes the metal-semiconductor alloy layer that further includes an interconnect portion beneath the capping layer and a contiguous via portion that penetrates at least partially through the capping layer. Such a metal-semiconductor alloy layer may be located interposed between a substrate and a semiconductor device having an active doped region.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christian Lavoie, Francois Pagette, Anna W. Topol
  • Patent number: 8334574
    Abstract: Semiconductor fabricating technology is provided, and particularly, a method of fabricating a semiconductor device improving a contact characteristic between a silicon layer including carbon and a metal layer during a process of fabricating a semiconductor device is provided. A semiconductor device including the silicon layer including carbon and the metal layer formed on the silicon layer is provided. A metal silicide layer is interposed between the silicon layer including carbon and the metal layer.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 18, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joo-Sung Park, Se-Keun Park
  • Patent number: 8330234
    Abstract: In a semiconductor device, a gate electrode having a uniform composition prevents deviation in a work function. Controlling a Vth provides excellent operation properties. The semiconductor device includes an NMOS transistor and a PMOS transistor with a common line electrode. The line electrode includes electrode sections (A) and (B) and a diffusion barrier region formed over an isolation region so that (A) and (B) are kept out of contact. The diffusion barrier region meets at least one of: (1) The diffusion coefficient in the above diffusion barrier region of the constituent element of the above electrode section (A) is lower than the interdiffusion coefficient of the constituent element between electrode section (A) materials; and (2) The diffusion coefficient in the above diffusion barrier region of the constituent element of the above electrode section (B) is lower than the interdiffusion coefficient of the constituent element between electrode section (B) materials.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: December 11, 2012
    Assignee: NEC Corporation
    Inventor: Takashi Hase
  • Publication number: 20120280397
    Abstract: A method of manufacturing a semiconductor device includes forming an interlayer dielectric layer, forming trenches by etching the interlayer dielectric layer, forming a copper (Cu) layer to fill the trenches, and implanting at least one of an inert element, a nonmetallic element, and a metallic element onto a surface of the Cu layer.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 8, 2012
    Inventors: Jung Geun KIM, Whee Won Cho, Eun Soo Kim
  • Publication number: 20120241962
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a pre-plated leadframe having a contact pad and a die paddle pad; forming an isolated contact from the pre-plated leadframe and the contact pad; mounting an integrated circuit die over the die paddle pad; and encapsulating with an encapsulation the integrated circuit die and the isolated contact, the encapsulation having a bottom surface which is planar and exposing in the bottom surface only the contact pad and the die paddle pad.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 27, 2012
    Inventor: Zigmund Ramirez Camacho
  • Patent number: 8248810
    Abstract: An electronic device having an integral feeling between a display and an operating member is provided. A mobile phone 1 includes a reinforcing frame 31 arranged between a first case 2 and a sub-display device 29 and having a frame opening 31h formed at a position facing a display surface 29a of the sub-display device 29; a trim plate 35 arranged on a surface facing the case opening 2h of the reinforcing frame 31 to cover the frame opening 31h and positioned in the case opening 2h; a sensor board 39 arranged on the surface facing the case opening 2h of the reinforcing frame 31 and having a board opening 39h in which the trim plate 35 is inserted; a dome switch 45 arranged on a mounting surface 39a facing the case opening 2h of a sensor board 39; and a ring key 7 arranged between the case opening 2h and the trim plate 35 to be able to depress the dome switch 45.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: August 21, 2012
    Assignee: Kyocera Corporation
    Inventor: Shiro Arita
  • Patent number: 8247836
    Abstract: A light emitting diode structure is disclosed that includes a light emitting active portion formed of epitaxial layers and carrier substrate supporting the active portion. A bonding metal system that predominates in nickel and tin joins the active portion to the carrier substrate. At least one titanium adhesion layer is between the active portion and the carrier substrate and a platinum barrier layer is between the nickel-tin bonding system and the titanium adhesion layer. The platinum layer has a thickness sufficient to substantially prevent tin in the nickel tin bonding system from migrating into or through the titanium adhesion layer.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 21, 2012
    Assignee: Cree, Inc.
    Inventors: Matthew Donofrio, David B. Slater, Jr., John A. Edmond, Hua-Shuang Kong
  • Patent number: 8237167
    Abstract: An object is to reduce a capacitance value of parasitic capacitance without decreasing driving capability of a transistor in a semiconductor device such as an active matrix display device. Further, another object is to provide a semiconductor device in which the capacitance value of the parasitic capacitance was reduced, at low cost. An insulating layer other than a gate insulating layer is provided between a wiring which is formed of the same material layer as a gate electrode of the transistor and a wiring which is formed of the same material layer as a source electrode or a drain electrode.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: August 7, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Publication number: 20120193797
    Abstract: A 3D integrated circuit structure comprises a first chip, wherein the first chip comprises: a substrate; a semiconductor device formed on the substrate and a dielectric layer formed on both the substrate and the semiconductor device; a conductive material layer formed within a through hole penetrating through both the substrate and the dielectric layer; a stress releasing layer surrounding the through hole; and a first interconnecting structure connecting the conductive material layer with the semiconductor device. By forming a stress releasing layer to partially release the stress caused by the conductive material in the via, the stress caused by mismatch of CTE between the conductive material and the semiconductor (for example, silicon) surrounding it can be reduced, thereby enhancing the performance of the semiconductor device and the corresponding 3D integrated circuit consisting of the semiconductor devices.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 2, 2012
    Inventor: Huilong Zhu
  • Patent number: 8232647
    Abstract: A high aspect ratio metallization structure is provided in which a noble metal-containing material is present at least within a lower portion of a contact opening located in a dielectric material and is in direct contact with a metal semiconductor alloy located on an upper surface of a material stack of at least one semiconductor device. In one embodiment, the noble metal-containing material is plug located within the lower region of the contact opening and an upper region of the contact opening includes a conductive metal-containing material. The conductive metal-containing material is separated from plug of noble metal-containing material by a bottom walled portion of a U-shaped diffusion barrier. In another embodiment, the noble metal-containing material is present throughout the entire contact opening.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Fenton R. McFeely
  • Publication number: 20120139118
    Abstract: A semiconductor chip includes a substrate having a first surface and a second surface opposite to the first surface, a chip pad disposed on the first surface of the substrate, and a through-silicon via (TSV) including a plurality of sub vias electrically connected to the chip pad at different positions.
    Type: Application
    Filed: September 23, 2011
    Publication date: June 7, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Seong Cheol KIM
  • Patent number: 8159068
    Abstract: A semiconductor device includes: a semiconductor layer composed of one of GaAs based semiconductor, InP-based semiconductor, and GaN-based semiconductor; a first silicon nitride film that is provided on the semiconductor layer, and of which an end portion is in contact with a surface of the semiconductor layer; a protective film that is composed of one of polyimide and benzocyclobutene, and is provided on the semiconductor layer and the first silicon nitride film, the protective film covering the end portion of the first silicon nitride film; and a first metallic layer that is composed of one of titanium, tantalum and platinum, and is continuously provided from a first portion located between the semiconductor layer and the protective film to a second portion located between the end portion of the first silicon nitride film and the protective film, the first metallic layer being in contact with the surface of the semiconductor layer and a surface of the end portion of the first silicon nitride film.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: April 17, 2012
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventors: Takeshi Hishida, Tsutomu Igarashi
  • Patent number: 8154130
    Abstract: A method for forming germano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: April 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy A. Carruthers, Christophe Detavernier, Simon Gaudet, Christian Lavoie, Huiling Shang
  • Publication number: 20120061842
    Abstract: A stack package includes a substrate, a lower semiconductor chip stacked on the substrate and electrically connected to the substrate through a lower via, a plurality of upper semiconductor chips stacked on the lower semiconductor chip and electrically connected to the lower via through an upper via, wherein the upper semiconductor chips are larger in size than the lower semiconductor chip, and an edge guide electrically connecting edge vias of the upper semiconductor chips and the substrate.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Seong Cheol KIM
  • Patent number: 8129844
    Abstract: Electronic devices and design structures of electronic devices containing metal silicide layers. The devices include: a thin silicide layer between two dielectric layers, at least one metal wire abutting a less than whole region of the silicide layer and in electrical contact with the silicide layer.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Felix Patrick Anderson, Zhong-Xiang He, Thomas Leddy McDevitt, Eric Jeffrey White
  • Patent number: 8114720
    Abstract: An object is to reduce a capacitance value of parasitic capacitance without decreasing driving capability of a transistor in a semiconductor device such as an active matrix display device. Further, another object is to provide a semiconductor device in which the capacitance value of the parasitic capacitance was reduced, at low cost. An insulating layer other than a gate insulating layer is provided between a wiring which is formed of the same material layer as a gate electrode of the transistor and a wiring which is formed of the same material layer as a source electrode or a drain electrode.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: February 14, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8115264
    Abstract: Provided is a semiconductor device that comprises a metal gate having a low sheet resistance characteristic and a high diffusion barrier characteristic and a method of fabricating the metal gate of the semiconductor device. The semiconductor device includes a metal gate formed on a gate insulating film, wherein the metal gate is formed of a metal nitride that contains Al or Si and includes upper and lower portions where the content of Al or Si is relatively high and a central portion where the content of Al or Si is relatively low.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: February 14, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-ho Park, Jin-seo Noh, Joong S. Jeon
  • Publication number: 20120025385
    Abstract: Methods for forming memory devices and integrated circuitry, for example, DRAM circuitry, structures and devices resulting from such methods, and systems that incorporate the devices are provided.
    Type: Application
    Filed: September 27, 2011
    Publication date: February 2, 2012
    Inventors: Terrence McDaniel, Sandra Tagg, Fred Fishburn
  • Patent number: 8101871
    Abstract: An electronic device bond pad includes an Al layer located over an electronic device substrate. The Al layer includes an intrinsic group 10 metal located therein.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: January 24, 2012
    Assignee: LSI Corporation
    Inventors: Frank A. Baiocchi, John M DeLucca, John W. Osenbach
  • Patent number: 8076781
    Abstract: A conventional semiconductor device has a problem that reduction of a connection resistance value between wiring layers is difficult because of an oxide film formed between the wiring layers. In a semiconductor device of this invention, a first metal layer is embeded in opening regions which connect a first wiring layer and a second wiring layer and an opening is formed in a spin coated resin film formed on the first metal layer. In the opening, a Cr layer forming a plating metal layer and a Cu plated layer are connected to each other. With this structure, the spaces among crystal grains in portions in the Cr layer on the first metal layer are wide, which causes the portions to be coarse. In the coarse portions in the Cr layer, an alloy layer formed of the second metal layer and the Cu plated layer is formed, and thus, the connection resistance value is reduced.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: December 13, 2011
    Assignees: SANYO Semiconductor Co., Ltd., Semiconductor Components Industries, LLC
    Inventors: Yoshimasa Amatatsu, Minoru Akaishi, Satoshi Onai, Katsuya Okabe, Yoshiaki Sano, Akira Yamane
  • Patent number: 8072076
    Abstract: Bonding pad structures and integrated circuits having the same are provided. An exemplary embodiment of a bond pad structure comprises a bond pad layer. A passivation layer partially covers the bond pad layer from edges thereof and exposes a bonding surface, wherein the passivation layer is formed with a recess on at least one edge of the bonding surface to thereby define a probe needle contact area for probe needle testing and a wire bonding area for wire bonding on the bonding surface, and the probe needle contact area and the wire bonding area have a non-overlapping relationship.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: December 6, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Hsun Hsu, Shih-Puu Jeng, Shang-Yun Hou, Hsien-Wei Chen
  • Publication number: 20110278624
    Abstract: The present invention relates to a substrate for an optical device, to an optical device package comprising the same and to a production method for the same. According to the present invention, the substrate for an optical device, the optical device package comprising the same and the production method for the same may comprise: a metal substrate; a first anodized layer which is formed on the top surface of the metal substrate and insulates the metal substrate; and a first and a second electrode formed insulated from each other on the top of the first anodized layer.
    Type: Application
    Filed: December 29, 2009
    Publication date: November 17, 2011
    Inventor: Ki Myung Nam
  • Publication number: 20110272747
    Abstract: An electronic component includes a printed conductor structure on a substrate, as well as a film which contacts the printed conductor structure. The film has a smaller layer thickness than the printed conductor. The printed conductor structure has a region which is covered by the film for the purpose of contacting.
    Type: Application
    Filed: November 17, 2009
    Publication date: November 10, 2011
    Inventors: Richard Fix, Frederik Schrey, Oliver Wolst, Ingo Daumiller, Alexander Martin, Martin Le-Huu, Mike Kunze
  • Patent number: 8044514
    Abstract: In a semiconductor integrated circuit, a second wiring layer includes a ground conductor having at least one opening formed therein. At least one opening is overlapped by at least one patch conductor included in a third wiring layer. At least one patch conductor and the ground conductor are electrically connected to each other by at least one via hole included in a second dielectric layer. A first wiring layer includes a signal line above the ground conductor.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: October 25, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Yutaka Mimino
  • Patent number: 8030777
    Abstract: Methods of protecting exposed metal damascene interconnect surfaces in a process for making electronic components and the electronic components made according to such methods. An integrated circuit structure having damascene regions with exposed metal surfaces is provided into a closed processing chamber, whereby a first reactant is contacted to the exposed metal surfaces to transform a top portion of the metal layer into a protective self-aligned buffer layer. Reacting molecules of the first reactant with metal atoms of this metal layer forms the protective self-aligned buffer layer entirely within such metal layer. Alternatively, adsorbing surface-active reactant molecules onto the exposed metal surface forms the protective self-aligned buffer layer. A second reactant may be contacted to the protective self-aligned buffer layer to form a self-aligned dielectric cap layer directly over the protective self-aligned buffer layer.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: October 4, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Bart van Schravendijk, Thomas W Mountsier, Mahesh K Sanganeria, Glenn B Alers, Roey Shaviv
  • Patent number: 8022482
    Abstract: A trenched semiconductor power device includes a trenched gate insulated by a gate insulation layer and surrounded by a source region encompassed in a body region above a drain region disposed on a bottom surface of a semiconductor substrate. The source region surrounding the trenched gate includes a metal of low barrier height to function as a Schottky source. The metal of low barrier height further may include a PtSi or ErSi layer. In a preferred embodiment, the metal of low barrier height further includes an ErSi layer. The metal of low barrier height further may be a metal silicide layer having the low barrier height. A top oxide layer is disposed under a silicon nitride spacer on top of the trenched gate for insulating the trenched gate from the source region. A source contact disposed in a trench opened into the body region for contacting a body-contact dopant region and covering with a conductive metal layer such as a Ti/TiN layer.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: September 20, 2011
    Assignee: Alpha & Omega Semiconductor, Ltd
    Inventors: Yongzhong Hu, Sung-Shan Tai
  • Publication number: 20110215469
    Abstract: A method for fabricating a circuitry component comprises depositing a first metal layer over a substrate; forming a first pattern-defining layer over said first metal layer, a first opening in said first pattern-defining layer exposing said first metal layer; depositing a second metal layer over said first metal layer exposed by said first opening; removing said first pattern-defining layer; forming a second pattern-defining layer over said second metal layer, a second opening in said second pattern-defining layer exposing said second metal layer; depositing a third metal layer over said second metal layer exposed by said second opening; removing said second pattern-defining layer; removing said first metal layer not under said second metal layer; and forming a polymer layer over said second metal layer, wherein said third metal layer is used as a metal bump bonded to an external circuitry.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 8, 2011
    Applicant: Megica Corporation
    Inventors: Hsin-Jung Lo, Mou-Shiung Lin, Chiu-Ming Chou, Chien-Kang Chou
  • Patent number: 8013446
    Abstract: An interconnect structure is provided that has enhanced electromigration reliability without degrading circuit short yield, and improved technology extendibility. The inventive interconnect structure includes a dielectric material having a dielectric constant of about 3.0 or less. The dielectric material has at least one conductive material embedded therein. A nitrogen-containing noble metal cap is located predominately (i.e., essentially) on an upper surface of the at least one conductive region. The nitrogen-containing noble metal cap does not extend onto an upper surface of the dielectric material. In some embodiments, the nitrogen-containing noble metal cap is self-aligned to the embedded conductive material, while in other embodiments some portion of the nitrogen-containing noble metal cap extends onto an upper surface of a diffusion barrier that separates the at least one conductive material from the dielectric material.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Chao-Kun Hu
  • Patent number: 7998858
    Abstract: The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: August 16, 2011
    Assignee: Infineon Technologies AG
    Inventors: Martin Gutsche, Franz Kreupl, Harald Seidl
  • Patent number: 7985668
    Abstract: Generally, the present disclosure is directed to a method of removing “weakened” areas of a metal silicide layer during silicide layer formation, thereby reducing the likelihood that material defects might occur during subsequent device manufacturing. One illustrative embodiment includes depositing a first layer of a refractory metal on a surface of a silicon-containing material, and performing first and second heating processes. The method further comprises performing a cleaning process, depositing a second layer of the refractory metal above the silicon-containing material, and performing a third heating process.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: July 26, 2011
    Assignee: Globalfoundries Inc.
    Inventors: Ralf Richter, Torsten Huisinga, Jens Heinrich
  • Publication number: 20110175228
    Abstract: Methods for sealing a porous dielectric are presented including: receiving a substrate, the substrate including the porous dielectric; exposing the substrate to an organosilane, where the organosilane includes a hydrolysable group for facilitating attachment with the porous dielectric, and where the organosilane does not include an alkyl group; and forming a layer as a result of the exposing to seal the porous dielectric. In some embodiments, methods are presented where the organosilane includes: alkynyl groups, aryl groups, flouroalkyl groups, heteroarlyl groups, alcohol groups, thiol groups, amine groups, thiocarbamate groups, ester groups, ether groups, sulfide groups, and nitrile groups. In some embodiments, method further include: removing contamination from the porous dielectric and a conductive region of the substrate prior to the exposing; and removing contamination from the conductive region after the forming.
    Type: Application
    Filed: March 29, 2011
    Publication date: July 21, 2011
    Applicant: INTERMOLECULAR, INC.
    Inventors: David E. Lazovsky, Tony P. Chiang, Majid Keshavarz
  • Publication number: 20110163449
    Abstract: In accordance with one aspect of the invention, a method is provided for fabricating a semiconductor element having a contact via. In such method, a hole can be formed in a dielectric layer to at least partially expose a region including at least one of semiconductor or conductive material. A seed layer can be deposited over a major surface of the dielectric layer and over a surface within the hole. In one embodiment, the seed layer can include a metal selected from the group consisting of iridium, osmium, palladium, platinum, rhodium, and ruthenium. A layer consisting essentially of cobalt can be electroplated over the seed layer within the hole to form a contact via in electrically conductive communication with the region.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James J. Kelly, Veeraghavan S. Basker, Bala S. Haran, Soon-Cheon Seo, Tuan A. Vo
  • Patent number: 7960832
    Abstract: An integrated circuit arrangement includes an electrically conductive conduction structure made from copper or a copper alloy. At a side wall of the conduction structure, there is a layer stack which includes at least three layers. Despite very thin layers in the layer stack, it is possible to achieve a high barrier action against copper diffusion combined with a high electrical conductivity, as is required for electrolytic deposition of copper using external current.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: June 14, 2011
    Assignee: Infineon Technologies AG
    Inventor: Heinrich Koerner
  • Patent number: 7955908
    Abstract: A thin film transistor array panel is provided, which includes: a gate line, a gate insulating layer, and a semiconductor layer sequentially formed on a substrate; a data line and a drain electrode formed at least on the semiconductor layer; a first passivation layer formed on the data line and the drain electrode and having a first contact hole exposing the drain electrode at least in part; a second passivation layer formed on the first passivation layer and having a second contact hole that is disposed on the first contact hole and has a first bottom edge placed outside the first contact hole and a second bottom edge placed inside the first contact hole; and a pixel electrode formed on the second passivation layer and connected to the drain electrode through the first and the second contact holes.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: June 7, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-Young Ryu, Young-Hoon Yoo, Jang-Soo Kim, Sung-Man Kim, Kyung-Wook Kim, Hyang-Shik Kong, Young-Goo Song
  • Publication number: 20110101533
    Abstract: A process of forming a semiconductor integrated circuit that includes the steps of: forming at least a first element having a first pattern of conductive material and including a polymer layer surrounding the conductive material, forming at least a second element having a second pattern of conductive material and including a polymer layer surrounding the conductive material, positioning the first element relative to the second element, and bonding the polymer layer of the first and second elements at a temperature below a melting temperature of the conductive materials of the first and second elements wherein the conductive material of the first element contacts the conductive material of the second element and is maintained in position by the bonded polymer layers.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Inventors: Sang Won Yoon, Alexandros Margomenos
  • Patent number: 7928571
    Abstract: The present invention provides a semiconductor device having dual silicon nitride liners and a reformed silicide layer and related methods for the manufacture of such a device. The reformed silicide layer has a thickness and resistance substantially similar to a silicide layer not exposed to the formation of the dual silicon nitride liners. A first aspect of the invention provides a method for use in the manufacture of a semiconductor device comprising the steps of applying a first silicon nitride liner to a silicide layer, removing a portion of the first silicon nitride liner, reforming a portion of the silicide layer removed during the removal step, and applying a second silicon nitride liner to the silicide layer.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: April 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Ying Li, Rajeev Malik, Shreesh Narasimha
  • Publication number: 20110079910
    Abstract: Embodiments of apparatus and methods for forming dual metal interconnects are described herein. Other embodiments may be described and claimed.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 7, 2011
    Inventors: Kevin O'brien, Rohan Akolkar, Tejaswi Indukuri, Arnel M. Fajardo
  • Patent number: 7915735
    Abstract: Selective deposition of metal over dielectric layers in a manner that minimizes or eliminates keyhole formation is provided. According to one embodiment, a dielectric target layer is formed over a substrate layer, wherein the target layer may be configured to allow conformal metal deposition, and a dielectric second layer is formed over the target layer, wherein the second layer may be configured to allow bottom-up metal deposition. An opening may then be formed in the second layer and metal may be selectively deposited over the substrate layer.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: March 29, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Paul Morgan, Nishant Sinha
  • Publication number: 20110024864
    Abstract: A semiconductor device includes a through electrode penetrating a semiconductor substrate, a conductor pad formed on the through electrode and made of a conductor electrically connected to the through electrode, and an interconnection layer formed on a surface of the semiconductor substrate and electrically connected to the conductor pad.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 3, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Noboru KOKUSENYA, Toshihiro KURIYAMA
  • Publication number: 20100320608
    Abstract: Edges of a first conductive layer (104) and a silicate glass layer (106) extend adjacent one another along a via (164) extending to a semiconductor substrate (41). An electrical conductor (112/114) extends through the via (164) into contact with the semiconductor substrate (41).
    Type: Application
    Filed: February 28, 2008
    Publication date: December 23, 2010
    Inventors: Gregory N. Burton, Paul I. Mikulan
  • Patent number: 7851916
    Abstract: A method and system is disclosed for better packaging semiconductor devices. In one example, a semiconductor device package comprises a package substrate, at least one die with an orientation of <100> placed on the substrate with electrical connections made between the package substrate and the die, and an underfill fillet attaching the die to the substrate with the underfill fillet reaching less than 60% of a thickness of the die on at least one side thereof.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: December 14, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Hui Lee, Mickey Ken, Chien-Hsiun Lee, Szu Wei Lu
  • Patent number: 7847410
    Abstract: An interconnect of the group III-V semiconductor device and the fabrication method for making the same are described. The interconnect includes a first adhesion layer, a diffusion barrier layer for preventing the copper from diffusing, a second adhesion layer and a copper wire line. Because a stacked-layer structure of the first adhesion layer/diffusion barrier layer/second adhesion layer is located between the copper wire line and the group III-V semiconductor device, the adhesion between the diffusion barrier layer and other materials is improved. Therefore, the yield of the device is increased.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 7, 2010
    Assignee: National Chiao Tung University
    Inventors: Cheng-Shih Lee, Edward Yi Chang, Huang-Choung Chang
  • Publication number: 20100301485
    Abstract: An electronic device includes a plurality of stacked substrates. Each of the substrates includes a semiconductor substrate, a columnar conductor, and a ring-shaped insulator. The columnar conductor extends along a thickness direction of the semiconductor substrate. The ring-shaped insulator includes an inorganic insulating layer mainly composed of a glass. The inorganic insulating layer fills a ring-shaped groove that is provided in the semiconductor substrate to surround the columnar conductor.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 2, 2010
    Applicant: Napra Co., Ltd.
    Inventors: Shigenobu SEKINE, Yurina SEKINE, Yoshiharu KUWANA, Ryuji KIMURA
  • Patent number: 7830010
    Abstract: Interconnect structures in which a noble metal-containing cap layer is present directly on a non-recessed surface of a conductive material which is embedded within a low k dielectric material are provided. It has been determined that by forming a hydrophobic surface on a low k dielectric material prior to metal cap formation provides a means for controlling the selective formation of the metal cap directly on the non-recessed surface of a conductive material. That is, the selective formation of the metal cap directly on the non-recessed surface of a conductive material is enhanced since the formation rate of the metal cap on the non-recessed surface of a conductive material is greater than on the hydrophobic surface of the low k dielectric material.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: November 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Satya V. Nitta, Sampath Purushothaman, Muthumanickam Sankarapandian
  • Patent number: 7825516
    Abstract: In integrated circuit technology; an electromigration and diffusion sensitive conductor of a metal such as copper and processing procedure therefore is provided, wherein, at a planarized chemical mechanical processed interfacing surface, the conductor metal is positioned in a region of a selectable low K eff dielectric material surrounded by a material selected to be protection from outdiffusion and a source of a film thickness cap that is to form over the conductor metal and/or serve as a catalytic layer for electroless selective deposition of a CoWP capping .
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: November 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Stefanie Ruth Chiras, Michael Wayne Lane, Sandra Guy Malhotra, Fenton Reed Mc Feely, Robert Rosenberg, Carlos Juan Sambucetti, Philippe Mark Vereecken
  • Publication number: 20100264544
    Abstract: A device includes an insulating layer on a substrate having a lower conductive pattern, the insulating layer having a contact hole that penetrates the insulating layer and exposes a portion of the lower conductive pattern, a catalytic pattern having a first portion on the exposed portion of the lower conductive pattern and a second portion on a sidewall of the contact hole, a spacer on the sidewall of the contact hole, wherein the second portion of the catalytic pattern is disposed between the spacer and the sidewall, and a contact plug in the contact hole and contacting the catalytic pattern, the contact plug being a carbon nanotube material.
    Type: Application
    Filed: January 19, 2007
    Publication date: October 21, 2010
    Inventors: Jang-Eun Heo, Young-Moon Choi, Sun-Woo Lee, Hong-Sik Yoon, Kyung-Rae Byun
  • Patent number: 7807571
    Abstract: An example embodiment provides a method of forming a conductive pattern in a semiconductor device. The method includes forming one or more dielectric layers over a first conductive pattern formed on a substrate; forming an opening in the one or more dielectric layers to expose a portion of the first conductive pattern, forming a growth promoting layer over the exposed portion of the first conductive pattern and the one or more dielectric layers, forming a growth inhibiting layer over a portion of the growth promoting layer, and forming the second conductive layer in the opening.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: October 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-In Choi, Gil-Heyun Choi, Sang-Woo Lee, Jong-Myeong Lee, Jong-Won Hong, Hyun-Bae Lee
  • Patent number: 7807538
    Abstract: A metal insulator semiconductor field effect transistor (MISFET) having a strained channel region is disclosed. Also disclosed is a method of fabricating a semiconductor device having a low-resistance junction interface. This fabrication method includes the step of forming a gate electrode above a silicon substrate with a gate insulator film being sandwiched therebetween. Then, form a pair of heavily-doped p (p+) type diffusion layers in or on the substrate surface at both sides of the gate electrode to a concentration of 5×1019 atoms/cm3 or more and yet less than or equal to 1×1021 atoms/cm3. Next, silicidize the p+-type layers by reaction with a metal in the state that each layer is applied a compressive strain.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: October 5, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yamauchi, Atsuhiro Kinoshita, Yoshinori Tsuchiya, Junji Koga